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Abstract— A car driver knows how to react on the ges-
tures of the traffic officers. Clearly, this is not the case for
the autonomous vehicle, unless it has road traffic control
gesture recognition functionalities. In this work, we address
the limitation of the existing autonomous driving datasets to
provide learning data for traffic control gesture recognition.
We introduce a dataset that is based on 3D body skeleton input
to perform traffic control gesture classification on every time
step. Our dataset consists of 250 sequences from several actors,
ranging from 16 to 90 seconds per sequence. To evaluate our
dataset, we propose eight sequential processing models based
on deep neural networks such as recurrent networks, attention
mechanism, temporal convolutional networks and graph con-
volutional networks. We present an extensive evaluation and
analysis of all approaches for our dataset, as well as real-
world quantitative evaluation. The code and dataset is publicly
available3.

I. INTRODUCTION

Part of autonomous driving incorporates the vehicle inter-
action with humans. In urban traffic situations, the interaction
engages pedestrians, school traffic patrols and traffic officers
among others. The latter two examples are particularly
interesting for the road traffic control. While a driver has
learnt to recognise the traffic hand signals, it is not the same
for the autonomous vehicle. Traffic control signals, i.e. hand
gestures, need to be “taught” to the autonomous vehicle by
means of learning databases. Understanding those gestures
is essential for achieving proactive and safe autonomous
driving.

On one hand, recent perception databases for autonomous
driving, e.g. Cityscapes [1], ApolloScape [2] or Eurocity
Persons Dataset [3], contain thousands of pedestrians, road
users and cyclists, however, due to the rareness of gestures
they lack scenarios with human-vehicle interaction. Road
traffic controllers do not exist in this kind of databases. On
the other hand, gesture recognition databases [4] include
body-language, as well as human-human [5] and human-
machine [6] interactions, but they lack of road traffic control
gestures, such as stop or go. It becomes, thus, a necessity
to create a public database for road traffic control gesture
recognition.

In this work, we introduce the TCG dataset for road traffic
control gesture recognition, targeted on autonomous vehicles.
We define the gestures as a set of landmarks that belong to
the general body pose, represented by a three-dimensional
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Fig. 1: Real-World Results. We demonstrate how our work
functions in real-world traffic control scenarios. First, we
locate the traffic controller with image-based detection and
2D body pose estimation. Second, we use 3D lifting to
transform the 2D to 3D pose skeleton from a sequence of
estimates. Then, the temporal gesture recognition approach
predicts the gesture category based on the sequence of 3D
body skeletons.

skeleton. The aim of the dataset is to classify the traffic con-
trol gestures in every time step from the sequential skeleton-
based input. With the progress in human pose estimation
[7], [8], [9] the body skeleton representation has become a
standard input for gesture and activity recognition [10], [11],
[12]. Moreover, it allows generalization to any kind of road
traffic controller since it does not depend on the individual’s
appearance. Capturing outdoors skeleton-based traffic control
gestures is not trivial though. Motion capture on public
roads is forbidden due to road obstruction. To address this
limitation, we work on a closed environment where we
portray road intersections with multiple vehicles and the road
traffic controller involved. Our recordings include all possible
traffic control scenarios for road intersections with a large
amount of human motion variance. Finally, our quantitative
evaluations on real-world sequences show that our studio-
based recordings capture the variance of the real-world.
This is the first public dataset for traffic control gesture
recognition to the best of our knowledge.

Alongside with the dataset, we examine a plethora of
neural network approaches for gesture recognition from
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sequential data. In traffic control gesture recognition, we
have a sequence to sequence problem where the gesture
classification happens for each input of a 3D body skeleton.
This mapping is modeled with recurrent neural networks
(RNNs), including attention models, temporal convolutional
networks (TCNs) and graph-based networks (GCNs). In to-
tal, we examine eight different neural networks architectures,
demonstrating the advantages and limitations for each model.
For that reason, we provide an extensive evaluation on our
dataset and real-world sequences for cross-subject and cross-
view settings, using multiple metric scores. On the real-
world evaluation (see Fig. 1), we demonstrate that our dataset
generalizes well outdoors, although it has been captured on
a closed environment.

To sum up, our work makes the following contributions:
1. The first public traffic control gesture recognition dataset
for autonomous vehicles. 2. An extensive evaluation of
eight sequence modelling approaches, including recurrent
networks, attention mechanism, TCN and GCN models.
3. An quantitative evaluation on real-world sequences to
show generalization.

II. RELATED WORK

Gesture recognition for human-machine and human-
human interaction is a long studied problem [13], [14].
Below, we discuss the related datasets and approaches to
gesture recognition, where our focus is on human-vehicle
interaction.
Human-vehicle interaction. Autonomous vehicles need to
interact with humans inside the vehicle [15], [16], e.g.
driver, cyclist and passengers, as well as outside the vehicle,
e.g. pedestrians and police [17]. According to these studies,
comprehensive understanding of the body language is impor-
tant in order to react according to the human intentions. In
particular, hand gestures are a common mean of interaction
between the vehicle and human [18], [19]. Fortunately, the
state-of-the-art on gesture recognition [20], [11], [21] allows
to make easily accurate predictions. However, modeling
the traffic control gestures can be challenging due to the
intercultural differences [22]. For example, the traffic control
hand gestures differ from country to country. In addition,
road traffic control gestures are unique and they are not
included in general gesture recognition datasets. In this work,
we focus on the German traffic control gestures, which are
also common in Europe.
Traffic control gesture recognition. Although traffic con-
trol gesture recognition becomes increasingly important in
autonomous driving, the prior work on the problem is
rather limited. Recently, Ma et al. [23] have developed
a spatiotemporal convolutional neural network (CNN) to
spot Chinese traffic command gestures. Similarly, a long
short-term memory (LSTM) network is employed in [24]
for classifying also Chinese traffic police gestures. Both
approaches rely on human body skeleton input to perform
the recognition. As the human body pose is in general a
strong feature for activity recognition [10], [11], we also
build our baselines with skeleton-based input. Compared to

(a) Stop. (b) Clear. (c) Go. (d) Inactive. (e) Skeleton
Representation.

Fig. 2: Our dataset is characterized by high intra-class
variance. Fig. 2a to 2d show exceperts of motion sequences,
in red the starting pose. In the upper image of Fig. 2d the
actor is scratching her face and in the lower image someone
is looking at his watch. In particular dynamic go gestures
are challenging 2c due to their similarity to motions from
the inactive class. Fig. (e) describes our 17 joint skeleton
model: (1) head, (2) neck, (3) chest, (4) spine, (5) hip, (6)
- (11) left shoulder, elbow, hand, thigh, knee, foot and the
same for the right-hand side (12) - (17).

these prior approaches, we do not only study the problem
by providing a number of algorithmic solutions, motivated
by general gesture recognition, but we additionally release a
public database for traffic control gesture recognition.
Existing gesture recognition databases. A reason for the
limited research on traffic control gesture recognition is due
to the lack of public data. While there are several hand
gesture databases [25] for indoor scenarios [14], general ges-
tures [26] and for specific applications such as sign language
recognition [27] or egocentric gesture recognition [28]; the
publicly available databases for traffic control hand gesture
recognition are inexcitable. Consequently, our new public
database on traffic control hand gesture supports the further
research on the problem. Next, we introduce our dataset and
then present the baseline algorithms for evaluation.

III. TRAFFIC CONTROL GESTURE DATASET

We introduce TCG, a dataset for traffic control gesture
recognition, that covers all possible road traffic control
variations for European road intersections. By modeling road
intersections, we automatically include the non-intersection
situations as well. We consider road traffic control gesture
recognition as a classification task from 3D body pose
skeleton input data over time. As a result, our dataset consists
of 3D human body skeleton sequences represented by joint
sets and the respective label per skeleton. Below, we discuss
the data collection, labelling and properties, as well as the
experimental setup.

A. Experimental Settings and Data Collection

We asked from 5 individuals of different body types to
regulate the traffic on road intersections. We chose a T- and

10677



    

T1

 

T2 T3 T4 T5

(a) Five T-junction scenarios

X1 X2 X3 X4 X5

(b) Five X-junction scenarios.

Fig. 3: Birds-eye view on the 10 scenarios of the T- and
X-junction. From left to right, we observe the increasing
complexity in terms of number of cars, as well as their
driving intentions.

X-junction where the individual makes uses of the hands for
regulation, without additional control devices like whistle or
traffic paddle. We also defined 5 different scenarios for each
junction, with variable number of involved vehicles. Fig. 3
shows all scenarios in bird’s-eye view, while Fig. 4 presents
the data distribution for all scenarios and individuals. The
vehicles are specified based on their driving intention, i.e.
straight, left turn or right turn, and driving order.

Since staging in real traffic situations is not permitted,
we simulate the above scenarios in a closed environment,
including intersection layouts, vehicles and the traffic con-
troller. For that reason, we used colored discs to mark the
streets and stopping lines. Additional colored markers were
placed at the positions of the waiting vehicles to simulate the
interaction partners. This helps the actors to adapt their sight
according to the marker they are interacting with. In this way
the setting facilitates realistic head and body orientations.

To capture the body motion of the traffic controller, each
actor has been centered in the road intersection and wore an
IMU1-based motion capture suit above the clothes. In total
the suit is composed of 17 high-quality MEMS2 inertial sen-
sors (accelerometer, magnetometer and gyroscope) and two
pressure insoles to record smooth orientation measurements
in high resolution. All sensors were synchronously sampled
on 100 Hz and streamed to a computer via integrated Wi-Fi
transmitter. Since the computing resources are valuable and
limited in an autonomous vehicle, the sampling frequencies
can not be very high. For this reason, we sub-sample to
20 Hz as a reasonable frequency for autonomous vehicles.
An implemented kinematic body model computes exact 3D
locations and orientations of the body joints. In total, we have
a skeleton model with 17 3D body joints as it is depicted in
Fig. 2. Of course, the recordings would not be easily feasible
outdoors. This is the advantage of the closed environment
data collection.

During recordings, a lightweight script helped the actors
to keep the correct order of commands, i.e. which car needs

1Inertial Measurement Unit (IMU).
2Micro Electro Mechanical Systems (MEMS).
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Fig. 4: Frame distribution over subjects (a), scenarios (b)
and car viewpoints (c). With the scenario complexity, the
sequence length is increasing.

to be stopped next and which one should proceed, while
they are completely free in the duration of the commands.
The script is intended as a high-level guidance rather than
a detailed story line, since strong restrictions could lead to
insecure and unrealistic behavior. Each scenario is repeated
5 times. In early repetitions we request the actors to perform
road traffic control gestures, but after increasing the repeti-
tions, the actors are allowed to use their own, spontaneous
gestures in order to control the situation. As a starting point,
all actors learn the standard European traffic control gestures,
i.e. stop, go and clear. With this loose recording procedure,
we achieve granularity in motion complexity, while the
different actors contributed to high motion diversity.

B. Label Definition

In autonomous driving, the perception provides the en-
vironmental state, e.g. object locations or lane markings
in each time step. The next action is then planned based
on the history and the current state. As a result, traffic
control gesture recognition should also happen continuously.
To follow this principle, we build our dataset with gesture
labels per time step. We reach high annotation quality with
trained annotators and consequent quality-checks.

According to [22] and the German regulations, we dif-
ferentiate three active gesture classes, go, clear and stop,
as well as an inactive class. To increase the diversity of
the inactive class, we actively enrich motions with daily
activities, like rubbing hands, taking sunglasses on or looking
at watch. Fig. 2a to 2d show examples for each class of
our dataset. Additionally, the dataset provides annotation for
the evaluation of transition phases, e.g. from Stop to Go.
This can give insights for the decision boundaries of the
gesture classifier, e.g. a gesture classifier that detects a stop
gesture early in the transition phase might be a solution for
autonomous driving compared to another one with larger
detection latency. For the main classes, go, clear and stop,
we sub-categorize the motion of the active hand, e.g. left,
right or both, into static and dynamic. Fig. 5 compares the
class distribution for the 5 subjects with overall 2,886 unique
time intervals annotated with a major class label. The inactive
class dominates over the classes as expected for real traffic
situations. Table I provides quantitative insights of the label
distribution. For most of the time, the go commands are
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0.0 0.2 0.4 0.6 0.8 1.0

Subject 1 579 sequences

Subject 2 616 sequences

Subject 3 577 sequences

Subject 4 584 sequences

Subject 5 530 sequences

stop clear go inactive

Fig. 5: The active classes constitute over 40 % of the dataset.
All classes are well distributed on the 5 actors except for
clear, which is rarely present for subject 5.

Active Classes Stop Clear Go
both-hand-static 219 - 188
both-hand-dynamic 5 - 8
left-hand-static 157 32 43
left-hand-dynamic 23 - 179
right-hand-static 133 134 39
right-hand-dynamic 14 - 339
In total 551 166 796

TABLE I: In total, the TCG dataset contains 1,513 active
class annotations with corresponding sub-class labels. Appar-
ently, most of the actors where right-handed, since in more
than 60 % of the one-hand gestures the right hand is used.

indicated in a dynamic way, while road traffic controllers
signal stop and clear in a more static way. Dynamic stop
gestures with both hands are very rare, while dynamic go
with a right waving or pointing is highly present.

C. Dataset Properties

The dataset includes 250 unique 3D human body pose
sequences, ranging from 16 to 90 seconds per sequence. We
consider the directional property of gestures. This means that
the gesture interpretation strongly depends on the viewpoint.
For instance, a static stop gesture from one viewpoint will
be a go gesture from another orthogonal viewpoint; or a
dynamic go to the right does not mean any signal to the other
participants. Therefore, the 3D body poses are transformed
in the corresponding coordinate systems of the involved
vehicles, i.e. the autonomous vehicle. On average, every
sequence is transformed in 2.2 viewpoints, which results in
550 perspectives.

All sequences are recorded in high temporal resolution of
100 Hz and comprise 140 minutes of realistic human body
motion, in total 839,350 frames. As shown in Fig. 4a, the
amount of frames are evenly distributed on the 5 subjects.
Apparently, with the complexity of the scenes, i.e. from T1 to
T5 and X1 to X5, sequences become longer (Fig. 4b). The pie
chart over viewpoints, Fig. 4c, shows an under-representation
of vehicles coming from the lower street, since it does not
appear in the T-junction layout. Based on the design of the
scenarios, most of the vehicles approach from the left and
right.
The proposed TCG dataset can serve the community as a
considerable learning base for continuous gesture recognition
in the context of self-driving cars.

IV. GESTURE RECOGNITION MODELS

We define hand gesture recognition as sequence modeling,
where the input sequence is the track of 3D body pose
skeletons x0, . . . ,xT and the output sequence is the gesture
category y0, . . . ,yT . At each time step t ∈ T , the body
skeleton xt ∈ R3×N is composed of N body joints,
represented as a vector. The ground-truth gesture category
yt ∈ NK is an one-hot vector of K classes. Our goal
is to learn the mapping from the input skeleton to the
class category from a set of training data. Without loss of
generality, we represent that mapping as:

y0, . . . ,yT = f(x0, . . . ,xT ; θ) (1)

where f : R3×N×T → NK×T is the mapping function.
We propose to approximate the mapping function based
on deep neural networks. We consider recurrent, temporal
convolutional and graph convolution neural networks as three
different ways to approach the problem. For all network
architectures, the learning goal is to minimize the difference
between the predictions and ground-truth. This can be for-
malized by the loss function that is given by:

argmin
θ

L(y0, . . . ,yT , f(x0, . . . ,xT ; θ)), (2)

that is cross-entropy for problem. Finally, the training is
accomplished with back-propagation and stochastic gradient
descent. Note, that we do not assume access to future time
steps, i.e. T + 1. Next, we comment on the neural network
models for each architecture type.

A. Recurrent Network Architectures

Skeleton-based action recognition approaches traditionally
make use of RNNs to model the temporal dynamics. GRU-,
LSTM-cells or more complex structures, such as bidirec-
tional networks [29] are the common network architectures
since vanilla RNNs do not capture long dependencies. In our
evaluation, we consider all these types of RNNs for gesture
recognition.

B. Attention Mechanism

Modeling long sequences can be accomplished with an
attention mechanism as well. Song et al. [30] have shown
an end-to-end spatial and temporal attention model for hu-
man action recognition. The model is trained to pay more
attention on discriminative joints of the skeleton within each
frame and to estimate the importance of frames in the
sequence. Attention has also been used for spatiotemporal
attention networks to model the evolution of dynamic hand
gestures [31]. To retrieve a better semantic information, a
novel model with self-attention network (SAN) was proposed
by [32]. We also examine the potential of self-attention in
combination with the LSTM cells.

C. Temporal Convolutional Networks

Recently, it has been shown that convolutional network
architectures are on par with recurrent networks on sequence
modeling [33]. At the same time, the idea of temporal
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Fig. 6: Network Architectures Illustration. We show the structure of the RNN, GRU and LSTM as well as temporal and
graph convolutional networks and their connectivity. The input vector for each time step is the 3D skeleton represented by
17 body joints. We refer to fully connected layer and self-attention networks as FC and SAN, respectively.

convolutions has been established for visual tasks [34], audio
generation [35] and signal processing [36]. We study the
effect of temporal convolutions in our problems as well.
The temporal convolutions process the 3D body joints,
independently, over-time.

D. Graph Convolutional Architectures

Graph neural networks are well-suited to non-structured
data such as the human body, represented by a skeleton
model [37]. Yan et al. [38] proposed a spatiotemporal graph
convolutional network to perform activity recognition from
skeletal data. The skeletons are composed of 2D or 3D
joint positions. We rely on the same idea to perform gesture
recognition. We present a graph convolutional network that
processes 3D body joints to classify traffic control activities.

V. EXPERIMENTS

We evaluate the presented dataset for different sequence
modelling strategies, as they have been presented in Sec. IV.
The experiments include six recurrent network models, one
temporal convolution network (TCN) and a spatio-temporal
graph convolution network (GCN). Similar to gesture recog-
nition approaches [39], the evaluation metrics are accuracy,
as well as Jaccard index [4], F1-Score and the confusion
matrix. At last, we present an image-based evaluation on real-
world sequences with the traffic officer and the autonomous
vehicle.

A. Network Architecture Implementation

We provide the implementation details for each neural
network model individually. In general, all models have
been trained from scratch with grid hyper-parameter search.
Moreover, the activation function is non-linear, dropout is
applied everywhere with rate 0.5 and the training takes place
until convergence. Class confidences are computed with a
dense layer and the softmax function on top of the high-level
feature representations provided by the temporal models. The
optimizer is the adaptive learning rate optimization algorithm
(Adam) [41], with initial learning rate 0.001, unless it is

differently reported. Below, the specific configuration for
each temporal model is reported.

a) Recurrent Neural Networks: We consider six types
of recurrent neural networks, combined with a fully con-
nected layer and the softmax activation function to per-
form gesture classification. In detail, the encoder is mod-
eled as vanilla-RNN, GRU, LSTM, bidirectional-GRU or
bidirectional-LSTM. Since the sequence length varies, we
adopt a masking mechanism for the input 3D body skeletons
as in [40] to overcome the zero-padding problem. For the
bidirectional-LSTM, we adopt the architecture of [40]. For
the other models, our architecture is presented in Fig. 6. In
all cases, we rely on 100 cells and a single hidden layer.

b) Attention Model: We add an attention layer on top
of the LSTM encoder. In particular, we transform the LSTM
to Attention-LSTM and make use of same architecture as
before, however, empirically select 50 cells for the hidden
layer and 50 attention units.

c) Temporal Convolutional Networks: We adopt [34] to
implement our TCN. We build it though simpler, because it
does not deal with image data. It consists of 1D convolution
kernels of size 2 and 64 filters where the dilation rate goes
from 2 and reaches 32, by doubling it in each layer. The
parameter optimization is accomplished with Adam, with
learning rate 0.001 and back-propagation. An illustration of
the model is shown in Fig. 6.

d) Graph Convolutional Networks: We rely on the
GCN of [38] for our problem. The body is represented as an
undirected spatiotemporal graph with 17 joints and T time
steps, where T=20 for making a single prediction. In the
training phase we randomly sample sequences of 20 3D body
skeletons of each class. During testing continuous predictions
are required. Therefore we predict with a sliding window of
stride 1 to obtain continuous predictions that equally compare
with the other sequence modelling approaches. The initial
learning rate for this model is 0.1.
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TABLE II: Results on the 4-Class Evaluation. We perform cross-subject, cross-view and real-world evaluations for all models
and provide the mean and standard deviation of three runs. For all metrics, the higher score the better the result.

Methods Cross-subject Cross-view Real-World
Accuracy Jaccard F1-score Accuracy Jaccard F1-score Accuracy Jaccard F1-score

RNN [39] 82.81 (±2.7) 57.40 (±2.3) 69.45 (±1.4) 80.94 (±1.9) 57.21 (±2.5) 69.98 (±2.3) 69.39 (±7.2) 39.70 (±8.6) 50.26 (±10.2)
GRU 84.44 (±2.0) 58.16 (±4.2) 70.45 (±3.1) 83.47 (±1.4) 56.25 (±7.6) 68.59 (±7.4) 71.8 (±8.6) 40.4 (±10.2) 50.67 (±11.4)
LSTM [39] 83.23 (±3.6) 56.32 (±7.0) 68.59 (±6.9) 79.58 (±1.6) 52.02 (±3.2) 64.62 (±3.8) 77.88 (±9.6) 52.90 (±15.0) 62.21 (±15.2)
Att-LSTM 85.67 (±2.1) 50.70 (±9.9) 61.87 (±10.6) 85.30 (±1.1) 59.87 (±12.7) 71.20 (±12.3) 72.76 (±10.2) 44.61 (±15.4) 52.50 (±16.0)
Bi-GRU 86.80 (±1.6) 57.25 (±7.4) 68.95 (±6.4) 87.37 (±0.3) 55.55 (±2.8) 67.68 (±2.2) 73.58 (±8.1) 43.09 (±10.8) 52.26 (±12.8)
Bi-LSTM [40] 87.24 (±1.8) 67.00 (±2.1) 78.48 (±1.8) 86.66 (±1.2) 65.95 (±4.7) 77.14 (±4.3) 72.28 (±8.7) 48.81 (±12.5) 61.23 (±14.4)
TCN [34] 83.44 (±2.5) 62.06 (±2.8) 74.23 (±3.0) 82.66 (±0.7) 63.97 (±1.3) 75.95 (±0.9) 48.70 (±6.5) 25.73 (±6.4) 35.23 (±8.2)
GCN [38] 65.42 (±9.6) 38.55 (±13.6) 50.73 (±14.5) 62.40 (±14.2) 35.05 (±9.8) 48.51 (±11.3) 60.64 (±3.7) 34.34 (±2.9) 48.72 (±3.4)
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Fig. 7: Cross-Subject Confusion Matrices on 4-Class. We abbreviate the gestures inactive, stop, go & clear as I, S, G & C.
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(f) Bi-LSTM
I S G C

I

S

G

C

92.6 2.4 4.6 0.4

12.9 63.5 23.4 0.1

29.0 8.8 61.8 0.4

17.1 6.5 2.9 73.5

(g) TCN
I S G C

I

S

G

C

89.6 2.3 7.7 0.4

34.6 42.1 22.0 1.3

31.3 15.1 51.5 2.1

61.9 11.6 10.5 16.0

(h) GCN

Fig. 8: Cross-View Confusion Matrices on 4-Class. We abbreviate the gestures inactive, stop, go & clear as I, S, G & C.

B. Cross-Subject & Cross-View Protocol

We define the cross-subject and cross-view evaluation
protocol, similar to the gesture recognition approaches [39].
Note we explicitly aim to distinguish gestures dependent on a
specific viewpoint, i.e. view variant recognition. In the cross-
view evaluation, this means that the labels differ depending
on the vehicle’s viewpoint. As a result, the model is trained
on all sequences of 3 viewpoints, e.g left, top and right, and
evaluated on the omitted set of sequences, e.g. bottom. In
the cross-subject evaluation, which is considered to be more
challenging, the model is trained on 4 actors and tested on the
remaining actor. The process is repeated for all combinations.

C. Real-World Experiment Description

Our ultimate goal is to make use of our dataset for real-
world traffic control gesture recognition. For that reason,
we captured 5 image-based sequences of real traffic control
scenarios. They consist of the traffic regulator on a T-junction
road intersection and the autonomous vehicle. After labeling
the sequences, we perform an evaluation of the presented
gesture recognition approaches.

To obtain the 3D body skeleton from the image input,
first, the traffic regulator is detected and the body 2D pose
is extracted with a pre-trained Mask-RNN [42] model. Since
the 3D pose is necessary, we rely on the approach of Pavllo et
al. [43] to lift the 2D body poses to 3D body pose skeletons

based on a sequence of 2D poses. Second, the estimated 3D
body pose skeletons are provided to the gesture recognition
approach for classification. We have performed this experi-
ment off-line for being able to follow our evaluation protocol.
Our approach is outlined in Fig. 1.

D. Quantitative Evaluation

The dataset evaluation is performed for the 4-class prob-
lem, i.e. go, clear, stop and inactive. Both training and test
sets come from our dataset according to the cross-subject and
cross-view protocol. For the real-world evaluation, the test
set is the image-based real-world sequences, as described in
Sec. V-C. Since one actor of the dataset also appears in the
real-world image sequences, we exclude the actor from the
dataset and re-train all models. The dataset results for cross-
subject, cross-view, as well as the real-world evaluation are
presented in Table II. Especially in unbalanced recognition
tasks, a fair metric is required to take the distribution of
classes into account. For that reason we consider the Jaccard
index as the most representative metric [4].

a) Cross-Subject & Cross-View: The three evaluation
metrics have similar behaviour for the cross-subject and
cross-view. The best performing approach is the LSTM in the
bidirectional formulation for both cases as shown in Table II.
Only, the accuracy of bidirectional-GRU is slightly higher
than bidirectional-LSTM for the cross-view evaluation. The
recurrent networks have in overall comparable performance
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TABLE III: Results on the 15-Class Evaluation. We perform cross-subject, cross-view and real-world evaluations for all
models and provide the mean and standard deviation of three runs. For all metrics, the higher score the better the result.
We skip the results of the GCN because of poor performance.

Methods Cross-subject Cross-view Real-World
Accuracy Jaccard F1-score Accuracy Jaccard F1-score Accuracy Jaccard F1-score

RNN [39] 78.44 (±1.2) 19.19 (±3.1) 25.33 (±3.8) 80.84 (±1.0) 24.39 (±2.6) 31.00 (±2.8) 71.28 (±8.4) 30.29 (±19.8) 33.12 (±19.0)
GRU 79.27 (±1.0) 28.59 (±4.1) 36.09 (±4.7) 81.58 (±0.7) 26.30 (±0.9) 33.74 (±1.3) 73.08 (±13.2) 30.11 (±12.0) 31.55 (±12.1)
LSTM [39] 73.26 (±1.7) 17.88 (±2.9) 22.26 (±3.2) 73.31 (±0.6) 12.98 (±1.3) 16.71 (±1.7) 75.62 (±8.7) 40.42 (±14.2) 45.14 (±13.1)
Att-LSTM 79.90 (±1.3) 22.92 (±3.9) 29.91 (±3.9) 83.49 (±0.8) 23.01 (±3.9) 30.73 (±4.3) 71.96 (±16.2) 32.06 (±11.7) 35.04 (±11.2)
Bi-GRU 82.70 (±1.1) 27.8 (±4.8) 35.9 (±5.0) 83.59 (±0.9) 25.9 (±3.7) 33.56 (±4.0) 75.17 (±11.7) 30.6 (±20.5) 33.14 (±19.8)
Bi-LSTM [40] 82.46 (±0.9) 29.42 (±4.7) 37.77 (±5.3) 84.27 (±1.0) 27.76 (±2.6) 35.74 (±2.7) 71.75 (±12.4) 30.80 (±20.9) 33.75 (±20.1)
TCN [34] 73.17 (±3.8) 11.55 (±5.9) 15.19 (±7.9) 74.84 (±2.2) 15.09 (±4.9) 19.09 (±6.8) 65.80 (±8.8) 29.75 (±8.4) 32.21 (±12.4)

other than the vanilla RNN. The temporal convolutional
network has consistent results both for cross-subject and
cross-view, but it is behind the recurrent models. At last, the
graph convolutional network has much lower performance
compared to all other models. In addition, it had difficulties
to converge. We additionally provide the confusion matrices
for the cross-subject (Fig. 7) and cross-view (Fig. 8) eval-
uation. All classifiers are able to distinct the active classes
from the inactive class. Notable is the performance on go
compared to stop. In most of the cases, the recognition
performance is higher on the latter, which we explain with
the larger amount of dynamic gestures in the go class.

b) Real-World: For the real-world evaluation, all met-
rics agree on the best performing approach as well. The
LSTM model delivers the best results on the real-world
sequences (see Table II), while here the bidirectional formu-
lation does not further improve the final outcome. Next, the
behavior of the temporal convolutional network is similar to
the cross-subject and cross-view evaluation. In total, the real-
world evaluation delivers considerable worse performance
than the cross-view and cross-subject evaluation. This is
expected given that the 3D body pose skeletons are algo-
rithmically computed and thus include some sort of error.

E. Ablation Study

We consider another classification scheme of 15-class3

problem. By moving from 4 to 15 gesture categories, our
aim is to study how the static and dynamic gestures affect the
classification performance. All experimental settings are the
same with Sec. V-D except the loss function that is optimized
for 15 classes. The results are reported in Table III. We report
the results of all methods except the graph convolutional
network because it has shown unstable convergence during
training and thus reached poor performance.

a) Cross-Subject & Cross-View: The accuracy for
cross-subject and cross-view is comparable to the 4-class
problem. However, the jaccard index and F1-score show
that the 15-class problem results in a descent performance
reduction. This observation holds for all models. The best
performing model is again the bidirectional-LSTM for both
evaluations. The bidirectional-GRU accuracy is the best for
the cross-subject evaluation, but the bidirectional-LSTM is in

315-Classes: inactive; stop: both-static, both-dynamic, left-static, left-
dynamic, right-static, right-dynamic; clear: left-static, right-static; go: both-
static, both-dynamic, left-static, left-dynamic, right-static, right-dynamic.

general on par with it. The other model have similar behavior
by comparing the 4-class results of Table II with Table III.

b) Real-World: Unlike the cross-subject and cross-view
results, the real-world performance is similar to the 4-class
problem (see Table III). Considering the standard deviation,
all models show great variation between runs as a result
of the domain difference between the motion capture data
for training and the estimated 3D poses for testing. The
clear observation is that the LSTM model delivers promising
performance.

VI. CONCLUSION

We introduced a road traffic control gesture recognition
dataset in the context of autonomous driving. Our dataset
consists of 3D body skeleton data and gesture category
for every time step. To perform gesture classification, we
presented eight sequential processing models based on deep
neural networks, such as recurrent networks, temporal convo-
lutional networks and graph convolutional networks. Finally,
we demonstrated promising performance on real-world se-
quences, which indicates the representativity for our dataset.
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