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Abstract—Gait emergence and adaptation in animals is un-
matched in robotic systems. Animals can create and recover loco-
motive functions “on-the-fly” after an injury whereas locomotion
controllers for robots lack robustness to morphological changes.
In this work, we extend previous research on emergent interlimb
coordination of legged robots based on coupled phase oscillators
with force feedback terms. We investigate how the coupling
weights between these phase oscillators can be extracted from the
morphology with a fast and computationally lightweight method
based on a combination of twitching and Hebbian learning to
form sensor-motor maps. The coefficients of these maps create
naturally scaled weights, which not only lead to robust gait limit
cycles, but can also adapt to morphological modifications such
as sensor loss and limb injuries within a few gait cycles. We
demonstrate the approach on a robotic quadruped and hexapod.

Index Terms—locomotion, gait emergence, gait adaptation,
modular robots, phase oscillators, twitching, Hebbian learning

I. INTRODUCTION

Animals possess a remarkable ability to quickly re-
cover their locomotion ability after unexpected morphological
changes. An injured leg can lead to a temporary disabled
normal locomotion control. Yet, it seems that the animal
can “instantaneously” create a new locomotion strategy to
accommodate the morphological modification, which could be
motivated by survival needs (escaping from a predator). The
method of finding a new controller seems to be through a
highly efficient trial-and-error phase [1].

In robotics, such adaptation capabilities in the case of mor-
phological modifications are challenging. Locomotion con-
trollers for legged robots are usually designed on a model
of the robot in a physics simulator. This normally involves
a lengthy optimization procedure where up to hundreds or
thousands of controllers are being tested. The output of the
optimization process is a controller that is tailored to the
specific morphology, and unless trained for such a case, is
unlikely to have the capability to deal with modifications on
the morphology. This means that every change in the mor-
phology needs a reoptimization process, requiring significant
computation and a flexible simulation environment.

Previous research dealing with gait adaptation due to mor-
phological changes in real robotic hardware is rare. In [2],
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Fig. 1. a) Quadruped, b) Hexapod, c) modular parts, d) limb with phase
oscillator parameters.

researchers built a model of a hexapod in simulation whose leg
configurations could easily be modified. Then, they simulated
millions of morphological modifications and let an optimiza-
tion process find a viable controller for every one of them,
creating an enormous database of potential controllers. The
real hexapod robot was provided with this database, and after
a morphological modification unknown to the controller could
recover its locomotion capability in only a few trial-and-errors
due to an efficient way of searching the database for the best
match. Although applicable to any robot, this “brute force”
approach leans on the reoptimization process described above,
and it is unlikely that animals keep an explicit model of all
morphological modifications.

The research in [3] also employs a model and simulations,
but in a more on-the-fly scenario and with incorporating
sensory feedback. After a morphological modification of a real
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quadruped robot, it creates a small number of internal models.
It then performs an action in both the simulation and the real
world to rule out incorrect models and fine tune promising
ones until a final internal model matches the modified structure
in terms of sensor responses based on the performed actions.
The method again only requires a few trials, however it is
unclear if it can be applied to more complex morphologies
due to the computationally expensive creation and simulation
of the internal model. Animals in an emergency situation
cannot afford to spend such excessive computational effort
into finding a new locomotion strategy ad hoc. Moreover, the
famous studies on decerebrated cats [4] showed that the brain
is not needed in gait adaptation which thus seems inherently
decentralized; the spinal cord can deal with such tasks in a
quick and efficient manner.

An interesting research in this direction is presented in [5]
where sensory feedback acts on phase oscillators that drive
each leg of a hexapod. The load in stance of each leg can
modulate the phase progression of its own and its neighboring
legs. This feedback allows the structure to instantaneously
react to a morphological change because of a different loading
scenario, which the robot uses to find a new gait for the
adapted morphology in an emergent manner.

Likewise, in [6], a decentralized control mechanism relying
only on sensory feedback enables a star-like robot to adapt
to multiple limbs amputations. For each limb, the sensory
feedback produced in response to random movements enables
to determine whether that limb should perform a power stroke
to move the whole body and in which direction.

In this paper, we extend the research in [5] by developing a
general method to learn from the morphology the appropriate
coupling weights between sensory feedback and the limb
phase oscillators to form an adaptive locomotion controller.
Spontaneous Motor Activity (SMA, or twitching) is used
to probe the morphology, during which Hebbian learning
is used to form a connection between motor actions and
sensory feedback. After this initial learning phase, our robot
is able to demonstrate gait emergence and adaptation to a
variety of morphological changes and sensor failures during
runtime within a few locomotion cycles. Our method is fast
and computationally light: the learning is performed by a
simple microcontroller which also runs the final locomotion
controller. Our goal is to imitate the “spinal cord” with a
scalable and computationally lightweight framework.

II. CONCEPT OVERVIEW

A. Gait emergence with “Tegotae”

Tegotae [5, 7, 8] is a method to obtain emergent interlimb
synchronization in locomotion, using distributed oscillators
modulated by local sensory feedback, typically ground re-
action forces. In [7], it is shown that with the simple rule
presented in eq. (1), a walking gait can emerge in a quadruped
robot. Each limb phase φi is updated using only the local
sensory feedback NV

i (the ground reaction normal force, see
Fig. 1d for details) and a constant descending drive ω:

φ̇i = ω − σNV
i cos(φi). (1)

In [5], this rule is further refined for a hexapod robot, by
adding the sensory feedback from the other limbs:

φ̇i = ω− σ1N
V
i cos(φi) + σ2(

1

nL

nL∑
j∈L(i)

kjN
V
j ) cos(φi). (2)

Each limb has a limb-specific neighborhood L(i) of nL
limbs whose influence on its phase update are set by the
constants kj . Starting from the expression of the Tegotae rule
from [5], we propose the following generalization for any
morphology:

φ̇i = ω + σ(
∑
all j

ki,jN
V
j ) cos(φi). (3)

In [5], the coefficients ki,j - or matrix K - were hand
tuned. However, the idea presented in this paper is that
these coefficients are related to the morphology through the
neighboring function and their magnitude, and thus intuitively
could be provided directly by the morphology [9].

The proposed approach aims at automatically finding the
generalized Tegotae coefficients through locally probing the
morphology and learning a causal relationship to the received
sensory response. This local probing of the morphology is
inspired from motor twitching.

B. Spontaneous Motor Activity

Motor twitching (or Spontaneous Motor Activity) is the
sudden activation of single muscles against a background
of muscle atonia, generating abrupt impulsive movements.
This happens at the prenatal stage in the embryo, but also
during REM sleep of mammals [10]. At first sight random,
it has been shown that the twitching movements of new
born rats are structured in spatiotemporal patterns and have
motor developmental functions [11]. This is thought to be
achieved by relating the induced movement to the provoked
proprioceptive sensory response.

Using simple Hebbian learning rules, the self-organization
properties of twitching on the reflex networks have been
demonstrated for the nociceptive withdrawal reflex of rats tails
in [12] and for a simulated leg in [13] and [10].

Inspired from these results, the proposed approach uses
Hebbian learning during motor twitching to learn the general-
ized Tegotae coefficients ki,j from eq. (3).

III. MATERIALS AND METHODS

A. Robotic platform

1) Mechanics: The goal in the future is to demonstrate
that the approach presented here is applicable to a variety
of legged morphologies. Hence, a modular robotic platform
was developed that allows for a rapid manual reconfiguration.
The basis of the platform is formed by the commercially
available Bioloid Kit from Robotis (www.robotis.com) with
hinged 1 Degree of Freedom (DoF) servo motors (Dynamixel
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AX-12A) and passive structural body parts. These parts can
be screwed together to form desired morphologies. To further
accelerate the building process and allow more flexibility in the
attachments of the modular parts, we designed a special male-
female-male connector. Two male connectors lock together
in 90 degree increments, and a female cuff wraps around
and secures the configuration with a single screw. Each servo
motor is equipped with up to 5 and each structural passive part
with up to 8 connectors. We also added a half-sphere made out
of rubber (Tango Black Shore A50) equipped with the same
connector which is used as a foot. A morphology generally
consists of passive body parts with in-series connected servo
motors serving as actuated limbs with a rubber foot as the end
effector. Fig. 1c shows details of the modified kit.

2) Sensors: The method presented in this work relies on
sensory feedback, namely force feedback in the foot contacts
and information about the global movement of the structure.
Keeping overall simplicity in mind, we chose 3 axis load cells
(LCT LAN-X1) with a relatively small form factor as force
sensors, and an IMU (Sparkfun Razor IMU M0) with a triple
axis accelerometer and a triple axis gyroscope as a movement
sensor. Only one IMU is used, located in the middle of the
structure. Tanks to the special connector, the load cells number
and location in the structure is flexible.

3) Electronics: A Robotis OpenCM9.04 board is used to
control the servo motors and to collect and process the sensory
information. The board communicates with up to 256 servo
motors via broadcasting. To enable an equally flexible setup
for collecting data from the load sensors and IMU, a serial
communication framework has been developed where each
sensor acts in a daisychain. The full control loop runs at 50
Hz. A bluetooth module (JY-MCU) is connected to the main
board to allow controlling the robot with a bluetooth enabled
smartphone. A robot is either powered by an external power
supply or by an on-board Li-Po battery (Conrad energy BEC
11.1 V 1300 mAh 12 C).

4) Morphologies: For this study, the overall complexity of
the morphologies was kept relatively simple. Limbs consist
of two servo motors in series, one acting as a “hip” and one
acting as a “knee”. Each limb contains one load cell to which
the rubber foot is attached. Each morphology must contain the
main “body” part, containing the main board, IMU, bluetooth
module and optional battery; we call this element the “spinal
cord”. Following this design, we assembled two morphologies:
a quadruped and a hexapod (Fig. 1a and 1b).

5) Phase oscillators: The motors within each limb are
controlled by phase oscillators. The relationships between the
angles of the limb servomotors (αknee and αhip) and the limb
phase φ are as follows :

αknee = ±a · cos(φ) (4)
αhip = ±b · sin(φ). (5)

The sign correction is added so that the hip motors go to swing
between 0 and π and to stance between π and 2π and so that
the knee motors push in the desired locomotion direction when
the limb is in stance.

B. Learning method

1) Twitching and sensor logging: The twitching is per-
formed around a “neutral” stance position where all the motor
angles are set to 0. The servo motors stiffness is set so that
the motors can hold the structure but do not block an induced
movement (compliance margin of 15° of the AX-12A servo
motors), thus reproducing the muscle atonia characteristic
of the REM sleep and of the embryo. During twitching, it
is crucial that the movement of a twitch only progresses
through the body and is not dissipated through other ways,
namely slipping of the feet, as this negates proper sensory
responses. For this reason, the robot was put on rubber rugs
with a high friction coefficient during the learning process.
Successively, each motor twitches bidirectionally following a
ramp of ±10° over 500 ms. During each twitch, the position
feedback from all the servo motors and the data stream from all
sensors are sent to a desktop PC and recorded with MATLAB.
This PC connection is solely used for recording purposes,
all computations (learning and locomotion) are performed on
board by the microcontroller. With a sampling time of 20 ms,
25 samples are collected and filtered (causal moving average
filter of size 5). After each motor movement, all motors are
centered back to the learning position.

2) Hebbian learning during motor twitching: Similarly to
[12], [13] and [10], our learning rule (6) uses differential
Hebbian learning [14] with a self-regulating term to learn the
effects of each motor on each sensor, inspired from Oja’s rule
[15], i.e.

∆wi,j = η(ṁj ∗ ṡi − ṁj
2 ∗ wi,j). (6)

In (6), ∆wi,j is the update of the learnt weights at each
step, η is the learning rate, ṁj is the differentiated input, and
ṡi is the differentiated output.

In our case, mj are the motor positions, which are differen-
tiated to obtain ṁj motor. The sensory outputs si are defined
as the force in local x-, y- and z-direction in the load cells
si load xyz , the global rotation angles roll (r), pitch (p) and
yaw (y) si rot rpy and the global coordinates x, y, and z of the
body si pos xyz . Sensory feedback from the load cells thus are
differentiated to obtain ṡi load xyz , however the acceleration
measurement of the IMU (as the double derivative of global
position) is integrated to obtain ṡi pos xyz and the gyroscope
directly provides ṡi rot rpy.

Fig. 2a gives an example of each type of the raw and
processed signals collected from one bidirectional twitch.

The learning rate η was tuned to obtain convergence (see
Fig. 2b) in 5 cycles, i.e. each motor twitches five times in both
directions. It can be seen that convergence from the load cells
and gyroscope is stable, however convergence of the speed
weights is inconsistent because the integrated accelerometer
provides a noisy measure of speed, even with filtering.

At the end of the Hebbian learning process, we obtain a
(3nLC + 6)x(2nmotors) matrix. The directions of movement
were split during the learning. However, if linearization as-
sumptions hold around that position, the values in the two
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Fig. 2. a) Twitching signals obtained with quadruped structure. The twitching
motor is motor 1 and the load cell is load cell 3 (load cell of the same limb).
Learning happens only with the samples collected in the blue shaded area.
b) Weights convergence for quadruped. Only load cell 3 channel X, speed in
Y, gyroscope Yaw and motors M1 to M6 are plotted for clarity.

directions should be the same. For the further processes, we
formed the average of both directions. The resulting matrix
shows the local response of differentiated sensory feedback to
differentiated motor movement. Due to this in essence being
∂si/∂mj , we call this matrix the “Jacobian” around the learning
position. Fig. 3 shows the original matrix for the quadruped
structure (for space reasons the hexapod Jacobian is omitted).
In both cases, the values are very similar in the two directions,
except for the speed because of the noise in the accelerometer
measurements.

Each twitch movement lasts 500ms, with 1s delays between
the twitch movement for recentering and stabilization. With 8
motors (quadruped) and 10 twitches movement per motor (5
cycles of 2 directions), the learning is fully completed in just
2 minutes.

3) Information progression through the body: The method
of learning from probing the morphology is based on the as-
sumption that sensory feedback caused by a local perturbation
declines over the spatial dimension of the body, i.e. a sensor
spatially closer to the perturbation responds “higher” than the
same sensor spatially further to the same perturbation. This is
intuitive, as a local perturbation should not significantly affect
parts further away. This is the key idea behind computing
the neighboring function: the spatial declining of sensory
response can automatically result in the neighboring function
with correctly scaled Tegotae coefficients. As a validation for
this assumption, we compute the absolute overall impact a

Fig. 3. Weights matrix learnt with quadruped structure. The weights have
been rescaled from 0 to 100 in absolute value within their own group (load
signals, gyro signals and speed signals).

motor twitch has on each of the load cells, i.e.

iLC(m) =
√
w2

LCX ,m + w2
LCY ,m + w2

LCZ ,m (7)

and list the obtained values in Fig. 4a for the quadruped
and in Fig. 4b for the hexapod. As an example, the first

value 43 computes with
√

22+10
2

2
+ 24+15

2

2
+ 37+33

2

2. Green
entries signify that the highest sensory response was correctly
detected in the closest sensor to the twitch, i.e. the load cell
in the limb where a motor twitched.

(a) Quadruped

(b) Hexapod

Fig. 4. Limb assignment results.

4) Tegotae coefficients: We propose to compute the Tego-
tae coefficients ki,j from the learnt Jacobian matrix, and
in particular from the wLCZ ,mhip

coefficients. Since these
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(a) Before renormalization (b) After renormalization

Fig. 5. Learnt Tegotae coefficients for quadruped.

(a) Before renormalization (b) After renormalization

Fig. 6. Learnt Tegotae coefficients for hexapod.

coefficients represent the effect of the motors responsible for
loading/unloading the limbs on the ground reaction forces
under their own limb but also under the others, they can
be used to synchronize the limbs using the ground reaction
sensory feedback. We propose the following formula:

ki,j = −sign(wLCZ(i),mhip(i)) · wLCZ(j),mhip(i) (8)

The ki,j are then normalized between +/- 1 so that only σ
scales the effect of the sensory feedback compared to the
descending drive in eq. (3). These coefficients form a square
matrix K with dimensions n x n, where n is the number of
limbs in the morphology. With this formula, the influence of
the ground reaction force feedback under a limb j on the
phase update of an other limb i depends on the effect of the
unloading motor of the limb mhip(i) on that ground reaction
force feedback. The first term is a sign correction coming from
the mapping between the limb phase φi and the hip servomotor
angle αhip(i) (5). The Tegotae coefficients are presented in Fig.
5 for the quadruped and in Fig. 6 for the hexapod, each before
and after renormalization.

For the quadruped, the Tegotae coefficients (see Fig. 5)
exhibit a remarkable fully-connected checkerboard pattern
which is consistent with the structure. Each limb feedback tend
to put limb 1 and 3 in phase and limb 2 and 4 in opposite
phase (either by accelerating or slowing them down together).
For each line, the diagonal term is the highest (in absolute
value) which means the feedback from the limb itself has

the highest contribution, but each contribution has a relatively
similar importance.

Compared to the Tegotae matrix of the quadruped structure,
the Tegotae matrix learnt with the hexapod structure (Fig. 6)
is much more sparse. This means that the couplings between
motor movements and sensory reactions are more local and
less globally connected than in the quadruped structure, which
is quite intuitive. The information progression through the
body is interesting: for each line, the highest contribution (in
absolute value) is the diagonal term and the terms closest to
0 correspond to feedback from limbs which are distant from
the considered limb. Yet there is a strong diagonal coupling
between exterior limbs (limb 1 and 4, and limb 3 and 6).

IV. EXPERIMENTS

The experiments aimed at assessing the locomotion behavior
and performance of the quadruped and hexapod morpholo-
gies under the generalized Tegotae control, with the Tegotae
coefficients extracted with the learning procedure described
in section III-B. These coefficients are used in Eq. 3 which
drives each limb. For all the locomotion results presented,
the descending drive is set at ω = π rad/s (= 0.5 Hz), the
oscillation amplitudes of both motors a = b = 20°, with
an amplitude reduction to a′ = 4° for the hip motors when
they are in stance (when φ is between π and 2π, see Fig.
1 for details). The limbs are all initialized with the same
phase φ = 0. The value of σ is chosen to scale an estimated
sensory feedback term (the mean value of the diagonal Tegotae
coefficients multiplied by the whole robot load) to half the
value of the descending drive ω, i.e. ω/2 = σ·tr(K)/n·Nrobot.

A. Gait convergence

We investigated the gait convergence properties under ma-
trix K. The gait convergence time was estimated using the
phase differences between the limbs and gait type was assessed
by recording the load cell Z values. Once converged, the
obtained gaits were recorded with Motion Capture to measure
their speed and straightness (with the radius of curvature of
the trajectory). The terrain was always flat and smooth.

B. Gait robustness

1) Initial conditions and perturbation: It has been shown
by Owaki et al. [5] that the convergence depends on the
initial limb phases if only local feedback is used (1) with
an hexapod (which is not the case with the quadruped).
The additional terms of (2) are required to obtain robustness
to initial conditions with the hexapod. For both structures,
random initial conditions were hence tested to control that
the obtained gaits did not depend on initialization. Random
manual perturbations (blocking a limb, adding load) were
also applied during or after convergence. For the hexapod,
initialization from a tripod synchronization (R1,L2,R3 initially
at φ = 0 and L1,R2,L3 initially at φ = π) was also tested.
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2) Loss of sensory feedback: The generalized Tegotae for-
mula we propose uses all the sensory feedback available in
the structure to compute the local phase update: this confers
an increased robustness to noise and even to the absence of
signal. On the other hand, with simple Tegotae, each load cell
is needed to maintain their own limb’s synchronization. The
load sensory feedback is redundant in the sense that the loads
under each limb are not independent. Relationships depending
on the structure and its physical state constrain and link their
values. We checked to what extent our generalized Tegotae
coefficients incorporated that structural knowledge by testing
the gait convergence with loss of sensory feedback. In these
experiments, the “damaged”/“lost” load cells return a 0 value.

3) Loss of limb: We further tested this robustness by am-
putating legs of the hexapod. The limb amputation performed
consists in electrically unplugging the limb servos, folding
the limbs below the spine and putting its load cell signal to
zero. The limbs are “amputated” in the sense that even if they
are not physically removed from the structure, they cannot
move or even hold the structure anymore. In both cases, we
start with a fully functional hexapod and let it converge to
the (R1L3)(R2L2)(R3L1) gait. We performed two amputation
scenarios. In the first one, limbs R1 and L2 are amputated. In
the second one, limbs R2 and L3 are amputated.

V. RESULTS AND DISCUSSION

A. Gait convergence

1) Quadruped: The Tegotae coefficients presented Fig. 5b
produce a trot gait (R1L2)(L2R1). As Fig. 7 shows, the
convergence takes about 10 s (that is to say 5 cycles, given
the 0.5 Hz frequency). Using the simple Tegotae rule instead
(which is equivalent to replacing the matrix Fig. 5b by the
diagonal identity matrix), the convergence takes about 30 s.

This trot gait is smooth (there are no brutal changes in limb
phase from one update to an other) and quite effective in
properly lifting its limbs: as Fig 7a shows, the front limbs
R1 and L1 are completely unloaded (the ground reaction
force falls to 0), while the hind limbs R2 and L2 are almost
completely unloaded (they are trailing a bit because the robot
is moving forward). It is straight, with a speed of 4.6 cm/s
(see subsection V-A3 for details).

Given the Tegotae coefficients checkerboard pattern (see
Fig. 5b), this convergence to trot is understandable: each feed-
back has the same effect (either slowing down or accelerating)
on limb 1 and 3 and an opposite one on limb 2 and 4.

2) Hexapod: The Tegotae coefficients shown Fig. 6b pro-
duce a “bipod” gait (R1L3)(L2R2)(R3L1). The bipod gait,
presented Fig. 8, is a gait where the two diagonal exterior
limbs are paired together, and the central ones too. If the
diagonal pairing of the exterior limbs can be understood as a
direct effect of the Tegotae coefficients of Fig. 5b, the pairing
of the central ones is an indirect one: the matrix only drives
each central limb to be in phase opposition with the two limbs
which are on its sides. The convergence takes about 25 s.
Convergence to the same gait is obtained with different initial
limb phases and stable in time, which is not the case with
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Fig. 7. Generalized Tegotae convergence to trot (R1L2)(R2L1), obtained with
the quadruped with the learnt Tegotae coefficients represented Fig. 5b.
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Fig. 8. Convergence to “Bipod” (R1L3)(R2L2)(R3L1) gait, obtained for the
hexapod with the learnt Tegotae coefficients represented Fig. 6b.

the local Tegotae rule (1), whose convergence depends on the
hexapod initial state.

This gait is also smooth and all the limbs are completely
lifted off. It is straight, with a speed of 5.6 cm/s (see subsection
V-A3 for details). For the hexapod, it was harder to predict
the gait considering the Tegotae coefficients (see Fig. 6b).
The strong diagonal coupling between exterior limbs (between
limb 1 “R3” and limb 4 “L1”, and limb 3 “R1” and limb 6
“L3”) pushes them to be in phase, which is observed in the
bipod gait. This is probably where the pairing (R1L3) and
(R3L1) in the bipod gait originates from. The lines from the
central limbs (limb 2 “R2” and 5 “L2” on lines 2 and 5) push
them to be in phase opposition with the limbs of the same
side (respectively limb 1 and 3, and limb 4 and 6). This is
probably why the central limbs (R2L2) move together.

7871



This gait is not very animal-like. The central limbs (R2 and
L2) move exactly in phase, in a sort of rowing movement:
this breaks Wilson’s second principle for insect locomotion
that ‘contralateral legs of the same segment alternate in phase’
[16]. The bipod gait obtained with our hexapod however is
very similar to the bipod gait proposed in [17] (comparing
Fig. 8a to Fig. 4b in [17]). [17] shows that this gait is faster
on flat terrains without adhesion (on a hexapod robot and in
simulations of a Drosophila melanogaster) than the tripod gait
observed in nature, which is faster when climb is required.

3) Speed and straightness: The speed and straightness were
measured in order to assess that a basic controllability of the
robot could be achieved with the emergent gaits. No optimality
in terms of speed or straightness is claimed. The hardcoded
gaits provide a baseline for the order of magnitude of speed
and straightness that can be reasonably considered fast and
straight enough. As Table I shows, the emergent gaits speed
and straightness are of the same order of magnitude than
their hardcoded counterparts. They are slightly slower because
the sensory feedback contribution is still negative on a cycle
average, even once converged.

TABLE I
SPEED AND STRAIGHTNESS: HARDCODED (HC) VS TEGOTAE (3).

Quadruped
Trot

Hexapod
Bipod

HC Fig. 5b HC Fig. 6b
Speed (cm/s) 4.9 4.6 6.2 5.6

Radius of Curvature (m) 5.8 7.6 37 8.5

B. Gait robustness

1) Initial conditions and perturbation: With both struc-
tures, the random initial conditions tested all converged to the
same gaits (trot for quadruped and bipod for the hexapod).
Likewise, the manual perturbations we applied did not result
in convergence to different gaits. For the hexapod, the tripod
initial conditions led to a significantly longer convergence time
(approximately 50 s compared to 20 to 30 s for the others),
but the robot still converged to the same bipod gait.

2) Robustness to less signal: With the quadruped structure,
just one functioning load cell signal is enough to converge to
a trot in approximately 30 s and maintain it. The coefficients
which are used are the ones which were learnt with that
same load cell: the other load cells could even have broken
during the learning. With the hexapod structure, the matrix of
Tegotae coefficients is not fully connected so it seems harder
to maintain the synchronization of the whole structure with
only one load cell. Yet, straight walking can be obtained with
just one load cell signal: the results are summarized Table II.

3) Amputations: In both cases, there was a quick gait
adaptation to trot with the remaining limbs: (R2L3)(R1L3) in
the first case (see Fig. 9 (e2)) and (R1L2)(R3L1) in the second
case. The two limbs which were synchronized with the ampu-
tated legs in the previously established bipod gait synchronize
together (whereas they used to have a 2π/3 phase shift), using
the same Tegotae coefficients (learnt with the original fully

TABLE II
GENERALIZED TEGOTAE CONVERGENCE WITH ONLY ONE LOAD CELL

SIGNAL KEPT FOR SENSORY FEEDBACK IN HEXAPOD STRUCTURE.

Loadcell kept Generalized Tegotae Convergence
LC 1 (R3) No straight gait
LC 2 (R2) No straight gait
LC 3 (R1) (R1L3)(R2R3L1), L2 not sync
LC 4 (L1) (R3L1)(R1L2L3), R2 not sync
LC 5 (L2) (R2L2)(R1L1L3), R3 not sync
LC 6 (L3) (R1L3)(R2L1)(R3L2)

functional structure) which had produced the bipod gait when
all the limbs were functional. This amputation scenario shows
that the emergent limb synchronization obtained with the
learnt Tegotae coefficient can adapt to morphological changes
and damages, by pairing limbs differently.

C. Limitations

For both robots, the twitching was performed with anti-slip
rugs placed below the feet to improve the signals quality for
better learning results. Without these rugs, the load cell signals
would have required heavier signal processing for the weights
to converge or more samples.

No optimality is claimed for any of the obtained gaits.
Neither of the morphologies exhibited gait transitions, either

by changing the descending drive ω in (3) (limited to 1 Hz or
ω = 2πrad/s due to the bandwidth of the servo motors) or
by the sensory feedback gain σ.

VI. CONCLUSION AND FUTURE WORK

The learning method we developed combines the concept
of spontaneous motor activity, Hebbian learning and Tegoate.
It requires only a few minutes to collect samples and learn on
board a Jacobian matrix between the motor twitching move-
ments and the sensory responses. In the generalized version
of Tegotae that we propose, the sensory feedback term is a
limb-dependent linear combination of all the ground reaction
forces from all the limbs. The coefficients of that combination
can be computed from this learnt Jacobian matrix. Compared
to simple Tegotae, it exhibits faster convergence to straight
walking gaits, increased robustness to initialization and to a
decrease of available sensory feedback. Gait adaptation to
two-leg amputation was also demonstrated with generalized
Tegotae and the coefficients learnt with our learning method.
Our method was successfully applied to a quadruped and a
hexapod. It still needs further testing on more exotic morpholo-
gies and leg designs. Likewise, further research is needed in
the cases of multiple load cells per limb or actuated spine.

The implicit assumption of our method of exactly one load
cell per limb simplified the Tegotae coefficient computing.
However, the generalized Tegotae formula (3) theoretically
does not require to have exactly one load cell per limb:
each limb phase update is computed with coefficients learnt
on its effect on the load cells, which could be extended to
any number and location of load cells. This could include
e.g. an actuated spine, an interesting path for future research.
Likewise, the limb design with two servo motors in series
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Fig. 9. Snapshots of the hexapod locomotion. (a1)-(e1) emergent bipod gait with two gait cycles, taking roughly 2 s each (0.5 Hz); (a2)-(d2) adapted trot
gait after two leg amputations with two gait cylces, each taking 2 s. Legs in their swing phase are marked with white circles. The images are flipped with
respect to the video to aid the understanding. (e2) Gait diagram of amputation convergence. Before t = 78 s, the fully functional hexapod had converged to
a bipod gait. It was lifted off the ground to perform the limb amputations and set on the ground at t = 78 s, upon where the gait converges to a trot.

served as a simplification. The method is not limited to such
designs, and applying it to higher actuated limbs (3 degrees
of freedom and more) is also part of future research. Lastly,
we do not make use of all the data collected in the Jacobian
matrices. Yaw data from the gyroscope could be used to induce
turning in the morphologies. We plan to extend the work with
more such modalities and more morphologies.
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