
Modality-Buffet for Real-Time Object Detection

Nicolai Dorka*1, Johannes Meyer*1, and Wolfram Burgard1,2

Abstract— Real-time object detection in videos using
lightweight hardware is a crucial component of many robotic
tasks. Detectors using different modalities and with varying
computational complexities offer different trade-offs. One op-
tion is to have a very lightweight model that can predict from all
modalities at once for each frame. However, in some situations
(e.g., in static scenes) it might be better to have a more complex
but more accurate model and to extrapolate from previous
predictions for the frames coming in at processing time. We
formulate this task as a sequential decision making problem
and use reinforcement learning (RL) to generate a policy that
decides from the RGB input which detector out of a portfolio
of different object detectors to take for the next prediction. The
objective of the RL agent is to maximize the accuracy of the
predictions per image. We evaluate the approach on the Waymo
Open Dataset and show that it exceeds the performance of each
single detector.

I. INTRODUCTION

Object detection is a key component of nowadays robotic
platforms as they get more and more integrated into the real
world and have to be able to react to dynamic objects as
humans, cyclists or cars. To carry out a reaction to a dynamic
object the robot has to first of all perceive it. Different
approaches have been developed to tackle the problem of
object detection [1][2][3]. The proposed solutions vary in
their requirements regarding resources and run-time as well
as in their performance.

Results obtained by state-of-the-art object detectors are
often remarkable but rely on high-end computers. Using
such computers on mobile robots is not realistic as these
robots are often powered via battery or cannot carry such
huge payload. For that reason, products such as the NVIDIA
Jetson AGX Xavier [4], which offer state-of-the-art GPU
techniques at a very small scale and power consumption,
have been developed. However, when running a Faster R-
CNN with a ResNet 50-FPN on an NVIDIA Jetson AGX
Xavier, it takes 340 ms to get the bounding box detections.
In comparison the same forward pass on an NVIDIA Titan
X that is commonly used in high-end computers takes 80
ms. This restricts the ability of robotic platforms to use the
network at high-frame rates which is required for interaction
with dynamic objects.

In order to assure robustness of the method against failure
under varying conditions it is desirable that the detector uses

This work has been supported by the Freiburg Graduate School of
Robotics.

*Contributed equally
1All authors are with the Department of Com-

puter Science, University of Freiburg, Germany.
dorka,meyerjo,burgard@cs.uni-freiburg.de

2Wolfram Burgard is also with the Toyota Research Institute, Los Altos,
USA.

Fig. 1: Our proposed Reinforcement Learning (RL) agent
is at each timestep t faced with the question which of the
modalities and available object detectors to choose from a
buffet of options. Each modality and detector has a different
strength or weakness and future frames are impacted by
the decision of the agent at time t. For example, choosing
a ResNet based feature detector blocks the agent for the
next three frames as the embedded hardware does not allow
for a fast computation of this detector. The accuracy of
the resulting detections is used as a reward signal for the
reinforcement learning algorithm in order to optimize the
policy.

different sensor modalities. However, in deep networks the
encoding and fusion of additional modalities in a way that
substantially increases the performance over a model that
uses only one modality further increases its computational
cost considerably [5]. At the same time in many scenes one
modality may be sufficient for a good detection of objects
- for example RGB for images in clear daylight and lidar
during the night - as the benefits of the modality in this
scene-type outweigh the disadvantages of another modality.

In this work we propose a new lightweight method which
uses the image recorded by an RGB camera to choose from
a portfolio of different detectors that vary in computational
complexity and in the kind of sensor modalities they use.
Each detector offers some scenarios where it is suited best
given its unique trade-off between computational cost and
accuracy. As more complex detectors require more time to
generate predictions, not every frame can be processed in
real-time if they are used. The best that can be done for
the frames coming in until the detector outputs its prediction
is to extrapolate from the most recent previous prediction.
Still this might sometimes be the preferable choice if the
extrapolation is easy (e.g., in static scenes) as the prediction
of larger models are usually more accurate. Choosing from
detectors with different prediction generation times is a

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10543

sequential decision making process where the current action
influences the next state at which a decision has to be made.
We use reinforcement learning (RL) to learn a policy that
decides about the size of the model for the detector and about
which modality should be used in order to maximize the
overall accuracy of the predictions for all incoming frames.

The approach is evaluated on data provided in the Waymo
Open Dataset (v1.0) [6] which contains sequences of images
recorded at a frame rate of 10 Hz. We demonstrate that it is
possible to learn a policy that chooses models in such a way
that the accuracy per image exceeds the performance of all
the single detectors.

II. RELATED WORK

A. Object detection

1) Real-time: Recently, since the introduction of YOLO
and its most recent successors [3] object detection using just
a single-stage instead of multiple processing stages is an
active research area. These object detectors promise a real-
time execution combined with a good performance. Even
more recently, these one-stage object detectors have been
improved by more elaborate strategies to fuse features in a
feature pyramid network [7]. Zhao et al.[8] propose another
method to extract more suitable features from a pyramid
network. Also novel concepts to tackle the problem of single-
stage object detection have been proposed [9][10].

However, these approaches are still designed for the com-
putation on desktop GPUs and are thus not suitable for the
computation on embedded hardware. Therefore, we use an
efficient feature extractor that was specifically designed for
the usage in embedded hardware. As trade-off between the
encoder speed and the prediction accuracy we use a Faster
R-CNN implementation as detection algorithm.

2) Videos: Detecting objects from a video is an interesting
topic, as in contrast to the standard object detection task the
temporal information is added to the input. Several different
approaches have been proposed in the literature.

Kang et al.[11] make use of the temporal information dur-
ing the training of the object detectors. Predicted bounding
boxes are propagated to the next frame and then used for re-
finement and supplemented by new detections. However, they
use a very deep feature extractor that makes the method not
applicable in real-time. Other temporal linking techniques
have been proposed by Tang et al.[12].

A different strategy for the problem of object detection
in videos has been proposed by Zhu et al.[13], who use the
optical flow in consecutive frames in order to get a detection
at frame t. However, their method requires the information
from future frames and thus is also not real-time capable.

3) Different modalities: Having a multitude of input
modalities at hand, different ways on how to fuse the distinct
information have been studied and analyzed. Dietmayer et
al.[5] investigate at which stage of the detection process the
best results through fusion can be obtained. Du et al.[14] use
the RGB image to find objects within the 2d image and then
use these bounding boxes to extract data from the respective
position in the Lidar scan. The extracted Lidar data is used

to create a final 3d bounding box detection. While focusing
on the detection of 3d bounding boxes, this approach is the
current state-of-the-art on the KITTI car detection benchmark
[15]. However, the inference time is rather slow according
to the official benchmark. A similar concept of combining
RGB and Lidar data has been proposed by Qi et al.[16].

B. Reinforcement learning for speed accuracy tradeoff

Using RL for the trainng of a policy to trade-off speed and
accuracy has been proposed for different tasks. For object
tracking it was proposed to learn a policy to select each
frame between models of different computational cost [17].

Chinchali et al. [18] use a RL algorithm in order to learn
whether a robot should “off-load” a classification problem
to a remote machine. At each time step the RL agent has
to decide whether to query the model over the network,
keep the old prediction, or use its own prediction module.
The reward signal then consists of the model error and the
latency/compute costs of the detection.

Other works learned for the task of semantic segmentation
if to use a model for a frame or interpolate from the tempo-
rally surrounding predictions under computation constraints
[19]. Interpolation is only applicable in hindsight and not in
real-time applications as future frames are not available at a
given time.

For object detection it was proposed to learn a model
that decides on every frame if a detection or tracking model
should be used [20]. While the classification model used
in that work is interpreted as an RL model this is only
meaningful in so far as any classification method can be
framed as an RL algorithm where the action in a state does
not influence the next state.

Most closely related to our work is that of Liu et al.[21]
who use a memory that is a version of an LSTM [22] for
object detection from RGB images in videos. Each frame
a policy decides if for the next frame either a slow or a
fast feature embedding network is selected. The LSTM takes
the embedding and its internal state to produce a refined
embedding which is used for prediction. Only the slow
network updates the internal state of the LSTM. The policy
is learned with a reward signal that incorporates a speed and
a accuracy reward. Except from the fact that they considered
only one modality the main differences to our method are
that we define the reward signal only via the accuracy and
that we decide for the current and not the next frame which
model to use.

III. METHOD

Our method consists of two parts. First, a set of object
detectors that have different computational complexities and
that take different types of sensor modalities as input.
Second, a reinforcement learning algorithm that takes as
input an RGB image and selects one of the detectors. The
overall approach is displayed in Figure 1. We demonstrate
our approach for the setting in which there are two modal-
ities available, an RGB camera image and an image from
projected lidar data. Furthermore, we use object detectors

10544

of two different sizes. However, it should be noted that our
approach is not specific to this particular setting and is also
applicable in settings with other sets of detectors which could
use more or other modalities.

A. Object Detection

We use object detectors of two different sizes. The first
class uses as a network architecture a ResNet-50 with a
feature pyramid network [23][24] and a Faster R-CNN
implementation to detect objects. The second class is the
same as the first one except that it uses instead of the ResNet
the FBnet by Wu et al. [25], which is more lightweight
and specifically designed to operate on mobile low-energy
consuming devices. For each of the two modalities RGB
and lidar we train a model from each network class using
the respective modality as input resulting in a total of four
different object detectors.

While in this work Faster R-CNN models are used, the
same method could also be applied on top of differently
sized one-stage methods or even on top of a combination of
one-stage and multi-stage models.

In Figure 2 we show the inference times for the two
different model classes on the NVIDIA Jetson Xavier. The
FBnet based model can reliably predict every frame when
they are perceived at 10Hz even if the variance in inference
time is incorporated. If the much larger ResNet-50 is used, a
prediction can only obtained reliably for every fourth frame
at an equal frame rate.

At the same time the predictions of the ResNet based
model are more accurate and in the next section we describe
how we frame the problem of choosing the right model at
the right moment in a reinforcement learning setting.

B. Reinforcement Learning

In RL an agent interacts with its environment for a discrete
set of timesteps T . During each step t ∈ T the agent is in a
state st ∈ S and has to select an action at ∈ A. The agent
receives a scalar reward rt for the action and transitions to
the next state st+1 that depends on the chosen action. The
goal is to learn a policy π : S → A that chooses actions
such that the return which is the sum of all received rewards∑

t∈T rt is maximized.
For the RL algorithm we use a version of Rainbow

[26] which adds several improvements on top of the DQN
algorithm [27]. Different from the original Rainbow we do
not use prioritized experience replay and for exploration
we use ε-greedy instead of noisy networks. The algorithm
learns a state-value function - called the Q-function - which
is modeled with a neural network to map the state to the
parameters of a distribution of future rewards for each action
in that state. The agent chooses the action with the highest
predicted expectation over the future returns. Experiences of
the agent are stored in a replay buffer and the learning of
the value function happens on samples drawn randomly from
that buffer. For more detailed information about Rainbow we
refer to the original publication [26].

Fig. 2: Different network architectures have different infer-
ence times on an NVIDIA Jetson Xavier. The x-axis shows
the different models trained on the RGB modality, the y-
axis shows the inference time in seconds. The black line on
top of each bar indicates the standard deviation in between
runs. The average run-time is calculated over all images on
the used test-set. The timing data is almost identical for the
Lidar images.

We define the environment for the RL agent on top of a
dataset that contains sequences of images. Each sequence is
treated as an episode. The state st of the agent is the RGB
image of the current frame ft′ in the sequence downsampled
to the spatial dimensions (84, 84). In each state the agent
has to choose the object detector that generates the next
prediction. Depending on the computational requirements
of the chosen detector it takes k ∈ N frames to get the
prediction. The next state st+1 of the agent is then defined
to be the RGB image of the frame ft′+k+1 which is k + 1
steps into the future from the state st where the detector
was chosen. This is also visualized in Figure 3. The reward
signal for taking a specific action at in state st is defined
via the average precision (AP) of the predictions from the
chosen detector for the current frame and the extrapolation
from the most recent previous prediction for all k frames that
come in during the inference time of the model. Put more
concretely, the AP for frame ft′ is defined to be the AP of
the model prediction for ft′ . For the frames ft′+1, . . . , ft′+k

the AP is computed from predictions that are extrapolated
from the most recent previous prediction as the computation
of the model takes k frames. We define the predictions for
these frames to be equal to this previous prediction. Note
that for the extrapolation more sophisticated methods like
tracking of objects could be used, but this is orthogonal
to our method and so we concentrated on the simple case.
The reward for the agent is then defined as the sum of the
k+1 AP values obtained with this procedure. In more formal
terms, the reward for choosing in state st the action at that
corresponds to a model that has an inference time of k frames

10545

It-1 It It+1 It+4

3

ResNet
RGBQ

It+2 It+3

Choose from
buffet

ResNet case: Most recent detection

Q

Fig. 3: In It−1 the most recent previous detection for this frame are shown. After processing It the RL agent queries the
Resnet-50 and is blocked for the three consecutive frames. Thus, it has to rely on the detections from previous frames.
At time-step It+4 the ResNet has provided the prediction for the frame it was queried on. This becomes the most recent
prediction, if the network decides to query the ResNet in It+4.

is defined as

r(st, at) = AP(ft′ , at) +
k∑

i=1

AP(ft′+i, at−1), (1)

where AP(f, a) denotes the AP score between the ground
truth for frame f and the predictions of the model corre-
sponding to action a for f .

Different from previous work [17][18] our reward signal is
defined solely via the accuracy and is not a combination of a
speed and a accuracy reward. The tradeoff between these two
is incorporated implicitly in the design of the environment
setup which is defined such that real-time performance is
always guaranteed.

As the RL agent is trained entirely on the training set of
the dataset there is one complicating factor regarding how to
generate the model predictions. The object detectors gener-
alization abilities on images not seen during training differ
depending on model capacity and other factors. The reward
signal for the RL agent would be biased in a misleading
way if for the generation of the rewards the predictions from
models trained on that example would be taken. The reason
is that for example methods that overfit on the training data
would be preferred to be chosen by the agent. To circumvent
this problem we split the training data into five different folds
and train the networks in a leave-one-out manner. For each
image in the training set we have a prediction from an object
detector which was not trained on this image. This allows us
to use the same dataset for the training of the RL agent as the
generalization error of the individual networks is expected to
be the same on the individual folds as on the training set. In
Table I we report the average performance of the hold-out
trained detectors on the test set and on the hold-out fold. We
can see that the trained detectors perform similar on the test
set and on their holdout set. Also the strength of the object
detector relative to each other stays similar. Moreover, this
also holds when the models are trained on the entire training
set and evaluated on the test set. From this experiment, we
conclude that we can use the object detectors trained on the

hold-out set to mimic the detection signal the RL agent will
observe on the test set. Thus, we use the output of these
detectors to train the RL agent on the training set. To speed
up the training of the RL agent we stored the predictions
of the different detectors in a lookup table. That makes the
environment for training the RL agent very fast as the model
predictions can be simply read out and only the AP scores
have to be computed. To generate the predictions for the test
set we trained the object detectors on the whole training set.

During runtime the RL agent requires only a single
forward path to choose which detector to take. Since the
network of the agent we use is very lightweight with 3
convolutional layers and one hidden fully-connected layer
the additional computational cost of our method is negligible
in comparison to the much larger networks of the detectors.

IV. EXPERIMENTS

A. Detection on the Waymo Dataset

We train different object detectors using the Mask R-CNN
Benchmark implementation [28] on the Waymo open dataset.
We use the initial version of the Waymo Open Dataset,
namely v1.0. It consists of 100 sequences with annotated
2d bounding boxes and 25 of those annotated sequences
are available as test sequences. Data from five cameras are

Backbone Modality AP Test avg. AP Folds
@Test

avg. AP Folds
@Hold-Out

ResNet-50 FPN RGB 0.398 0.384 0.411
FBnet RGB 0.206 0.188 0.194

ResNet-50 FPN Lidar 0.253 0.246 0.278
FBnet Lidar 0.167 0.151 0.174

TABLE I: Different object detectors trained with different
feature extractor architectures and data from different modal-
ities. Each detector is trained on the full training set and
evaluated on the test set. The given values are for the AP
averaged over the IoU levels from 0.5 to 0.95 with a step
size of 0.05. Additionally, the average performance of the
individual detectors trained on the hold-out sets is shown.

10546

Model Frames
FBnet Lidar 0
FBnet RGB 0
ResNet50 FPN Lidar 3
ResNet50 FPN RGB 3

TABLE II: Frame-timout for the agent after a certain model
is chosen.

available. In this work, we only use the one of the frontal
camera. Each image is also accompanied with the most
recent lidar scan. For both modalities the RGB image and
the lidar scan which we project on the image plane, we train
a Faster R-CNN implementation with a ResNet-50 using
a feature pyramid, and a FBnet as the respective feature
extractor.

In Table I the results for the individual object detectors
with the different modalities are shown. As expected the
different network architectures and the individual modalities
have different levels of performance. For all trained object
detectors we report the AP levels across different Intersection
over Union (IoU) thresholds from 0.5 to 0.95 with a stepsize
of 0.05. Intersection over Union is a normalized measure
which computes the ratio between the area in which two
bounding boxes overlap and the total area of both boxes
aggregated. The detector based on the Resnet-50 which uses
the RGB modality yields an AP of 0.398%. This is the
best performance of all networks which are trained on the
whole training set. The second strongest object detector is the
ResNet which was trained on the lidar images. Both networks
trained with the FBnet as feature extractor are well behind
the ResNet detector.

B. Reinforcement Learning

The RL agent was trained for 300, 000 environment steps
where the exploration parameter ε was linearly decayed from
1.0 to 0.01 over the 300, 000 steps. The target network was
updated every 8, 000 steps and the training started after
the replay buffer was filled with 20, 000 transitions. All
other hyperparameters and the network architecture are the
same as in the original Rainbow paper. We considered three
different kinds of IoU thresholds (0.5, 0.7, 0.5 : 0.95) for the
computation of the AP in the reward signal and trained one
agent for each of these.

We report for each model the number of frames for which
the most recent prediction has to be used because of the
models inference time in Table II. When using one of the
FBnet models the agent can operate again in the next frame
while for the models using the ResNet50 3 frames have to
be bridged with the previous prediction.

C. Baselines

We compare our method to multiple types of baselines.
The first set of baselines consists of policies that always
choose exclusively one of the four single models. In the
following they are named after the respective model they
use. Note that the strategies using the ResNet based models
can not produce a prediction for every frame and rely

Model AP@0.7 AP@0.5 AP@0.5:0.95
FBnet Lidar 0.213 0.285 0.179
FBnet RGB 0.220 0.333 0.195
ResNet50 FPN Lidar 0.137 0.212 0.117
ResNet50 FPN RGB 0.214 0.350 0.196
Random 0.183 0.281 0.159
Random w/o ResNet Lidar 0.202 0.317 0.181
Alternating 0.171 0.272 0.150
Alternating w/o ResNet Lidar 0.197 0.308 0.173
Lighting heuristic 0.223 0.350 0.201
Learned policy 0.245 0.366 0.214

TABLE III: Results on the test set of the Waymo Open
Dataset for different IoU thresholds in the computation of
the AP.

on the previous prediction in the meantime which reduces
their performance compared to the case where the models
predictions are computed for every frame. A second set
of baselines uses a random policy to choose the model to
execute. We also evaluated a variant of this policy as we
exclude the ResNet50-Lidar from the set of modalities as this
model gives with the long prediction time substantially worse
results than the other methods. Furthermore, one strategy
that sequentially picks all the models and a variant of it
without the ResNet50-Lidar model is evaluated. Lastly, we
evaluate against a heuristic which uses the average color of
the image to decide which object detector to use. The idea is
to choose an RGB based model during daytime and a lidar
based model when it is dark. The heuristic selects the FBnet-
Lidar if the mean pixel value is below a certain threshold
and otherwise the ResNet50-RGB is used. For each of the
three reported AP metrics we evaluated the heuristic on the
test set for 10 evenly spaced pixel value thresholds between
0 and 255 and report the best performance. As the threshold
hyperparameter is fitted on the test set this heuristic can be
seen as an oracle about how much performance can be gained
if only the lighting is taken into account to choose a model.

D. Evaluation Metric

Metrics which evaluate every frame such as PASCAL
VOC [29] or Microsoft COCO [30] put implictly more
weight on frames with a higher amount of bounding boxes.
This benefits the deeper, stronger object detectors as they are
able to recall more of these boxes with a higher precision.
However, in the application studied in this work, specifically
detecting objects in a sequence of constantly appearing
frames it is more important to have an on average higher
AP per frame than an higher AP over all detections in the
dataset. For that reason, we compute the AP score per image
and compute the mean over these scores as our evaluation
metric for the following experiments. For the few images
without ground truth bounding boxes (3% in the test set) we
return 1 if no bounding box is predicted and 0 otherwise.

E. Results

We present in Table III the results for all considered
methods when evaluated on the test set. In the scenario we
described in this work, where the GPU is blocked for a

10547

certain amount of time when the large model is executed,
the best performing individual model at an IoU level of 0.7
is the FBnet RGB. For the other two IoU levels the ResNet50
RGB achievs the highest AP score. Both the random and the
alternating selection strategy are not able to outperform one
of the individual object detectors they select from. The best
of them is the Random agent w/o ResNet Lidar with an
average AP per frame of 0.202 at an 0.7 IoU level. The only
strategy reaching better results than the single models is the
lighting heuristic with AP scores of 0.223, 0.350 and 0.201
at the three different IoU levels. The policy learned using
the methodology presented in this work achieves at an IoU
level of 0.7 a mean AP score of 0.245 on the test dataset
outperforming all other considered methods. The same holds
for the other two considered IoU thresholds for which the
policy reaches AP scores of 0.366 and 0.214.

Discussion: From the experiments we can see that the
learned policy indeed learned a strong strategy as our method
outperforms each of the single models for all of the IoU
thresholds and also all the other baselines. The random and
the alternating policy are much worse than the learned policy.
However, their performance is degraded from using in 25%
of the cases the ResNet50 Lidar model which performs
poorly. Interestingly, even when this model is removed, the
performance of the random and the alternating policy is
worse than the worst of the three remaining single models.
Hence, it is not trivial to generate a policy that outperforms
each of the single models. A possible explanation why the
random policy is worse than each of the single models might
be that when first one of the not so accurate FBnet models
is used and afterwards the ResNet50 RGB, the most recent
previous prediction coming from the FBnet is not so accurate
as when it came from the ResNet.

Furthermore, the results for the lighting heuristic show that
some performance can be gained by selecting the lidar or
RGB model depending on the lighting. However, this alone
can not explain the performance of the learned policy as its
improvements over the baselines are much larger indicating
that the policy learned a non-trivial strategy.

F. Discussion: Modality usage by policy

In this section we take a closer look at the three learned
policies which got their reward based on three different IoU
thresholds. We show the percentage of how often the learned
policy uses each of the four models on average for all of the
three IoU thresholds in Table IV.

Policy@IoU FBnet
Lidar

FBnet
RGB

ResNet50
Lidar

ResNet50
RGB AP@IoU

0.7 42% 19% 1% 38% 0.245
0.5 16% 31% 0% 53% 0.366
0.5:0.95 21% 35% 1% 43% 0.214

TABLE IV: Percentage of how often which modality is
chosen from the modality-buffet by the learned RL policies.
Each of the three policies was trained with the reward signal
defined via the AP at a different IoU threshold.

Model AP@0.7 AP@0.5 AP@0.5:0.95
FBnet Lidar 0.213 0.285 0.179
ResNet50 FPN RGB 0.214 0.350 0.196
Random 0.206 0.314 0.181
Alternating 0.192 0.288 0.168
Learned policy 0.242 0.355 0.211

TABLE V: Results on the testset of the Waymo Open Dataset
for different IoU thresholds when only the two models FBnet
Lidar and ResNet50 RGB are available.

It can be observed that the percentage with which a model
is picked does not necessarily align with the performance of
the models taken on their own at the given IoU threshold. For
example, the results in Table III show that at the IoU thresh-
old of 0.7 the FBnet RGB has the strongest performance
when always selected. Despite that fact, the learned policy
chooses it less often than the FBnet Lidar or the ResNet
RGB.

G. Ablation Study with two Models

We conducted a further experiment where we trained a
policy to choose only between the ResNet50 RGB and the
FBnet Lidar. The results can be found in Table V. The
learned policy outperforms for all considered IoU thresholds
both the single models and the two policies which choose
with a random or alternating strategy. Similarly to above the
random strategy is worse than each of the single models
which could be explained in the same way as before. How-
ever, the learned policy for the two models does not reach
the performance of the learned policy for the four models.
This indicates that the proposed method becomes stronger
the more models it has in its portfolio. Thus, incorporating
further models, potentially from other modalities, or models
that take both RGB and depth as input could be added to
likely increase the performance further.

V. CONCLUSION

In this work, we presented a novel RL based method
which selects an object detector from a buffet of available
detectors in order to maximize the average precision across
a sequence of consecutive frames under the requirement of
real-time performance. The strong results compared to the
single models show that the learned policy is able to both
select the right modality and reliably identify those frames in
which a more accurate, but slower detection can be queried
and in which frames a faster detection is required. At the
same time we showed that it is not easy to hand-design a
policy that outperforms the single models.

Results of experiments with a smaller portfolio of models
indicate that the performance of our method likely increases
further when the size of the portfolio gets larger and more
diverse. This opens the door for many future applications
and we believe that our method is especially promising
for applications where the conditions vary a lot as the
policy selects the model that can cope best with the specific
condition.

10548

Another advantage of our method is that if the AP score
is not the only important objective further signals could be
included in the reward function. One possible objective could
be for example the power consumption of the device.

REFERENCES

[1] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1137–1149, 2017.

[2] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 2961–2969, 2017.

[3] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. arXiv preprint arXiv:1804.02767, 2018.

[4] Nvidia jetson xavier. https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/
jetson-agx-xavier/. Accessed: 2020-03-01.

[5] A. Pfeuffer and K. Dietmayer. Optimal Sensor Data Fusion Archi-
tecture for Object Detection in Adverse Weather Conditions. ArXiv
e-prints, July 2018.

[6] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard,
Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai,
Benjamin Caine, et al. Scalability in perception for autonomous
driving: Waymo open dataset. arXiv, pages arXiv–1912, 2019.

[7] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable
and efficient object detection. arXiv preprint arXiv:1911.09070, 2019.

[8] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ling Cai, Ying
Chen, and Haibin Ling. M2det: A single-shot object detector based
on multi-level feature pyramid network. AAAI 2019 : Thirty-Third
AAAI Conference on Artificial Intelligence, 33(1):9259–9266, 2019.

[9] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as
points. arXiv preprint arXiv:1904.07850, 2019.

[10] Hei Law and Jia Deng. Cornernet: Detecting objects as paired
keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 734–750, 2018.

[11] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong
Xiao, Cong Zhang, Zhe Wang, Ruohui Wang, Xiaogang Wang, and
Wanli Ouyang. T-cnn: Tubelets with convolutional neural networks
for object detection from videos. IEEE Transactions on Circuits and
Systems for Video Technology, 28(10):2896–2907, 2018.

[12] Peng Tang, Chunyu Wang, Xinggang Wang, Wenyu Liu, Wenjun Zeng,
and Jingdong Wang. Object detection in videos by high quality
object linking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2019.

[13] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided feature aggregation for video object detection. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 408–417,
2017.

[14] Xinxin Du, Marcelo H Ang, Sertac Karaman, and Daniela Rus.
A general pipeline for 3d detection of vehicles. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages
3194–3200. IEEE, 2018.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

[16] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas.
Frustum pointnets for 3d object detection from rgb-d data. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[17] Chen Huang, Simon Lucey, and Deva Ramanan. Learning policies for
adaptive tracking with deep feature cascades. In Proceedings of the
IEEE International Conference on Computer Vision, pages 105–114,
2017.

[18] Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi,
Daniel Kang, Evgenya Pergament, Eyal Cidon, Sachin Katti, and
Marco Pavone. Network offloading policies for cloud robotics: A
learning-based approach. In Robotics: Science and Systems XV,
volume 15, 2019.

[19] Behrooz Mahasseni, Sinisa Todorovic, and Alan Fern. Budget-
aware deep semantic video segmentation. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2077–2086,
2017.

[20] Hao Luo, Wenxuan Xie, Xinggang Wang, and Wenjun Zeng. De-
tect or track: Towards cost-effective video object detection/tracking.
AAAI 2019 : Thirty-Third AAAI Conference on Artificial Intelligence,
33(1):8803–8810, 2019.

[21] Mason Liu, Menglong Zhu, Marie White, Yinxiao Li, and Dmitry
Kalenichenko. Looking Fast and Slow: Memory-Guided Mobile Video
Object Detection. arXiv e-prints, page arXiv:1903.10172, Mar 2019.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[24] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie. Feature pyramid networks for object
detection. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 936–944, 2017.

[25] Bichen Wu, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yang-
han Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, and
Yangqing Jia. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
10734–10742, 2019.

[26] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Ghesh-
laghi Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2017.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
February 2015.

[28] Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast,
modular reference implementation of Instance Segmentation and Ob-
ject Detection algorithms in PyTorch. https://github.com/
facebookresearch/maskrcnn-benchmark, 2018. Accessed:
21. February 2020.

[29] Mark Everingham, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes (voc)
challenge. International journal of computer vision, 88(2):303–338,
2010.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014. Springer International Publishing.

10549

