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Abstract— In recent years the need for manipulation tasks
in the industrial as well as in the service robotics domain that
require compliant interaction with the environment rose. Since
then, an increased number of publications use a model-driven
approach to describe these tasks. High-level tasks and sequences
of skills are coordinated to achieve a desired motion for e.g.,
screwing, polishing, or snap mounting [1], [2]. Even though the
awareness of the environment, especially in terms of contact
situations, is essential for successful task execution, it is too
often neglected or considered insufficiently.

In this paper, we present a model-based approach, using
domain-specific languages (DSL), that enables the explicit
modeling of the environment in terms of contact situations.
Decoupling the environment model from the skills, fosters
exchangeability and allows the adaptation to different envir-
onmental situations. This way, an explicit but non-invasive link
is established to the skills, enabling the environment model
to provide a context to constrain the execution of the skills.
Further, we present a synthesis from the modeled contact
situations to a real-time component-based control architecture,
which executes the skills subject to the active environmental
context. A dual arm yoga mat rolling task is used to show the
impact of the environment model on the skill execution.

I. INTRODUCTION

Already quite early in the evolution of robotics control,
the awareness for the explicit modeling of the involved
aspects and its requirements rose [3], [4], [5]. Abstracting
from the mathematical equations, which hold a high amount
of knowledge in a strongly condensed manner, makes such
aspects comparable and more easily understandable. Already
in 1981, Mason [6] recognized the problem that at that time
it was common practice that the abstractions—mostly in
form of control block diagrams—had no technical link to the
equations or even to the implementation. Therefore, he in-
troduced the Task Frame Formalism (TFF) as an interface to
abstract from the low-level control. Since without such a link,
there is no traceability. Thus, inconsistency and divergence
between abstraction and implementation is almost impossible
to prevent. Model-driven engineering (MDE) provides a
solution for increased comparability and understandability
as well as to reduce or even close the mentioned gap by
establishing a link to the implementation via model trans-
formation and code generation. Since 1990, MDE especially
in form of domain-specific languages (DSL) experienced a
steady growth in the field of robotics [3]. During that time,
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Fig. 1. Compliant rolling of a deformable yoga mat with two KUKA LWR
IV+, executing the synthesized control architecture. The experiment can be
seen in the provided video.

Hasegawa et al. [4] encouraged the modeling of high-level
robotic tasks in combination with the explicit modeling of the
environment. Nowadays, DSLs are frequently used in various
robotic (sub-)domains [3], such as robot control [7], behavior
or motion planning [8], and component-based systems [9].
In the domain of robot motion control and planning, DSLs
are commonly employed on different levels. High-level task
and skill abstractions are used to model a desired behavior,
while on a lower level, control architectures are modeled
using e.g., Simulink1 or Scilab2.

With the increasing number of commonly available (and
affordable) collaborative robots, capable of highly precise
force-torque control and sensing, new fields of application
are opened up. We classify the high-level tasks defined
by such applications into the Compliant Interactions (CI)
domain. CI tasks often require force-based manipulation
(e.g., assembly) that compliantly handles or actively exploits
contacts, while uncertainties related to the robot’s internal
representation of the environment can be coped with. Further,
these tasks are characterised by a close physical collaboration
between robots and humans–more general–physical entities.
Examples of such tasks are: performing a guided motion
along a surface, using a hand rail for support and stabil-
ity [10], and snap-fitting an object [5].

The required knowledge of the control formulations that
actively considers environmental forces [11], [12] exist since
decades. However, the explicit modeling of the interactions
with the environment is still often completely neglected, or
insufficient. In the latter case, the environmental information
is either directly entangled with a control component or skill
as a hidden assumption (e.g., [7]), or implicitely modeled

1https://www.mathworks.com/products/simulink.html
2https://www.scilab.org/
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as selection matrices [6] or as constraints on feature co-
ordinates [13] (e.g., [14], [15], [8], [5]). While approaching
to model the environment as feature coordinates seems
reasonable, it only covers a small part that in turn neglects
the explicit modeling of contacts surfaces, contact situations,
and the transitions between those.

The contribution of this paper is a model-based approach
that uses a domain-specific language (DSL) to describes
the desired robot behavior in compliant interaction with the
environment.

After a discussion of related work (II), the relevant
concepts are presented (III) to explicitely model (physical)
interactions with the environment and to link them to existing
skills and control tasks. This link is mandatory to trace
and to compare specific aspects of the interaction, such as
contact situations, and their influence on the robot’s behavior.
By decoupling the environmental model form the skill or
control component, hence avoiding hidden assumptions, the
potential of adaptation to other environmental situations is
increased, without the need of a domain expert to rewrite
the control equation. To bridge the gap between the be-
havior specification for CI tasks and the actual execution,
a synthesis mechanism is presented (IV) that generates a
real-time capable component-based robot control architecture
that realizes the CI specification. During the synthesis, the
explicit model of the contact situations is integrated into
the task, providing an environmental context that constraints
the execution according to the presented contact situation.
Finally, the relation between the execution and specification
for a dual-arm yoga mat rolling experiment (see Fig. 1) is
discussed V. The paper closes with a conclusion in VI.

II. STATE-OF-THE-ART

According to the literature, one or more tasks are usually
used to define a robot’s behavior w.r.t. a particular goal.
In several works, tasks describe actions such as Peg-In-
Hole [16], while skills represent smaller actions that are
composed to realize a task, e.g., Move-To and Screwing [8].
However, the other way around can also be found in the
literature [5], where skills act as container for multiple tasks.
In general, there seems to be no common agreement about
the definition of tasks and skills, since in some cases these
terms are even used interchangeably. In our work, we refer
to the overall goal as task, which is composed of sequenced
skills that realize configurable and reusable subtasks. Further,
we refer to control algorithms and control objective as
control tasks. Hence, a controller implements a control task.

In a huge amount of publications, tasks do not consider
contacts with the environment at all, however some agree that
a task should explicitely contain a model of the environment
as a context to execute skills in. Publications that consider the
environment [5], [14], [15], [7] usually base the specification
of skills and their composition on the TFF or on constraint-
based programming approaches [13], which extend the TFF
to support relations between multiple controllable frames
on which constraints can be imposed. Both formalisms are
commonly used in combination with DSLs to gain the

advantages of a model-based approach [8], [5], [14], [15],
[3]. For the coordination of the skills, often (finite) state
machines [5], [14], [15], [7], or state charts [8] are used.

The contact situations are however very often directly
entangled with the control task of the skills and in the case
of using the TFF, the contact and constraints that result from
a physical interaction are implicitely encoded by selection
matrices. In contrast, work that is based on the constraint-
based programming approach [13], however creates the link
to the feature coordinates associated with the contacting
bodies.

To the best of our knowledge, the explicit modeling
of contact situations and contact state transitions that are
composable and free from hidden assumptions, are still not
sufficiently considered. Whereas, the general modeling of
tasks and skills has already a quite long history in the
literature. In related (sub)domains however, the constraints
introduced by a contact are modeled using geometrical
contact primitives [17] or kinematic mechanisms to gain
knowledge about the constraint and unconstraint DoF [18].
In [17] contact state spaces are modeled based on discrete
contact situations, while in [19] the life cycle of a contact
is investigated to estimate when a contact is completely
established, or if it is about to break. Certain aspects of this
kind are integrated into our proposed approach in III.

III. COMPLIANT INTERACTION MODELING

In this section, we present the concepts required to
model the contact situations for compliant interaction tasks.
The aim is to integrate the relevant concepts from related
(sub)domains, which focus on the different aspects of a
contact, into our Compliant Interaction Task DSL that allows
to use this knowledge to specify contact situations for CI
tasks. The DSL is now part of the CoSiMA [20] modeling
tool. By this, an environmental context can be provided by
the task for the skill execution, which is decoupled from
the skills and the desired behavior (i.e. trajectories). Thus,
making these models composable and reusable in different
applications. The modeling of couplings can be done using
the extended Gazebo3 simulator (see Fig. 3) as well as a
textual representation in JetBrains MPS4 (see Fig. 4).

A. CI Modeling via Contacts

Since a Contact is the natural interface through which
(physical) interaction is possible, we select it as the central
concept to model contact situations. In this case, we limit a
contact to two contacting entities, i.e. geometric bodies. The
relationship introduced by a contact situation over the two
entities is described by a Coupling. One of the entities
needs to be a controllable frame, i.e. a frame attached
to an actuated kinematic chain. The type of interaction is
defined by an Coupling Formalism (F) that realizes
a contact constraint based on a specific (e.g., rigid-body)
contact model, a behavior that ensures the compliance of

3http://gazebosim.org/
4https://www.jetbrains.com/
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the controllable frame in a particular direction, or a second-
order linear relationship between position and force that
causes the controllable frame to behave as a physical mass-
spring-damper system. Depending on the type of reference
geometry, the nature of the coupling changes to either a
TaskSpaceCoupling or a JointSpaceCoupling.

1) Constraint Coupling Type: Contacts can be represented
by a combination of (in)equality constraints, depending on
the contact situation [12]. In this paper, we model constraints,
based on the rigid-body contact model, as bilateral force and
velocity constraints with zero Cartesian contact velocity and
acceleration [21], [22]:

Jic q̇ = 0 and Jic q̈ + J̇ic q̇ = 0 , (1)

where Jic ∈ R6×D describes the constrained Jacobian associ-
ated with the ith contact point, and D the number of joints.
However, considering that many contact situations impose
unilateral rather than bilateral constraints, the constraints in
Eq. 1 need to be extended by λλλf,n > 0, ensuring that
a contact force5 λλλf,n can only be applied in the contact
normal direction (n), to allow pushing and prevent pulling.
A constraint can also be virtual, realizing an interaction that
is not enforced by the environment, but by the high-level
task in our framework. A constraint coupling is visualized
as a red line with cross (see Fig. 3).

2) Compliance Coupling Type: The compliance type is
similar to a contact constraint. However, instead of allowing
a particular force to be exerted in the contact normal direction
(n), the contact wrench needs to be zero: λλλf,n = 0∧λλλt,n = 0.
A compliance coupling is visualized as a green line (see
Fig. 3).

3) Mass-Spring-Damper (MSD) Coupling Type: The be-
havior of a coupling can also be formalized such that when
pertubed, the controllable frame behaves as a physical mass-
spring-damper system, using a second-order linear relation-
ship between position and force. Even though the coupling’s
formalism is realization-independent, such a behavior is
commonly realized by an impedance controller, which is
especially suited to cope with unknown forces that result
from unmodeled dynamics and interactions with e.g., hu-
mans. Further, it ensures a stable response to anticipated or
unstructured disturbances [23]. The external pertubation Fx
of a cartesian controller is given by:

Fx = Λd
¨̃x + Dd

˙̃x + Kdx̃ , (2)

where x̃ = x − xd and xd is the virtual equilibrium point,
Λd is the desired inertia, Dd is the desired damping, and Kd

is the desired stiffness matrix. A MSD coupling is visualized
in blue, similar to the mechanical representation (see Fig. 3).

B. Contact Surfaces

Constraints that are naturally imposed by the surface geo-
metry of a contact can be categorized as topological contact
primitives based on the contacting geometries: point contacts,

5The subscripts ( )f and ( )t refer to the contact forces and torques of
the contact wrench λλλ.

edge contacts, and surface contacts. These primitives can be
combined in form of different principal contacts (PCs) [17]:
pci = (a-b), a,b ∈ {vertex, edge, face}. Each PC relates
to a set of natural constraints, which can be combined with
further artificial constraints that are not bound to any physical
relation, but purely chosen to express a desired behavior. In
our approach, the contact surface is defined by the set of
couplings that form the contact, where the couplings together
shape the (virtual) contacting surface that can be represented
in terms of PCs. Using TFF or a similar approach, it is also
possible to derive the set of couplings from the PCs, since
one or more constraint couplings can be used to represent
the constraint directions imposed by the PCs. The relation
between PCs and DoFs can be found in [18].

C. Controllable Frame and Virtual Manipulator

A controllable Frame (CF), attached to a body, can be
actively controlled by an actuated kinematic chain. In order
to control an object, which does not have any actuated joints,
a contact can be established between a controllable frame and
a frame of the object, turning the uncontrollable frame into
a Virtual Manipulator (VM). Creating a VM is not
limited to one kinematic chain, instead multiple chains can
be combined as a closed kinematic tree as long as the internal
forces are accounted for by employing a force closure or even
a form closure using a suitable grasp.

In this paper we use a projection-based realization for a
VM, based on the grasp matrix G that relates manipulated
object twist to the contact twists of B manipulators [21]:

G =
[
Gi . . .GB

]
∈ R6×6B ,Gi =

[
Ri 0
S(ri) Ri

]
∈ R6×6,

(3)
where Ri represents the rotation matrix of the ith contact
frame. ri is the distance between the ith contact position
and the object’s Center-of-Mass (CoM). S(r) is the skew-
symmetric matrix. The geometry of the (virtually) manip-
ulated object is modeled in the DSL and thus explicitely
encoded into G.

To control the internal forces, the nullspace projection of
G is used. The resulting contact wrench does not produce
any net wrench, i.e. GFc = 0. Since the motion task should
not be affected by the task that enforces the grasp, only the
internal wrench is allowed to be controlled by

Jint ∈ R6B×D =
(
I−GT (G+)T

)J1 0
. . .

0 JB

 , (4)

where Ji represents the ith manipulator Jacobian. For more
detail, including the compensation for object dynamics,
please refer to [21], [11], [24].

D. Relation to Control Tasks

The Contact Situation (CS) concept represents a set
of contacts, where the behavior for each contact is defined
by the types of couplings they are composed of. In order to
express the desired behavior in a CS, the different formalisms
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Fig. 2. Screenshot of a CCA DSL model that shows an exemplary
prioritization structure using a virtual manipulator.

of all couplings per controllable frame and kinematic chain
need to be composed and prioritized. Each formalism is
realized by a Control Task (CT) concept. We use our
Compliant Control Architectures (CCA) DSL (see Fig. 2),
based on CoSiMA, to explicitely model the prioritization of
control tasks. For each CS, a CCA concept is created that
contains a Prioritization Structure (PS) concept
for each involved kinematic chain.

1) Prioritization Modeling: To prioritize the control tasks
for a PS, different types of relations are used. The concept
of a Strict prioritization relation (depicted by an N in
Fig. 2 and Fig. 5) is used to ensure that the second control
task does not interfere with the primary one. That also means
that the second task can only be accurately performed if
enough DoF are available. Otherwise it is performed at best,
without interfering with the primary task. Whereas, a Soft
prioritization relation concept (depicted by a Σ in Fig. 2)
can be employed to super impose a weighted set of control
tasks using scalar priorities [25], [26]. The task space can
be divided by a Subspace relation concept (depicted by
a triangle in Fig. 2) into separate subspaces (e.g., constraint
and unconstraint space), to avoid the interference of control
tasks.

2) Projection-Based Realization: In this work, a strict
hierarchy is realized utilizing a nullspace projection,

N = I− JT (JJT )−1J = I− JT (J#)T , (5)

where J is the task Jacobian of a (redundant) manipu-
lator. The Projected Inverse Dynamics Control (PIDC) [27]
approach provides a framework that allows to realize an
impedance control law in the task space, while independently
controlling the contact wrenches. To this end, it employs two
orthogonal subspaces to prevent the reinforcement of contact
and friction constraints, controlled by the joint torques τττ c ∈
RD in the constrained subspace from affecting impedance
characteristics and τττm ∈ RD in the unconstrained subspace:

τττ = Pτττm + (I−P)τττ c . (6)

It is important to note that the prioritization mechanisms
are generally independent of a particular formalism. Thus,
the application of a quadratic programming (QP) framework
such as [28] instead of a projection-based approach is also
possible.

E. Contact Lifecycle and Transition

A CS acts as a container for a set of contacts that exist
in a particular interval in time. Multiple CSs together model
the contact state space in a discrete way [17]. Transitions
between CSs allow the switching between different contacts
as well as between non-contact (free-space motion) and
contact (constraint-space motion), in form of deactivating
and activating sets of contacts. This is mandatory to su-
cessfully accomplish CI tasks [29], [30]. Each CS can
have Guards that restrict or allow the traversal based
on predefined conditions. Those guards can be uni- or bi-
directional. The former type allows entering a CS (e.g., when
a contact is established), while the latter actively triggers a
transition to another CS (e.g., when a contact breaks). These
conditions can be based on the internal high-level task state
or sensor data. In case a transition from one CS to another
CS is triggered and the set of active contacts changes, the
realization of the contacts on the control level, as well as their
internal state, defined by a LifeCycle [19], might change.
This change is reflected by three different aspects: (1) the set
of control tasks that are used, (2) the parametrization of these
tasks, e.g., compensation for friction, and (3) the particular
prioritization of the control tasks that expresses the desired
behavior subject to the constraints enforced by the active
contacts.

IV. SYNTHESIS

A. Representation of the Task and Prioritization

To synthesize a control architecture that realizes the
behavior of the modeled contact situations, the reference
architecture (see Fig. 6) needs to be instantiated according
to the prioritization structures of the specified couplings.

A multi-staged model-to-model (M2M) transformation
(see Alg. 1 and Fig. 5) is used to transform the modeled
PSs to a set of prioritization graphs GCCAi for each
CCAi (see III-D). Such a graph is denoted as 5-tuple
(V,E, σv, σe, σ), where V = V (G) is the set of vertices and
E = E(G) ⊆ V × V is the set of edges of the graph. Each
edge e ∈ E is represented as an ordered pair of vertices, and
the label functions σv : V → σ, σe : E → Σ map vertices
and edges to labels of the set Σ.

1) Transformation A: Each prioritization structure PSj of
a CCAi gets transformed into a graph representation Ĝi,Kr ,
where Kr is the kinematic chain addressed by PSj . Every
control task sharing the same controllable frame (CF ) and
formalism (F ) is mapped to the same vertex (τl)6 in the
graph. The relations, i.e. Strict, Soft, and Subspace,
are mapped to edges that connect two associated control tasks
and are directed towards the higher prioritized one. The label
σe((τu, τv)) indicates the type (i.e. "N" or "S") and CF of
the relation. Since all control tasks will be present in the
reference architecture as control components, all of them
need to be considered in every CS, even if they are not part
of the CS, because in this case the control task needs to be
disabled. Hence, the resulting graphs (Ĝ) are combined into

6Vertices are indicated by τ , because they refer to control task.
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Fig. 3. The states of the scenario coordination (left) relate to the contact situation (right). They are executed in (curved dashed arrows). Contact state
transitions are either triggered by a transition in the coordination (solid colored arrow), or using a guard to integrate external sensory information (dashed
colored arrow), e.g., the force sensed in the EEF tool frame. Guards are used for the transition from CS1 to 2 or 3, depending on the sensed force after
both hands finished grasping. Note, some of the arrows are visually overlayed for readability.

Fig. 4. A model describing contacts in form of Couplings between
(physical) entities. In addition to contact constraints, compliant behaviors,
such as a mass spring damper, can be specified in different ways. The default
control task, chosen as realization can be changed as well. Note that per
default the inertial parameters of the controlled link are used.

unified graphs {UKr
}, grouped by the associated kinematic

chain (Kr) of the source PS, where

UKr
=
⋃
Ar | Ar = {Ĝi,Kp

∈ Ĝ | ∃̇p : p = r} . (7)

2) Transformation B: Blending between two contact situ-
ations, represented as CCAa and CCAb, requires Ĝa,Kr

to blend with Ĝb,Kr
for all kinematic chains r. To allow

this, every UKr
provides the common ground for every CS

involving the respective chain. Using Alg. 1, the combination
with Ĝi,Kr then yields i = 1, . . . , |Ar| new graphs Gi,Kr

that are grouped into sets of graphs Gi, where i refers to
a particular source CCAi. For each contact situation, the
graphs (Gi,Kr

) then contain the prioritization information of
the control tasks (V (Gi,Kr

)) for the kinematic chain (Kr),
which the control tasks’ CFs are associated with.

B. Instantiation of the Reference Architecture
A component-based architecture (CBA) is synthesized

using the reference scheme shown in Fig. 6. The scheme

is independent of a particular formalism. We synthesize a
projection-based instantiation of the scheme, building on the
PIDC framework and the work done in [21], [24]. To realize
the modeled CSs, the CBA needs to be configured with the
synthesized knowledge from IV-A.

1) Control Components: Each control task τττ r,i in all UKr

that shares the same formalism F and controllable frame
CF , is executed by the same control component, which
corresponds to the chosen realization of F and CF (e.g., a
task-space impedance controller with stiffness and damping
parameters according to F ). To execute multiple control tasks
in one controller, all the necessary information for each task
are stacked and processed simultaneously. Eventually the res-
ulting torque control signal for each task (stacked) is passed
to the prioritization component. This mechanism allows to
reduce the amount of instantiated control components. Each
controller that realizes a MSD coupling needs to be of the
form:

τττm = PJTx

[
hc + Λcẍd −Dd

˙̃x−Kdx̃
]
, (8)

where hc = ΛcJxM
−1
c (Ph − Ṗq̇) − ΛcJ̇xq̇ denotes the

operational space gravitational, centrifugal, and coriolis ef-
fects. Constraint or Compliance couplings share the
same realization, with the desired wrench λ subject to the
respective constraints:

τττ c = (I−P)JTc λλλ . (9)

2) Task Component: draws on the synthesized graphs
Gi,Kr

for the active CS to provide the required information
to the other components. Control tasks (τττ q) connected by
the arrow’s head of an edge with a subspace relation label
(i.e. SCFp

) are employed in the constraint space, while
tasks connected by the arrows’ tail are employed in the
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Fig. 5. Model-to-model transformation pipeline for the generation of
prioritization graphs from CCA models.

unconstraint space. Two selection matrices are formed, based
on the DoF of all constraint/compliant couplings associated
with the respective edge: SCFf for the constraint space
and SCFm = I − SCFf for the unconstraint space. The
respective constraint (JCFc ) and unconstraint (JCFx ) Jacobian
are denoted as

JCFc = RCF
O SCFf RO

CF JCF (10)

JCFx = RCF
O SCFm RO

CF JCF , (11)

where RCF
O is the transformation between the controllable

and the world frame. However, if the edge label references
a nullspace relation, the control task has the full DoF in the
unconstraint space (SCFm = I) and the projection is hence
PCF = I.

While the subspace projection for control tasks in the
unconstraint space is denoted as

PCF = I− JCFc
+

JCFc , (12)

I − PCF defines the projection for control tasks in the
constraint space. In addition to that, the constraint consistent

Algorithm 1. Transformation B

Input: The set of {Ĝi,Kr
} and {UKr

} from the previous
transformation
for each Ĝi,Kr do
1) Make implicit nullspace relations explicit:

Ep ← {(v, u) | ∀v, u ∈ V (Ĝi,Kr
) : path(v, u) ∧

¬pathdirect(v, u)}
let σe((v, u)) = ”N ”σv(u) | ∀v, u : (v, u) ∈ Ep
Gi,Kr

← Ĝi,Kr
∪ Ep

2) Deactivate irrelevant vertices (i.e. /∈ Gi,Kr
) and turn

them into subordinates of the relevant vertices:
V ′′ ← V (UKr −Gi,Kr )
E′′ ← {(v, v) | v ∈ V ′′}
let σe(e) = ”off ” | ∀e ∈ E′′
let σe((v, u) ∈ E′′) = ”N ”σv(u) | ∀v, u : v ∈ V ′′ ∧

u ∈ V (Gi,Kr
)

Gi,Kr ← ((Gi,Kr ∪ V ′′) ∪ E′′) ∪ {(v, u) ∈ E(UKr ) |
∀v, u ∈ V ′′}
3) Introduce a deactivated vertex for the virtually closed
kinematic chain as subordinate to all other vertices:

if Kr relates to a virtually closed kinematic chain then
let vm be a vertex,
and let σv(vm) = ”τK”
E′′′ ← {(vm, u) | u ∈ V (Gi,Kr )}
let σe(e) = ”N ”σv(u) | e = (vm, u) ∈ E′′′
Gi,Kr

← (Gi,Kr
∪ vm) ∪ E′′′

end if
add Gi,Kr into the graph set GCCAi associated with

the CCAi
end for

Output: Gi,Kr
∈ GCCAi

joint-space inertia matrix is defined as

MCF
c = PCFMCF + I−PCF . (13)

For each VM, the Jacobian for the task, constraint, and
internal wrench, based on Eq. 4, are provided analogeous
to non-VM manipulators.

3) Prioritization Component: receives the control sig-
nals and uses a mixture-of-controllers inspired approach, to
achieve a continuous transition between different prioritiza-
tion of K tasks [24], [31] using the matrix

Ψ = (αij) ∈ RK×K , (14)

where the priority for each pair of tasks <i, j> is represented
as a scalar value αi,j ∈ {0, 1} for a strict or soft αi,j ∈ (0, 1)
hierarchy. The entries αi,i ∈ [0, 1] define the (de)activation
of a task in the hierarchy. By smoothly adjusting Ψ, the
prioritization of tasks can be changed, which regarding the
realization of constraints means that a smooth traversal
between contact constraints and thus contact situations is
possible.

The Task component is configured with the PS graphs
(Gi,Kr ) for each CS (CCAi) synthesized in IV-A that are
represented as Ψi,Kr

= Adj(Gi,Kr
) per kinematic chain Kr,
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Fig. 6. Structural view of the reference architecture that is instantiated
with the synthesized knowledge from the contact situations.

where Adj(·) denotes the adjacency matrix of a graph. In
case of a VM, the resulting control signal of the referenced
kinematic chains, is inserted as virtual control task τττK into
the prioritization process of the VM.

4) CS Switching Service: provides an interface for the
high-level task coordination to switch between CSs. The
modeled contact state space is represented as a graph of
CSs, including the transitions and guards. Guards are directly
linked to the task coordination, or to the respective sensor
data source by the application integrator. When a transition
is triggered or finished, the Task, the Prioritization, and
the control components are notified. During a transition the
Task component shapes the data it provides according to
the couplings in the new CS. Whereas, the Prioritization
component blends the PSs by interpolating Ψcurrent and
Ψnew. After a transition is triggered, the controllers deac-
tivate compensation effects (e.g., for friction) if specified by
the associated coupling, while after the transition is finished,
the compensation mechanisms are activated.

5) High-Level Task Coordination and Trajectories: The
component-based control architecture that is synthesized
requires trajectories in terms of set-points for the different
control tasks. This information is not modeled with the
presented DSLs and thus needs to be provided by the
application or skill. Further, the application or skill needs to
provide a task coordination if it aims at actively switching
CSs and not only relies on passive switching based on
sensory data.

V. EXPERIMENT

We chose the bimanual rolling of a yoga mat as experi-
ment, because this high-level task involves several changes
of contact situations (see Fig 3). While the task entails a state
machine (SM) for coordination, the skills, i.e. Regrasp, Ro-
tate, and Pull, contain their respective trajectories, according
to the (position/force) goals provided by the SM. In addition
to the SM, the task contains the model of the environment in

form of a CS graph. For each active skill a CS needs to be
active as well, to provide the environmental context for the
execution of the skill. The Regrasp skill triggered by the SM
for both manipulators, is executed in free space (CS1). Once
the two hands are in contact with the mat, a transition is
triggered to Rotate Forward. Thus, triggering the transition
from CS1 to CS2 or CS3, depending on the sensed EEF force
during the approaching of the mat. If the mat is not yet thick
enough, CS2 is chosen to prevent the hands from pressing
into the table. Otherwise, CS3 is chosen to compress the
mat and compensate for the increasing radius while rolling.
In both cases a compliance coupling in the rolling direction
ensures a compliant forward motion guided by the mat. This
prevents friction forces to cause the commanded joint torques
to exceed their safety limit. An exerpt of the data collected
from the experiment is shown in Fig. 7. For illustrative
reasons, a segment is chosen where the mat is thick enough
to show CS3. In each rolling phase, the skill moves the
robots after the respective CS is activated. Once the motion
is finished, the new position of the robots, caused by the
compliant forwards motion, is used by the task to update the
start and goal position for the next skill.

After the rolling phase, the mat is Pulled back to avoid
reaching the limits of the KUKAs workspace. Here, a VM
for both manipulators is created with the geometry of a
cylinder. While the mat is pulled back using a MSD coupling,
a constraint in the world’s z direction, prevents the VM’s
trajectory to lift the mat while pulling it back. Instead, a
small force (λλλf,z = −2 N) is applied to ensure staying in
contact and to compensate for disturbances that arise from
dragging on an uneven surface.

Once CS3 or CS4 is active, the desired trajectories in the
constraint direction are ignored. Instead, a forces are exerted
in that direction. With more rolling cycles, the radius of the
mat increases, but the manipulator adapts accordingly.

For the experiment two KUKA LWR IV+ are torque
controlled via FRI and the synthesized control system is
deployed with the real time execution environment of Co-
SiMA [32] that builds on OROCOS RTT7.

VI. DISCUSSIONS & CONCLUSIONS

In this paper, we discussed the current lack and need of
a model of the interaction with the environment. This is
even more important due to the increasing amount of robotic
applications, involving force-based tasks that entail close
physical interaction between robots or humans. Hence, these
tasks require to compliantly handle or exploit environmental
forces. With this motivation, our model-based approach is
presented that enables the modeling of the environment in
terms of contacts, contact situations, and transitions. A syn-
thesis is used to generate an executable control architecture
that executes skills constraint by the environment model.
A dual arm experiment is used to compare the synthesized
behavior to the model.

7https://www.orocos.org/rtt
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Fig. 7. Interpretation of the yoga mat rolling experiment. Note, the first
plot shows the forces in Z, projected from the joint torques of the motion
controller (τττm), using its associated (sub space) Jacobian (Jx, 1) and the
counterpart provided to the force controller (Jx, 2). The intersection of the
signals indicates a (de)activation of a constraint coupling in Z.

Future work will focus on integrating aspects, such as
material properties, into the synthesis, and on using the
presented concepts for an automatic learning of couplings
and the respective prioritization of control tasks.
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