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Abstract— Spiking Neuronal Networks (SNNs) realized in
neuromorphic hardware lead to low-power and low-latency
neuronal computing architectures. Neuromorphic computing
systems are most efficient when all of perception, decision mak-
ing, and motor control are seamlessly integrated into a single
neuronal architecture that can be realized on the neuromorphic
hardware. Many neuronal network architectures address the
perception tasks, while work on neuronal motor controllers
is scarce. Here, we present an improved implementation of a
neuromorphic PID controller. The controller was realized on
Intel’s neuromorphic research chip Loihi and its performance
tested on a drone, constrained to rotate on a single axis. The
SNN controller is built using neuronal populations, in which
a single spike carries information about sensed and control
signals. Neuronal arrays perform computation on such sparse
representations to calculate the proportional, derivative, and
integral terms. The SNN PID controller is compared to a PID
controller, implemented in software, and achieves a comparable
performance, paving the way to a fully neuromorphic system
in which perception, planning, and control are realized in an
on-chip SNN.

I. INTRODUCTION

Biological systems have always inspired robotics research.
Animals, from insects to humans, are amazing in their ability
to move safely in complex and dynamic environments, even
if the environments are not known in advance and are per-
ceived with limited local sensing. In many cases, movement
is generated with non-ideal, e.g. soft, redundant, or under-
actuated, motor systems. Obviously, biological neuronal net-
works are able to solve the complex perception, planning,
and control problems with their limited energy resources,
even in simple animals. Thus, many robotic systems were
developed that use neuronal circuits for control of, e.g.,
insect-like robots [1], lizards [2], or vehicles [3], [4].

In parallel to the development of brain-inspired algorithms
for robot control, in the field of neuromorphic engineer-
ing, a new type of computing hardware was proposed, in
which biologically realistic neuronal networks are realized
directly in hardware [5]–[8]. Neuromorphic hardware com-
putes the dynamics of spiking neuronal networks in real-
time at a low power consumption due to efficient event-
based asynchronous architecture and co-location of memory
and computing units in neurons and synapses. A distinctive
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property of neuromorphic hardware is on-chip plasticity
that enables continual learning in real-time [8], [9]. These
properties make neuromorphic hardware an attractive plat-
form for neurorobotics. Neuromorphic platforms were used
in proof-of-concept experiments for, e.g., robot navigation,
path planning, and SLAM [10]–[15]. More recently, several
architectures for spike-based motor control were suggested,
and some of them realized in neuromorphic hardware, show-
ing promising results. This includes bio-inspired neuronal
circuits to control a single effector [16]–[19] or approxima-
tions of closed-form controllers of multi-DoF effectors with
spiking neurons [20]–[23].

In our previous work, we have proposed a spiking neural
network to realize a well-understood proportional, integral,
derivative (PID) controller in neuromorphic hardware. The
first version of this controller only realized the P-term in
a mixed-signal ultra low power prototype neuromorphic de-
vice [24]. A more recent realization extended this controller
to a full PID controller running on Intel’s neuromorphic
research chip Loihi [8] and was used to control a UAV
constrained to one axis, as in this work, and to control
a robotic vehicle [25]. In that work, we realized a nested
cascade of two controllers: one for the pose and the other
one for the speed of the robots. In this work, we further
improve the PID controller on Loihi. First, we re-designed
the integral path of the controller to cope with a limited
resolution of value representation, which led to fast saturation
of the I-path. Second, we simplified the network, removing
the inner control loop. Finally, we improved the I/O interface,
decreasing the time step duration of the control loop. These
changes allowed us to increase the control frequency and
improve performance. We compare the performance of our
spiking PID controller, implemented in neuromorphic hard-
ware, to an equivalent conventional controller implemented
on a CPU. We demonstrate that our controller achieves a
comparable performance to the conventional controller that
is realized with full floating-point arithmetics. Additionally,
we perform power measurements of the SNN controller
on Loihi and estimate the power consumption that can be
achieved in future, more tightly integrated implementations.
In our closed-loop hardware setup, the neuromorphic chip
is connected to the drone’s flight controller and to the IMU
sensor using a computing board UP2, which can be omitted
in a more embedded setup.

The on-chip plasticity on the Loihi can be used to tune
the controller gains automatically. We realized the control
gains as synapses in our architecture, which, in future work,
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can be made plastic to allow them to adapt according to
local, reinforcement-driven on-chip learning rules [8] and
thus implement an adaptive PID controller on-chip.

II. METHODS

A. Hardware

1) Neuromorphic hardware (Loihi): For the simulation of
the Spiking Neural Network (SNN), Intel’s neuromorphic
research chip Loihi, in the form of a Kapoho Bay device,
interfaced with a host computer over USB, was used. The
Kapoho Bay features two Loihi chips, each chip simulating
up to 128K neurons in its 128 cores. Furthermore, three
x86 co-processors are integrated on the Loihi chip, used for
monitoring, input/output, and configuration.

2) Constrained UAV: For testing the controller, we used
the hardware setup developed in [25]: a 1-DoF constrained
drone, shown in Fig. 1. An Inertial Measurement Unit (IMU)
inside a DAVIS240C [26] mounted on the drone was used
to measure the angle and angular acceleration while torque
was produced with propellers on the motors of the drone.

The two motors were each controlled by an Electronic
Speed Controller (ESC), driven by RC PWM. To generate
the RC PWM signals, a Navio flight controller connected to
a Raspberry Pi was used. This enabled high-level, but fast
control of the motors from Linux.

Fig. 1: Left: A 3D model of the constrained to 1DoF drone.
Right: The physical setup.

3) Interfaces, system overview: An Intel UP2 single-board
computer1 was used to interface the Kapoho Bay. For com-
munication between the Raspberry Pi and the Intel UP2, a
light-weight peer-to-peer communication library YARP [27],
which is based on the TCP/IP protocol, was used. This
enabled communication between the Intel UP2, used as
Kapoho Bay host, and the Raspberry Pi, responsible for the
motor interface.

The software architecture consists of four programs com-
municating through YARP (see Fig. 2). The IMU node
extracts the angle measurements from the IMU in the DAVIS
sensor, the ESC node writes motor commands to the ESC,
the Control Setpoint node generates a predefined sequence of
setpoints for the Kapoho Bay node which sends the received
setpoint- and IMU-values to the neuromorphic chip and
receives the motor commands that are converted and sent
to the ESC node.

1Intel Pentium N4200: 1.1/2.5GHz w/4GB LPDDR4 RAM, running
Ubuntu 16.04 and NxSDK 0.9.

This architecture enables other software PIDs that are
communicating using YARP to be swapped with the Kapoho
Bay interface for comparison against other controllers.

Fig. 2: Overview of the overall controller setup. The IMU-
and Control Setpoint YARP nodes feed values into the
Kapoho Bay Interface node. From here, the values are passed
into the neuronal cores on Kapoho Bay, which responds with
the output of the SNN PID. Finally, the output of the PID
is sent to the ESC node and to the motors. The solid arrows
are YARP connections, the dashed arrows are hardware- and
software interfaces provided by Intel.

B. The Spiking Neural Network (SNN) PID

1) SNN Input encoding: The measured angular velocity,
the measured angle, and the desired angle of the system,
all have to be input into the spiking neural network. In this
project, we used populations of neurons that represent inputs
by “place code”: neurons in each input population form a 1D
array, the index of an active (spiking) neuron in the array at
each time step encodes the input value. We used a one-hot
encoding here, meaning that at most one neuron is active per
time step in any population.

Each input population receives exactly one spike per time
step from spike-generators on Loihi. Which neuron receives
the spike is determined by the input value (from IMU or the
setpoint), based on the formula in Eq. (1):

idx =

⌊
x− xmin

xmax − xmin
· n
⌋
. (1)

TABLE I: Input ranges

Input xmin xmax

Angular velocity −80deg/s 80deg/s
Angle −40deg 40deg
Setpoint −25deg 25deg

In Eq. (1), idx is the calculated neuron index, x is
the input value, xmin and xmax are the minimum- and
maximum possible input values, and n is the number of
neurons in the 1D population. Eq. 1 linearly maps an input
value to a specific neuron in the neuron population. All input
populations in our network have 63 neurons. The ranges of
input values are listed in Table I.
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The encoded by the spikes input values are passed through
a series of 2D arrays to calculate the error value and the
derivative value, as proposed in [25]. Each 2D array detects
coincident spikes from the two 1D input arrays and sends a
single spike to the 1D output array according to the desired
operation defined by the connectivity between the 2D array
and the output.

2) P-, I-, and D controller: The PID controller is defined
by Eqs. (2):

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
,

e(t) = r(t)− y(t),

(2)

where u(t) is the calculated command, y(t) is the feedback
signal from the IMU, r(t) is the setpoint signal (target value
for y(t)), e(t) is the error, and Kp, Ki, and Kd are the P, I,
and D gains, respectively.

On Loihi, the neural computation and spike exchange are
synchronized by global time steps. Thus, each connection in
the SNN introduces a one time step delay. The calculated
variables et and dt are thus defined as differences of values
at specific time steps. The architecture of the neural PID
controller is schematically shown in Fig. 3.

Fig. 3: The schematics of the SNN PID. Two arithmetic
operations are performed in 2D operation arrays: 1) the
sensor feedback (y) is subtracted from the setpoint (r) to
obtain the error value (e); and 2) the error on one time step is
subtracted from the error on the previous time step to obtain
the derivative term. A new integration module computes the
integral of the error.

3) The Integration Module: The 2D arrays that perform
arithmetics in this work are able to perform any mathe-
matical operations on two input neuron populations, such
as addition and subtraction. In our previous work, we used
an addition array to realize error integration. However, due
to the low resolution of value representation with the one-
hot encoded populations (63 neurons), when we reduced

the time step duration in the optimized architecture, the
integration increments got too large. The summed signal
saturated quickly both in positive and negative directions,
leading to oscillations.

Thus, in this work, the error signal integration was based
on a path integration network developed for neuromorphic
SLAM in [15], [28]. Here, two different levels of integration
are introduced: (1) on the level of an individual spiking
neuron and (2) on the level of a population of neurons.
Mathematically, spiking neurons behave like integrators in
the way that their state variable – the membrane potential –
is obtained by integrating the incoming current over time.
One can exploit this behavior to accumulate values over
time, and increment the integral representation (change the
position of an active neuron in the I population) only when
the integration-neuron’s threshold is reached. A schematic of
this integration network is shown in Fig. 4.

Fig. 4: Schematic of the network used to integrate a signal
represented by a one-hot encoded spiking neuron population.
Black are excitatory, red inhibitory connections. For clarity,
only the connections from the ShiftUp population to the I
population are shown: the ShiftDown is connected to I in an
analogous way. c+ and c− are counter neurons that integrate
the positive and negative errors, respectively, before integral
increments are encoded in the I population.

Four auxiliary neuron populations are required to integrate
the error signal (for integrating positive and negative error
values): two neurons are responsible for accumulating the
error signal over time in counter neurons (c+ and c−),
and two populations shift the active neuron in the integral
populations (the ShiftDown and ShiftUp layers. In the
final, I , population, values are represented using place code,
where greater neuron indices represent positive values while
smaller neuron indices represent negative values. The two
counter neurons and two shift populations are required to
integrate both positive and negative values of the error signal.
In Fig. 4, c+ and the ShiftUp populations account for
positive errors while c− and the ShiftDown for negative
errors.

The top half of the neurons in the error population repre-
sent positive values and are connected to the positive counter
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population with synaptic weights according to their neuron
index. In this way, larger errors cause a larger increase in the
membrane potential of the counter neuron. Furthermore, the
counter neurons have a high threshold and no leak, which
allows them to perfectly integrate the incoming error signal
over time. If the threshold potential is reached, the counter
population activates all neurons in the shift layer, but not
sufficiently to make them fire. For neurons in the shift layer
to fire, both the counter population and the corresponding
neuron in the I population have to fire at the previous
time step. If this occurs, the active neuron in the shift
layer activates the neuron in the I population either above
(ShiftUp) or below (ShiftDown) the current firing neuron,
simultaneously inhibiting the currently active neuron. The
shifting position of the active neuron in the I layer represents
the integral of the error signal.

The counter neurons are implemented as soft-reset neu-
rons, where a spike in either neuron leads to subtraction of
its threshold potential from the membrane potential of both
counter neurons. In this way, the two neurons maintain a
mirrored potential at all times and thus do not fire at the
same time.

4) Output network: In order to combine the three outputs
of the PID SNN signals, the P, I, and D signals are first
split into two different populations representing positive and
negative values, respectively. Then, the current P, I, and
D values are scaled with their respective controller output
and summed together. This combined value is stored in an
auxiliary neuron population, which is denoted as population
B. The activity is then passed on to the output population
U , and the index of the firing neurons is read out and passed
on to the host computer, where it is converted to motor
commands.

All sparse coded populations, including the arrays rep-
resenting Pt, It and Dt, represent values in the range
a ∈ [−lim, lim]. In our architecture, the sparse coded
values P/I/D are split into two populations: one for negative
values and one for positive values. Each neuron in the P/I/D
population is connected a certain number of neurons in either
P/I/D+ or P/I/D- populations. How many neurons receive
input depends on the index of the neuron in the P/I/D
population. For instance, the neuron representing +1 in P
is connected to one neuron in P+ while the neuron +2 is
connected to two neurons. Each neuron in the P/I/D+ and
P/I/D- is then connected to the population B with respective
synaptic weights of ±Kp/±Ki/±Kd.

The neurons in population B have linearly increasing
threshold potentials, where neuron 1 has the lowest and
neuron 63 the highest threshold. Furthermore, a bias current
equal to the middle neuron’s threshold is injected in all
neurons. In this way, all neurons up to the middle neuron,
representing the value 0, are always firing, and the incoming
activity from the P/I/D+ and P/I/D-, respectively, activates
or inhibits neurons in the B population.

To get back to one-spike sparse coding, B connects to a
final 1D array U, with positive one-to-one connections. Thus,
the neuron in U with the same index as the highest index of

the active neurons in B spikes. Negative connections to all
neurons of lower indices suppress spikes of those neurons
(see Fig. 5).

Fig. 5: Overview of the full output network: the three outputs
(P, I, D) of the sparse coded network are summed in the
output network using the auxiliary populations. Numbers
inside the neurons of population B display the neurons’
thresholds.

C. SNN Output Decoding

The embedded x86 cores on Loihi receive all output spikes
from the SNN (ut). The embedded program reads the spikes
from the neural cores and linearly maps the spikes’ source
index to a value in the range [−1, 1]Nm.

D. Experiments

The SNN-based PID controller was implemented and run
on Loihi, interfaced with the constrained drone platform
and its performance was compared to a conventional PID
controller implemented on a CPU2 (Intel’s UP2 board). The
gains (Kp, Ki, and Kd) for both PID controllers were
systematically tuned by hand.

III. RESULTS

A. Timing

The sampling rate for the measured angular velocity, the
measured angle, and the setpoint for the angle was approx
1kHz. Since the whole setup is synchronized at each time
step, PID provides a new result at 1kHz. However, the PID
controller delays the signal by ≈ 6 time steps due to the
connections between neural populations, whereas the com-
munication between the Kapoho Bay and the host computer
delays the signal by two timesteps in each direction. This
means that the control output has a latency of ≈ 10ms in
the current setup, while the rate of the controller is 1kHz.

2Intel Pentium N4200: 1.1/2.5GHz w/4GB LPDDR4 RAM running
Ubuntu 16.04
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B. Controller performance

For a quantitative comparison between the SNN and
conventional PID controllers, Table II shows the overshoot,
rise time, and settling time of the controllers. The overshoot
was computed as the ratio between the maximum value and
the target value (20 deg). The rise time is the time needed
for the signal to rise from 10% to 90% of the steady-state
value. The settling time is defined as the time needed for
the signal to remain bounded within 20% of the final target
value. Both a positive target amplitude change (0◦ → 20◦)
and a negative target amplitudes change (0◦ → −20◦) were
applied in order to assess the controller performance in both
directions. Table II shows the two respective medians and
the Inter Quartile Range for both the positive and negative
steps over ten separate trials.3.

The results in Table II show that the controllers operate
similarly well. Fig. 6 shows the behavior of the SNN PID and
software PID for the drone in several exemplary runs (one
of the runs being highlighted). In this work, the controller
parameters were manually tuned. Future work will aim at
adapting the gains in a learning process and, in this way,
finding better parametrizations for the controllers.

TABLE II: Performance of PID controllers for UAV

Controller Overshoot (%) Rise time (s) Settling time (s)

Step +20◦ -20◦ +20◦ -20◦ +20◦ -20◦

SNN PID
Median 41.4 35.9 0.46 0.41 1.4 8.8

±
IQR

2
±13.8 ±18.8 ±0.11 ±0.11 ±0.65 ±3.34

CPU PID
Median 24.0 20.1 0.53 0.49 1.3 4.3

±
IQR

2
±7.3 ±6.4 ±0.13 ±0.07 ±1.64 ±4.4

Fig. 6: Comparison between two different PID controllers
controlling the 1-DoF drone to follow the setpoint (Blue
square signal). Red (top): the SNN PID running in SNN on
the Loihi. Green (bottom): the CPU PID running on an Intel
Pentium N4200 CPU.

3All performance measurements are based on testing as of Jan. 2020 and
may not reflect all publicly available security updates.

C. Power Measurements

Certain types of operations run faster and more efficiently
on neuromorphic hardware [8]. Power measurements were
done in an offline simulation of the SNN-PID network in or-
der to quantitatively estimate how much power is consumed.
Performing power measurements directly on the Kapoho Bay
is currently not supported; thus the power measurements
were done on Intel’s Nahuku Board. Compared to the
Kapoho Bay, the Nahuku Board features 32 Loihi chips with
128 neural cores each.

In a fully idle state, the Nahuku Board consumes a baseline
power of ≈ 1000mW . The SNN-PID requires only 38
neuro-cores, making it a relatively lightweight network that
consumes additional power in the order of < 10mW . To get
more robust measurements, the same model was initialized
on more cores, distributed over more chips. Given that the
SNN-PID model fits three times in one Loihi chip, the
measurements were repeated for 1, 3, 6, and 15 models
running simultaneously and, as expected, the resulting power
consumption increased close to linearly to the number of
models running on the board, as shown in Table III. Over
these runs, an average of 25.2mWwas consumed by the
network (estimated over 2000 time steps).

TABLE III: Power Consumption of the SNN PID Network

Number of Models 1 3 6 15

Power (mW) 20.3 59.5 131.4 418,7

This number is not indicative of the power consumption
of the SNN controller in the control loop since it does not in-
clude the communication between the Loihi chip and the host
computer, which is currently not optimized. Furthermore, we
don’t compare the power measurement with a CPU, since
for such a simple controller, optimized microprocessors can
be used, consuming similar (or even lower) power, which
is hard to measure in isolation. We anticipate that due to
linear growth of power dissipation with the network size, the
advantage of neuromorphic hardware will become apparent
for larger networks that combine the motor control with high-
level perception of targets, obstacles, and error signals, and
include online adaptation in the control loop.

IV. CONCLUSION

In this work, we presented an improved version of the
spiking neural network realization of a PID controller. Mod-
ifications in the SNN architecture and improved interface
between neuromorphic cores and the host computer allowed
us to improve the latency and frequency of the controller.
We realized the SNN controller in neuromorphic hardware
and used it to control a physical robot – a constrained
to 1DoF drone robot – in real-time. The latency of our
controller (the time it takes from a sensed IMU feedback
to respective corrected motor command) was approx. 10ms,
of which 0.1− 1ms were spent in neuronal computation on
the neuromorphic cores. We compared the performance of
our controller to a PID realized on a conventional CPU and
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achieved comparable performance for overshoot, rise- and
settling times.
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