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Abstract— Little research into tactile feet has been done
for walking robots despite the benefits such feedback could
give when walking on uneven terrain. This paper describes
the development of a simple, robust and inexpensive tactile
foot for legged robots based on a high-resolution biomimetic
TacTip tactile sensor. Several design improvements were made
to facilitate tactile sensing while walking, including the use of
phosphorescent markers to remove the need for internal LED
lighting. The usefulness of the foot is verified on a quadrupedal
robot performing a beam walking task and it is found the sensor
prevents the robot falling off the beam. Further, this capability
also enables the robot to walk along the edge of a curved table.
This tactile foot design can be easily modified for use with any
legged robot, including much larger walking robots, enabling
stable walking in challenging terrain.

I. INTRODUCTION

Walking requires adaptation to the current terrain to
successfully remain upright. Feedback from the environment
is required to adapt to these changes in the terrain. Tactile
sensors make contact with and interact directly with the
environment and give high spacial resolution, giving insight
into multiple properties of the contacted surface. Wu et al. [1]
recently showed that even a low resolution tactile sensor
placed on weg style legs is enough to reliably classify the
terrain to allow a robot to use terrain specific gaits to increase
locomotion speed.

Walking robots are currently limited in their use of direct
feedback from the environment, relying only on a mixture of
remote sensing methods (e.g. vision, sonar, lidar) [2], force
feedback sensing in joints and single force sensors on the
feet to detect the terrain. Remote methods are passive and
are therefore limited to measurements that do not require
interaction (for example, the compliance of surfaces cannot
be measured, nor can the shape of a surface be found when
obscured by ground cover), which is limiting especially in
natural terrain where the ground is sometimes obscured by
features such as long grass, leaves or snow. Force sensors on
the other hand do make direct contact with the ground but
do not provide high spatial resolution, often giving only a
single dimension, which is not enough for complex analyses,
such as efficient texture classification, edge detection or slip
detection. Sensing in the joints (used to create virtual force
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Fig. 1: Left: CAD model of tactile foot. Right: Quadrupedal robot with front
right foot replaced with tactile foot.

sensors [3]) suffers from the same limitations as direct force
sensors.

Tactile sensors on the other hand can measure a variety of
properties; for example, the TacTip biomimetic optical tactile
sensor [4] can measure tangential force, shear force, surface
texture [5], surface slip [6], surface shape (in 3D) [7] and
material compliance amongst others. Adding these modes of
feedback may be beneficial for walking robots and enable
stable walking in challenging terrain.

This paper takes the first steps in using tactile feet to aid
walking of a robot in uneven terrain, demonstrated by the
robot walking along the edge of a raised path without falling.
It is found that the tactile foot alone is able to guide the robot
along a safe path in challenging terrain, following the edge
of a raised path and placing the foot at a safe distance from
it. Adaptation to the terrain was implemented with an online
learning algorithm to rapidly build a sensor model to interpret
tactile stimuli [8]. As far as the authors could find, this is
the first demonstration of a walking robot with non-rotary
legs being fitted with a high-resolution tactile-sensing foot.
This appears also to be the first demonstration of a walking
robot following-edge features using only tactile feedback via
the feet.

II. BACKGROUND AND RELATED WORK

Previous attempts at creating tactile feet for walking robots
have been few and far between and focused on texture
classification. Recently, Wu et al. [1] developed small tactile
sensors for weg style legs on small robots. They focused
on texture classification to adapt gait to improve efficiency
over different terrain. The sensor was only 6 taxels resolution
(including one exclusively measuring the shear force) and
therefore may not be capable of detecting fine features
accurately (e.g. the exact angle of an edge). Despite the
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robot weighing less than 500g, the sensor could apparently
function with up to 100N of force applied to it, implying
that the technology could scale to larger robots.

Previously Shill et al. [9] used a high-resolution pressure
sensing array to classify terrain with a single detached foot
and on a one legged hopping robot. The sensor was inspired
by human neurons, implemented with piezo-electric strain
gauges. They found that, while the sensor was extremely
accurate at identifying the correct terrain, sensor failure was
a significant problem to the extent that the focus of the paper
is in developing algorithms to deal with the sensor failure
during experiments. The life span of their sensors is reported
to be about 8 minutes without use of fault tolerant algorithms,
increasing to 53 minutes with the use of repair filters.

Overall it is likely that sensor fragility, cost of manufacture,
and perceived complexities in system integration [3] are the
reasons that no commercial robots and only two research
platforms using tactile feet could be found. The TacTip
resolves these issues: the sensor is as robust as the gel inside,
meaning very tough TacTips have been developed [10], and
the sensor is rapidly and cheaply 3D printed, enabling quick
and easy testing of different morphologies for specialist
applications [4]. The sensor has also been integrated into
various systems, from robot hands [11] [12] to tactile
whiskered robots [13].

Instead of tactile sensors, walking robots often make use
of other sensory feedback methods [14]. The use of force
feedback to balance is common [15] [16] [17] [18] and is
particularly useful in bipedal robots [19] [20] [21] [22] which
are not statically stable so must rely on sensor feedback to
remain upright. The center of pressure can be estimated using
force sensors or virtual force sensors and can be extended
to purposes beyond balance, for example, estimating the
locations of edges and allowing bipedal robots to balance on
these edges [23] or to avoid them when climbing stairs [24].

It has has been argued that sensors in the feet are
redundant [3], adding additional complexity and points of
failure, when virtual force sensors making use of servo
feedback are sufficient and reliable for stable walking. This
may be true for simple force sensors, but a tactile sensor gives
many more dimensions and information than a force sensor,
which cannot be sensed via the joints. In humans, the sense of
touch in our feet is essential for walking, with impairments
to this sensory system requiring the use of physical aids
to walk. As such, it is not the aim to replace virtual force
feedback systems, which work well for estimating balance
and identifying the presence of contact in limbs. Instead
tactile sensors can provide additional information that cannot
be obtained through other methods, supplementing current
methods of control and solving the remaining problems for
walking robots in complex terrains [25].

III. METHODS

A. Quadruped Robot

The robot used for this work was a Lynxmotion SQ3U [26],
a 3DOF per leg quadruped robot. The robot is symmetric
across two axes and so is able to move side to side in

Fig. 2: Diagram showing different components of the setup and how they
interact with each other.

addition to forward and back. It is able to achieve static
creep gaits. It weighs approximately 1.5kg including on-board
batteries, measures 23cm between adjacent feet and stands
at 24cm tall (to the top of the boards, 16cm to the top of the
legs) when upright as in Figure 1. As seen in Figure 2, the
robot is Controlled by “Botboarduino”, a modified version
of the Aruduino Demulionove board, and a SSC-32U servo
controller. The Botboarduino is attached via USB to the
desktop PC which runs higher-level, more computationally-
intense algorithms. The on-board battery powers the motors
and boards, but the tactile sensor is powered instead via USB
from the PC. In future, the use of a single-board computer
(such as a Raspberry Pi) would remove all tethers and enable
full autonomy.

The robot was purchased as a build-it-yourself kit in a
modular design that allowed easy addition of a tactile foot.
The only modifications made to original robot were to swap
the normal end-link for a tactile foot (TacFoot) and to extend
other feet by 15mm (as the tactile foot is longer than the
default foot). In this initial study, only one foot is replaced
with a TacFoot to simplify the problem, in particular control,
but the design would work for all feet on the robot.

B. Software

The robot came with no in-built code except the motor-
controller commands (allowing the Arduino to request a motor
number, position and time which the motor-controller then
handles). All other code was implemented from scratch or
modified from existing used with the TacTip.

The desktop runs a similar software stack to [8]; namely,
the high-level algorithms are implemented in MATLAB,
communicating with the tactile sensor through Python, which
processes the images and passes an array of pin locations
back to MATLAB. The difference here is that MATLAB
communicates directly with the robot (where, in other studies,
there was a layer of IronPython to communicate with a
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Fig. 3: Exploded view of tactile foot CAD with A) Mini Tactip, B) foot cone, C) acrylic tube, D) split joint, E) endoscopic camera and F) robot’s unmodified
end leg bracket.

robotic arm). The MATLAB communicates with the Arduino
C code running on the BotBoarduino, sending high-level pose
commands (e.g. BR leg forward would be an instruction
to move the back-right leg forward). The C code simply
contains a list of preset sequences required to walk in a
straight line on a flat surface (inspired by [3]), and a function
to rotate each leg about the hip to allow turning. The C code
works out the series of commands to be sent to the motors
to obtain this pose, and passes this on to the motor controller
which drives the motors in the desired sequence.

C. The TacTip

The TacTip sensor is a biomimetic optical tactile sensor
developed at Bristol Robotics Laboratory [27] [4] that consists
of a domed, black rubber-like membrane (Tango Black+) with
white-tipped pins (Vero White) protruding from the inner
surface. The dome is filled with a transparent gel (Techsil
RTV27905) and covered by an acrylic lens. A camera is
placed on the other side of the lens to track the movements
of the white pin tips. With any tactile stimulation, the pins
deflect in distinctive ways, creating unique pin patterns that
can be interpreted through statistical methods or machine
learning algorithms.

The black membrane, gel and lens are referred to as the
“tip”, which is easily detachable from the rest of the sensor,
consisting of the camera, case to hold the tip and camera
and attachments for mounting to platform, which are referred
to collectively as the “casing”. This modular design allows
easy experimentation with different tips, and replacement of
broken tips, and use of the same tip on different cases and
platforms.

As the TacTip is 3D printed, it has been developed into
many shapes and sizes to preform many different tasks [4].
The majority of use cases have been as single sensors mounted
on robotic arms, and in a variety of robotic hands. Of these
there is only one case where the sensor been required to
withstand application of significant weight, and that was
mounted on a robotic arm for automatic application carbon
fibre layup [10]. To achieve sufficient resilience the normal
gel was replaced with a much tougher material which retains
its shape better under compression.

D. Modifications for the TacFoot

The final design of the tactile foot can be seen in Figure 1
and a piece-by-piece breakdown of components can be seen
in Figure 3.

In line with the original TacTip, the foot has a modular
design to allow easy updating and replacement of components,
an ideal feature for a foot that in natural terrain may encounter
hazardous features, such as sharp edges. The sensor is also
designed such that the delicate and expensive parts (i.e. the
camera) are kept away from damaging impacts, meaning only
the inexpensive and easily manufactured parts (i.e. the tip)
are likely to need replacing.

1) Casing Design: As previously mentioned the TacTip is
normally mounted on a robotic arm or in fingers of robotic
hands. With a robotic arm there are few limitations on size
and weight of the TacTip casing, and little need for a power
efficient design (as they are readily connected to the mains
power supply). With robotic fingertips there are limitations
on the size of the casing, needing to keep added bulk behind
the tip to a minimum. These represent only very large and
bulky designs, or very small and specialist designs – here an
in-between design is proposed, making use of all the available
space a leg shape allows whilst remaining lightweight, cheap
and simple to manufacture. The casing is made from 3D
printed ABS and is 31mm wide (the full length of the sensor
is 95mm).

The casing for the foot is extremely simple, consisting of
only 4 unique parts:

• Inspection/Endoscopic style 640x480 USB camera with
6 in-built white LEDs (with manually controlled light
intensity) and a 5m cable.

• Cone to hold camera in line with tip, and to bear weight
of robot. The cone shape maximises camera field of
view while minimising size and weight.

• Two identical joint pieces which together connect the
sensor to the robot’s leg bracket with nuts and bolts. The
two pieces together resembles the original joint piece
but is modified to slot the camera inside and is split in
two to allow the cable to thread through the robot’s leg
bracket (without needing to alter the cable).

• A tube to connect the cone to the joint and to protect
the camera.
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Normal pins Phosphorescent pins

Fig. 4: A comparison of normal pins and pins painted with phosphorescent
paint. The ambient light is enough for the painted pins to be clearly visible
without previous exposure to bright light, but not enough for the normal
pins. The tips are shown here without gel and lens.

2) Tip Choice: For the tip, a mini-TacTip [28] is used as
this design has been verified before, and is a good compromise
between being small enough for the robot to carry and being
big enough to have a large tactile sensing area (tip diameter
is 27mm at base of black dome). The hemispherical design
was chosen here, instead of a flatter design, because, whilst
the hemisphere makes less contact with a flat surface when
the leg is perpendicular to the surface, the hemisphere retains
roughly the same size contact area with surfaces rotated up
to approximately 45°. As the robot will investigate a surface
with an outstretched leg before putting weight through it in
its normal stance, the sensor will often not be perpendicular
to the surface when in use, therefore the design best able to
sense across a variety of angles was chosen.

The gel used inside the tip is the same as used for the
normal TacTip [4]. As this gel is compliant, the sensor is
compressed by the weight of the robot and gives a very strong
signal – this sensitivity could be decreased by using a stiffer
gel, depending on the application.

3) Novel Lighting: Novel lighting was investigated to allow
simpler design and easier manufacture of the TacFoot, aid
pin detection and potentially improve power consumption of
the sensor.

By painting the pins with a phosphorescent paint, specif-
ically an acrylic paint base mixed with “LIT - the world’s
glowiest glow pigment by Stuart Semple”, which happens
to also fluoresce, the need for continual on-board lighting is
reduced. Figure 4 demonstrates the difference in pin contrast
achieved with application of the paint.

E. Edge-following Experiment

The robot is placed on two raised beams of wood, one just
wider than the tactile foot (28mm), the other wide enough
for the sensorless feet to never fall off. The beams are tall
enough that the foot cannot touch the ground when tapping
either side of the beam. The aim is for the robot to track
the outer edge of the narrow beam with the tactile foot,
placing the foot a set distance from the edge to ensure a
stable foothold. With the tactile sensing turned off, the robot
is commanded to walk in a straight line, however, it always
falls off the narrow beam due to motor control inaccuracies
and subtle changes in beam height (the wooden beams are
not perfectly flat, nor held perfectly parallel, reflecting the

imperfections often encountered in the real world). Hence
this set-up demonstrates the usefulness of a tactile foot.

In order to implement this experiment the high-level logic
in Algorithm 1 was used to control the robot.

Algorithm 1: High-level Contour Following

// Initialise
1. Tap in an arc with front right foot;
2. Initialise models and find edge;
3. Plant foot at safe distance from edge;
4. Turn body to align with front right foot;
5. Walk forward until right leg lifted again;

// Main loop
6. while current iteration < max iterations do
7. Place front right foot forward and tap;
8. Estimate location of edge;
9. Move foot to edge;
10. if edge not directly under foot then
11. Collect another arc of taps to add to model;
12. Find actual location of edge;
13. end
14. Place foot at safe distance from found edge;
15. Turn body to align with front right foot;
16. Walk forward until right leg lifted again;
17. end

1) Online Learning: As described by Stone et al. [8],
online learning can be used to drastically decrease the training
time needed to build a model to accurately interpret tactile
stimuli for edge following. The experiment in this paper
resembles that previous setup, with the robot arm replaced
with a walking robot, and so similar principles can be applied
here. To adapt the methods to function on a walking robot,
the search line is an arc rather than a straight line as this is the
only way of moving that keeps the same angle of incidence
between the foot and ground. This was coincidentally posed
as an improvement and solution in the original work for loss
of edge around tight corners. As such, the angle of the robots
hip joint is used as a proxy for displacement.

Instead of collecting a large dataset with the sensor in
many orientations on one stimuli, as would be done in off-
line learning, the robot simply collects data as and when
it is needed, as determined by the accuracy of the model

Data Collection Arc Directly on Edge Safe Offset from Edge

Fig. 5: Diagram showing the key robot poses from above during beam
walking experiment as robot attempts to move from right to left. Left: Arrow
indicates the angles over which the robot collects data to add the models.
Center: Stance when robot has successfully located the edge. Right: Stance
when robot places its foot a safe distance from the found edge.
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Approximate Motion of front right foot during beam walking

Fig. 6: The key locations of the front right foot throughout the experiment, relative to the beam (brown outline). The blue crosses indicate all taps and
footholds (only the limits of data collection arcs are shown), the blue line connects these points to indicate order of positions, and the green circles indicate
the chosen footholds (labelled from 1 to 10).

predictions. Elaborating on Algorithm 1, as an initial model
the robot collects an arc of data in its original pose (see
Figure 5). This data is then used to initialise a Gaussian
Process Latent Variable Modelling (GP-LVM) model, with
the aid of a dissimilarity measure to align the unknown arc
displacement with a reference tap to give labelled data (we
refer to ref. [8] for details of this method). Having found the
edge the robot is able to orientate its body to walk at this
offset from the original pose.

To ensure reliable foot placement with proceeding taps
the robot taps twice, firstly where the edge would be if the
robot walked perfectly in line with the beam. This first tap is
used to estimate the displacement to the edge and the second
tap is taken after moving by this displacement and should
with an accurate model be directly on the edge, i.e. have a
predicted displacement of 0°. If the prediction is not within
a set tolerance (±3°) of this the model must be wrong and
so more data is collected to correct it, otherwise the robot
continues without collecting more data.

By using these online methods, the sensor is trained during
the current task and therefore models consist of data that
reflect the current task. Sensor characterisation was also not
needed beforehand for a specific sensor, meaning a tip can
easily be replaced at any time without needing to retrain
sensor models. The only up-front data needed was an arc of
evenly spaced taps used to select a point to use as a reference
for the edge to follow.

IV. RESULTS

A. Initial Validation of Tactile Foot

Charging the pins with internal LEDs for around 10 seconds
allows the pins to be detected for 30 to 40 seconds with
no ambient light at all, allowing LED use to be drastically

Pin Detection in Different Ambient Light Conditions

Ambient Light No Ambient Light

Fig. 7: During bright glow phase, how pins look under different ambient light
levels. The red circles are the locations of the pins according to computer
vision - as you can see the pins are successfully identified under different
ambient light conditions.

Overlay of Locations from Video

Fig. 8: Overlay of all the locations selected to place foot as the robot walks
from right to left. As you can see, the robot kept a straight line along the
beam and did not fall off.

Foothold Displacement from beam center

Fig. 9: Approximate displacement from the center of the beam of the center
of the foot at each foothold. The brown lines indicate the edge of the beam,
where exactly half of the sensor would be on and off the beam. Anything
between these two lines is a stable foothold.

reduced. As can be seen in Figure 7 the pins remain detectable
using computer vision. Minimal modification was done to
the original pin detection methods. Occasionally in low-
light levels the black background was mistaken for pins.
In principle, this could be resolved by tuning the computer-
vision techniques.

Without exposure to bright light, however, the paint
fluoresces bright enough from only ambient light diffused
through the foot cone that the pins can be detected without
need for internal lighting (see Figure 4). As such internal
LEDs can be permanently switched off in most settings, as
is the case in the other experiments here.

Leveraging these two factors, this simpler to manufacture
sensor remains functional in all settings at a theoretically
reduced power consumption, and with more reliable pin
detection (as there are no LED lights to be erroneously
detected as pins).

B. Narrow Beam Walking

As can be seen in Figure 8 and the accompanying video,
the robot was able to walk along the narrow beam without
deviating or falling off. Based on data extracted from the

9873



Representation of GP-LVM Model

Fig. 10: Representation of the GP-LVM model. Dissimilarity shows how
close the data resembles the reference tap (the edge), with 0° being the
closest match with the reference tap. In the actual model dissimilarity is not
used, as it directly uses the x, y coordinates of each pin.

video recording of the experiment, the foot was on average
(absolute mean) within 4mm of the center of the beam, with
overall range within 8mm of the center of the beam. As long
as the center of the foot remains within the width of beam the
foothold is considered safe and therefore all footholds were
well within the safe limits (even the largest deviation from
the center of the beam was still 6mm below this limit). More
accurate placement of the foot could be obtained by reducing
the tolerance, whereby data would be collected more often.

Furthermore the robot was able to complete this task using
very little data. As can be seen in Figure 6 and Figure 10,
the model consisted of only 3 arcs of data, two at the start
and one at the end of the experiment; this is a total of 91
taps used to train the model.

Note also that the last tap arc was not so accurate due
to change in height of beam object. This was perceived as
changes in edge displacement due to the hemispherical-shaped
tip. This may be solved by allowing the model to train on
different heights. Inaccuracies may also be caused by the
uneven distribution of taps about 0°, especially on the last
data collection arc where it is unclear if the true minimum
dissimilarity was found. This could be improved by simply
extending the arc, or introducing a search routine to find the
edge so data can be collected evenly both sides of it.

The accompanying video shows the robot walking slowly
with it pausing after each prediction – this is overly cautious
and can be easily removed to significantly speed up the robot.

C. Following a Curved Edge

To move around a curved edge, the online learning methods
needed modification to enable the robot to sense large
deviations of the edge, as encountered with the 59cm radius
table in Figure 11. An additional search algorithm was
introduced to allow the robot to find the edge when it has
moved outside of the sensor’s range, which happens because
of the relatively-tight curvature of the table edge and the
relatively small footprint of the sensor.

With these modifications, the robot was able to detect the
edge of the table and place the front right foot on a safe place

Fig. 11: Overlay of all the locations selected to place foot as the robot moves
anti-clockwise around a semi-circular table. The robot correctly sensed the
edge along the entire semi-circular section of the table.

on the table, along the entire semi-circular edge. The turning
algorithm employed, which worked at small angles, was no
longer sufficient at larger angles and therefore the robot did
occasionally slip off the edge while trying to turn. In these
initial experiments, we solved this by replacing the robot on
the table with the front right foot in the same location as
previously. This problem is not due to the tactile sensing or
online learning, but solely due to the control algorithm that
gives the turning behaviour; we expect these can be improved
to circumvent this issue. Importantly, the robot was able to
sense the edge and place its foot in a safe place.

V. DISCUSSION & CONCLUSION

This paper has described the development of a modular,
easily manufactured, inexpensive and simple biomimetic
optical tactile foot, and demonstrated its use on a small
walking robot. With the use of this tactile sensor the robot
was able to detect the edge of a beam and a curved semi-
circular table edge, and place its foot a safe position relative
to this edge, allowing it to safely traverse the hazardous
terrain. These simple experiments have shown the usefulness
of tactile feet for walking robots. In addition to the these and
other benefits discussed in this paper, the same sensor has
been used for series of trials over at least 12 hours, yet shows
no signs of degradation. This is a major improvement over
the sensor proposed by Shill et al. [9] which, while showing a
tactile foot can be useful for texture classification, lasted only
8 minutes (53 minutes with degradation compensation). This
durability shows promise for future applications of robotic
feet.

Online learning was used to efficiently perceive tactile
stimuli during the experiment, based on methods proposed
by Stone et al. [8] for data-efficient contour following with
a TacTip mounted on a robot arm. This efficiency allowed
quick and easy setup of experiments across platforms, with no
need for time-consuming data collection to retrain the sensor
on the leg. These low-data principles could be extended to
other tasks with the design of efficient data collection policies.
This means once data collection policies are discovered to
enable online learning, a task developed on one platform can
quickly be transferred to any other platform e.g. from arms
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to legs, between different walking robots or even between
different morphology sensors. In addition, as learning is never
stopped, a walking robot traversing challenging terrains will
be constantly learning and adapting to its environment, not
limited by an initial training set trained on limited stimuli
with offline learning. This has the potential to increase the
robustness of walking robots across a variety of terrains.

This study has shown how tactile feet are a feasible and
valuable contribution to the sensory systems of walking robots.
This work has only explored one of the many modes of
feedback available from the TacTip sensor, from only a single
foot, and combined this with a simplistic control strategy.
Combination with more feedback modes, more tactile feet
and more intelligent control would enable significantly more
complex environments to be traversed. Future modes of tactile
feedback that could be explored include texture classification,
slip detection, angle of surface slope, 3D edge detection and
surface compliance.

The benefits of tactile feet are not limited to this setup as
the design can be easily adapted to any model and weight of
robot. The limiting factor in the current design is the rigidity
of the gel inside the tip; this gel can be replaced with a
stiffer material, as in Elkington et al. [10] who considered
modified tips capable of withstanding forces of up to 400N.
Their limiting factor was the strength of the 3D printed casing
rather than the tip gel; therefore, with a stronger case material
the sensor could withstand much larger forces. This would
enable this work to be carried over to other larger platforms
with much greater forces through the feet, to enable them to
traverse more challenging terrains.
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