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Abstract— Sensor fusion systems merging (multiple) delayed
sensor signals through a statistical approach are challenging
setups, particularly for resource constrained platforms. For
statistical consistency, one would be required to keep an
appropriate history, apply the correcting signal at the given
time stamp in the past, and re-apply all information received
until the present time. This re-calculation becomes impractical
(the bottleneck being the re-propagation of the covariance
matrices for estimator consistency) for platforms with multiple
sensors/states and low compute power.

This work presents a novel approach for consistent co-
variance pre-integration allowing delayed sensor signals to be
incorporated in a statistically consistent fashion with very low
complexity. We leverage recent insights in Invariant Extended
Kalman Filters (IEKF) and their log-linear, state independent
error propagation together with insights from the scattering
theory to mimic the re-calculation process as a medium through
which we can propagate waves (covariance information in this
case) in single operation steps. We support our findings in
simulation and with real data.

I. INTRODUCTION

Sensor fusion for robot state estimation is a well studied
field and very active since many years. Nonlinear optimiza-
tion techniques and (Extended) Kalman Filters ((E)KF) are
the primary tools for state of the art approaches with the latter
being the preferred method on computationally constrained
platforms. For such platforms, delayed sensor signals are
particularly cumbersome in state of the art approaches.
Non-linear optimization methods inherently have the setup
to seamlessly include such delayed signals at the cost of
generally be at the higher end of computational complexity.
For filter based approaches, delayed signals trigger a high
computational load or require approximations with negative
effects on the estimator performance and consistency: The
incoming signal needs to be applied in the past from where
the Markov chain needs to be re-built (re-computation step)
until the present time.

Naively re-computing the information leads to a noticeable
bottleneck in the covariance re-propagation steps (Pk+1 =
F ∗Pk ∗FT + Q with P being the state covariance matrix,
F the Jacobian of the state dynamics, and Q the process
noise matrix) requiring the multiplication of three square
matrices each of the size of the state vector dimensions.
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Due to the non-linear nature of most robotic systems, ex-
isting approaches reducing the load of this re-computation
make assumptions or simplifications harming the consistency
of the estimator. Most relevant to this work, the authors
in [1] presented an approach for a one-step covariance pre-
integration until the next measurement based on an analogy
from the scattering theory and the Star-Product (SP-EKF).
While heavily reducing comutational cost (about 90% less
computation cost according to [1]), the only assumption in
that work is that the re-linearization of the state dynamics
(F) after a delayed update has little effect on the performance
and consistency, and can thus be omitted. This assumption
may hold in many scenarios. In this work, we show that
specifically for initial motion estimation and badly initialized
estimators, this assumption does not hold. More generally,
in such cases, EKF based approaches heavily suffer from
inconsistency and the SP-EKF extension for lower computa-
tional complexity on delayed measurements further deterio-
rate the consistency significantly by re-using heavily wrong
linearization points. Motivated by the significant reduction
in computational complexity of the SP-EKF, we extend this
approach to the Invariant EKF (IEKF) model. The log-
linearity and linearization point independence compared to
the EKF are key to our proposed extension in this paper
combining the Star-Product with the IEKF approach. Not
depending on the linearization points removes the weakness
the SP-EKF approach discussed above, rendering our SP-
IEKF approach both efficient and consistent. The reduction
in computational complexity is not the focus of this work,
the interested reader is referred to [1]. Our contributions are:

• Theory on consistent covariance pre-integration and
dependence on linearization points.

• Thorough analysis of (in)consistencies of covariance
pre-integration in relation to EKF and IEKF.

• Use case scenario (simulation and real data) proposing
a method for consistent and efficient fusion of delayed
measurements in an SP-IEKF framework.

In the following Section II, we review the related work.
Section III-A briefly recaps previous work on SP-EKF. New
findings regarding the inconsistency of SP-EKF its analy-
sis, are given in Section III-B. By removing the estimate-
dependency of the linearization points we propose a novel,
consistent SP-IEKF based on invariant filtering in Section III-
C. Sections IV and V finally show the results in simulations
and with real data respectively.
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II. RELATED WORK

Techniques for estimator complexity reduction is well
discussed in the community. Often, approaches for filter-
based delay compensation assume the delay time to be
known (e.g. when using constant rate sensors and constant
delay channels) which allows for efficient state cloning [2]
or filter duplication [3]. If this assumption is removed, as in
our case, such techniques become intractable. The overhead
to compensate for unknown time delay is then much larger
than the gain coming from these approaches.

Not for delay compensation, but for relative pose updates
stochastic cloning was presented in [4] and was extended to
IEKF setups in [5]. The latter approach combined with scat-
tering theory makes it possible to combine very efficiently
and consistently arbitrarily many relative and propagation
measurements into a single measurement for filtering frame-
works which constitutes another novelty of this work with
high potential use cases.

Pre-integration techniques, to our knowledge first pre-
sented in [6], are other methods to overcome computational
complexity. The pre-integration of inertial measurements
leads to considerable complexity reduction and increased
robustness in non-linear optimization [6], [7]. However, these
measurements form relative motion constraints and are not
applied to statistical filters. Furthermore, propagation mea-
surements cannot be combined with update measurements
into a single constraint rendering the handling of multiple
delayed sensors cumbersome and expensive.

The mitigation of these shortcomings and the possibility
to apply covariance pre-integration in filter based systems
was presented in [1]. The work makes use of the scattering
theory that was first used to describe the propagation of
waves through media in physics [8]. Only much later, a
striking connection to state estimation was discovered and is
presented in [9], which is based on [10], [11]. Through this
connection, a significant complexity reduction for the fusion
of delayed measurements in multi-sensor filter based estima-
tors was proposed in [1]. The reduction becomes particularly
apparent with high-rate system propagation as the covariance
propagation steps were identified as computational bottle-
necks. The scattering theory provides the background for this
method to be used on linear systems. Although an analysis
of the complexity reduction and accuracy was done in [1],
the analysis of how this approach affects the consistency of
the estimator in non-linear systems was ignored. This is
particularly relevant when linearization points significantly
differ from their true values.

The consistency analysis is at the core of this work and
uses tools also used by the SLAM community. For example,
the ANEES and the ideal EKF are used to cancel the
effects of linearization and examine the consistency of EKF-
SLAM [12], [13].

Apart of the consistency analysis, this work further focuses
on overcoming the linearization point issue in previous work.
This is achieved by transforming the scattering theory based
covariance pre-integration method into an IEKF framework.

The invariant EKF is an alternative to EKF based on error
variables which are invariant by the action of a group of
transformations. It was first proposed in the context of
invariant dynamical systems [14] until the framework of
linear observed systems on groups [15], [16], based on
group-affine dynamics, generalized the method and brought
strong properties such as log-linear error propagation and
EKF stability [15], or pre-integrability [16]. The idea of
using a non-linear error variable for a non-linear system
was also generalized as a tool for the design of EKF-
like methods preserving the observability and reachability
properties of non-linear systems [17], [18], [19], with a
specific success encountered in SLAM applications [17], [20]
but also in more unexpected fields such as legged robots state
estimation [21]. This framework is not restricted to EKF and
was then leveraged to design invariant smoothers [22] and
invariant H-infinity filters [23].

In this work, the novel combination of the IEKF frame-
work with the scattering theory based covariance pre-
integration leads to a consistent filter based estimator with
unprecedented efficiency in case of delayed measurements.

III. CONSISTENT AND EFFICIENT FUSION OF DELAYED
MEASUREMENTS

A. Fusion of Delayed Measurements

A non-linear discrete-time system with delayed measure-
ments and additive white noise nu,ny is given as follows.
The delayed measurement ydk+1 arrives at current time tk+1,
but was measured before at td. The states are Xk and f(·),
h(·) are the propagation and measurement functions:
Xk+1 = f (Xk,uk) + nu,k nu ∼ N (0,Σu) (1)
yk+1 = h (Xk+1) + ny,k+1 ny ∼ N (0,Σy) (2)

ydk+1 = h (Xd) + ny,d td < tk+1 (3)
The most accurate and consistent, but also most costly, way
to fuse this measurement is to recalculate the filter. Therefore
all recent estimates are discarded until td. Then all measure-
ments, including the delayed one ydk+1, are re-applied in the
correct order. This approach causes a significant computation
spike, the bulk of it being the covariance computations.

Previous work [1] achieves a similarly accurate result
than the recomputation method in terms of RMSE with
considerably lower complexity. Through the use of con-
catenation techniques of scattering theory, many propagation
measurements are combined into a single step, effectively
enabling covariance pre-integration. A quick recap shown
below will cover most of the theory also relevant for this
work. The generic definition of the star product Eq. (4) is
used to combine measurements for propagation and updates
by their respective generators Eq. (5) and Eq. (6) with
F and H being the Jacobian of the state dynamics and
measurements respectively. As a result, a scattering matrix
(Eq. 7) is found that can be used to recompute covariances
P in one step to the current time, as shown in Eq. (8).
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∂X X=X̂k,u=uk

(5)
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[
I 0

−HT
kΣ−1y Hk I

]
Hk =

∂h(X)

∂X X=X̂k

(6)

S0k,N = Mk ? Mk+1 ? . . . ? MN (7)

Sk,N =

[
I Pk

0 I

]
? S0k,N =

[
· Pk,N
· ·

]
(8)

The scattering matrix Sk,N is the outcome of a Kalman
Filtering problem with the initial covariance Pk and the mea-
surements yk . . .yN and uk . . .uN . Pi,N is the covariance
after applying all measurements to the initial covariance Pk.
Note that S0k,N depends on Mk to MN which in turn depend
on all previous dynamic and measurements Jacobians F and
H between current time and delayed measurement. The fact
that these Jacobians are not re-calculated in this approach
at the refined states after the update in the past is the core
issue of the inconsistency introduced when used on non-
linear systems as explained in the following.

B. Estimation with EKF and Inconsistencies of the SP-EKF

The scattering theory approach was initially only con-
nected to the Kalman Filter. Applying the theory for non-
linear problems required the use of the Extended Kalman
Filter (EKF). Therefore, to understand the inconsistencies
that may arise we have to look at the main concept that is at
the core of the EKF, which is linearization. The EKF uses
the current estimates as the linearization points (i.e. not the
true values). As such, linearization and linearization points
have a considerable impact on the performance of the EKF
as wrong estimates directly lead to wrong linearization points
due to the state dependence of the Jacobians. Mitigating the
effect of wrong linearization points is posed as one of the
main challenges of this work.

In this work, we use the so called ideal EKF as a theoret-
ical tool to evaluate the consistency by canceling effects of
linearization. The only difference between the regular and the
ideal EKF lies in the covariance computation: while the EKF
uses the estimated states and noisy inputs for linearization,
the ideal EKF uses the true values for linearization and inputs
independent of the estimated states. These changes directly
affect the covariance propagation and update steps. With the
system of Eq. (1) and Eq. (2) in mind, covariance propagation
and update read as follows:

Pk+1|k = FkPk|kF
T
k + Σu (9)

Pk+1|k+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + Σy

)
(10)

F =
∂f(X, u)

∂X X=X̂k+1|k,u=uk

H =
∂h(X)

∂X X=X̂k+1|k

(11)

Fig. 1. With an wrong initial heading the estimator accumulates pre-
computations of the SP-EKF with wrong linearization points (blue, red are
true states). This leads to inconsistency when applied for covariance pre-
integration. The advantage of efficiency is bought with inconsistency. The
present work achieves both high efficiency and consistency in spite of wrong
linearization points.

For the EKF, wrong estimates (or linearization points) can di-
rectly influence the covariance computations. Unfortunately,
the SP-EKF suffers from the same problem as it can be
seen in Eq. (5) and Eq. (6). Once computed with wrong
estimates, the generators carry on the wrong information into
the scattering matrix. Covariance pre-integration as suggested
in [1] can get inconsistent at this point.

An illustrative example shown in Fig. 1 highlights the
problem with wrong linearization points for the SP-EKF. A
robot is estimating the whole trajectory only using relative
pose measurements. Because of a wrong initial heading the
SP-EKF builds up scattering matrices with wrong estimates
leading to inconsistencies once covariance pre-integration is
applied after a delayed global update. This inconsistency due
to wrong linearization points do not happen for recalculation,
because then all Jacobians are re-linearized at refined esti-
mates.

Considering the recalculation to be the ideal method in
terms of consistency, any deviation from it can be seen as
sub-optimal. Since consistency is measured by the Average
Normalized Estimation Error Squared (ANEES, [24]), a
novel measure for inferior performance regarding consis-
tency can be quantified by:

∆ANEES(A) = |ANEESr − ANEESA| (12)
ANEESr is the ANEES for the recalculation, while ANEESA
is the ANEES for any other algorithm A.

C. Consistent SP-IEKF

The estimate dependency was identified as the main source
of inconsistencies for the SP-EKF. Formulating estimate-
independent elements of scattering theory and a rigorous
analysis of the consistency is hence at the core of this work.

1) Estimate Independence: The basic elements of scat-
tering theory are the generators, which in turn are built out
of Jacobians of the system equations and noise covariances,
as it can be seen in (5) and (6). In general, following the
EKF methodology will result in Jacobians being estimate-
dependent and noise matrices being estimate-independent as
shown later in an example.

Following an invariant filtering approach [15], the de-
pendencies are often flipped: In that case, the Jacobians
are estimate-independent and the noise covariances become
estimate-dependent. More precisely, for group affine systems
with left or right invariant observations, the Jacobians for
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the process and the observation are constant and estimate-
independent. The limitation for the applicability is only
minor since many systems comply with these requirements,
including the presented setup with measurements of the 6D
pose, velocity, GPS position, known landmarks, magnetome-
ter measurements, and others [16]. Independence of the Ja-
cobians to the linearization points comes with a set of strong
properties regarding filter stability [15] and preservation of
observability [17], [18] or reachability [19]. This can be seen
as a strong argument in favor of the independence of the Ja-
cobians rather than independence of the noise characteristics
of linearization points. One of the contributions of the present
paper is giving a convincing illustration of this idea in the
context of covariance pre-integration, which we hope may
inspire future other applications.

2) SP-IEKF for a Wheeled Robot with Odometry, Relative
Pose and Landmark Updates: The presented method is
demonstrated for a wheeled robot navigating with a wrong
initial heading. Only once delayed known landmark measure-
ments arrive, global information will correct the drift. In gen-
eral, the robot will move by using odometry for propagation
and relative pose measurements for updates. Note that drift
will be accumulated without known landmark measurements,
because position and heading are unobservable otherwise.
When global, delayed information becomes available, it will
correct a state in the past. To update the state estimate at
the current time two options are possible, recalculation or
using the scattering matrices as in SP-EKF. The scattering
matrices (and generators) are build up and pre-computed by
filters as the measurements for propagation and updates come
in. These pre-computations are the reason for the efficiency
of SP-EKF in covariance computations.

First, the invariant EKF is presented with Jacobians Fk
and Hk+1 that are estimate-independent and also shown are
noise covariance matrices Σu,SC and Σ̃y , in turn, being
estimate-dependent. Both are used to compute the generators.
To update with relative poses we need to apply stochastic
cloning[4][5]. The system and observation are:
Xk+1 = Xk · uk · nu X, uk, nu ∈ SE(2) (13)

Yk+1 = ny · X−1k+1 · Xk−N Yk+1, ny ∈ SE(2) (14)

nu = exp(bξn,uc∧) ξn,u ∼ N (0,Σu) (15)

ny = exp(bξn,yc∧) ξn,y ∼ N (0,Σy) (16)

The state consists of the current estimate X̂k at time tk and
a clone of the state X̂k,C at time tk−N . To integrate the
cloning into the scattering matrices, a special generator is
used with FC = [03×3, I3×3; 03×3, I3×3] and ΣC = 06×6.
Until a relative pose update, the estimator is propagated with
odometry input uk:
X̂k,SC = [X̂k,C ; X̂k] (17)

X̂k+1|k = X̂k|k · uk
X̂k+1|k,C = X̂k|k,C (Clone, no change)

ek = Xk · X̂−1k = exp(bξkc∧) (Right invariant) (18)
ξk,SC = [ξk,C ; ξk] (19)

ek+1|k = Xk+1 · X̂−1k+1|k (20)

= Xk · uk · nu · (X̂k|k · uk)−1

= Xk · X̂−1k|k · X̂k|k · uk · nu · u
−1
k · X̂

−1
k|k

= ek|k · ñu
Fk = I3×3 Fk,SC = I6×6 (21)

Σ̃u = Ad(X̂k|kuk)ΣuAd(X̂k|kuk)T (22)

Σu,SC = [03×3,03×3; 03×3, Σ̃u] (23)
When the relative pose measurement Yk+1 arrives, the update
is done similar to [5]:

Yk+1 = ny · X−1k+1 · Xk (24)

Yk+1 · X̂−1k,C = ny · X̂−1k+1|k · X̂k+1|k · X−1k+1 · ek,C
Yk+1 · X̂−1k,C = ny · X̂−1k+1|k · e

−1
k+1|k · ek,C

X̂k+1|k · Yk+1 · X̂−1k,C = X̂k+1|k · ny · X̂−1k+1|k · e
−1
k+1|k · ek,C

X̂k+1|k · Yk+1 · X̂−1k,C = ñy · e−1k+1|k · ek,C (25)

Hk+1 = [I3×3,−I3×3] (26)

Σ̃y = Ad(X̂k+1|k)ΣyAd(X̂k+1|k)T (27)
The reason why Hk+1 has a flipped sign compared to [5] is
because e = XX̂−1 is used instead of e = X̂X−1. Both are
related in the tangent space se(2) by a flipped sign, since
one is the inverse of the other. Furthermore the update with
known landmarks is done as in [15].

The regular EKF Jacobians are also shown, without deriva-
tion for brevity:

Fk =

(
1 01×2

R(θ̂k|k)uk,x I2×2

)
(28)

Hk+1 =

(
1 01×2 −1 01×2

02×1 RT (θ̂k+1|k) h(2:3,4) −RT (θ̂k+1|k)

)
(29)

h(2:3,4) = −b1c×RT (θ̂k+1|k)(x̂k,C − x̂k+1|k)

As described earlier, they are estimate-dependent. Noise
independent of the state is added following the same noise
characteristic as for the IEKF (15) and (16), since noise
values are small and up to the first order equal.

IV. SIMULATIONS

The effects of the state-dependency on consistency in the
previously presented theory will be analyzed in a simulation
setup. Evaluating consistent and efficient fusion of delayed
global information by different approaches will be the main
focus. But also the applicability of covariance pre-integration
for navigation with a wrong heading is demonstrated.

A. The Experimental Setup

A wheeled robot follows the trajectory (red) depicted in
Fig. 2 in 2D. It propagates estimates on each time step
by odometry and updates at every 100 steps with relative
pose measurements. The total length of the trajectory is 900
steps. The initial heading is unknown to the robot, such
that the heading error is within the confidence of the initial
covariance of the estimator. Approximately halfway through
the trajectory delayed global information arrives in the form
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Fig. 2. The robot starts navigating with a wrong heading (blue and green)
for half of the trajectory. Global information provided by landmarks (black)
arrives delayed and is used to update the current estimate efficiently. The
degrading effect of wrong linearization points increases as the heading error
increases. The proposed method (blue) is almost not affected by this.

of landmark measurements at time step 500. The global
position of the landmarks in the map is known and they
were measured at time step 300, thus the measurement delay
is 200 steps. This corrects the initially wrong heading to a
large extent. The Star-Product based handling of this delayed
measurement is implemented in three estimators: The ideal
EKF, the EKF, and the IEKF. From step 300 to 500, all state
estimates were far from the real trajectory and were used
to pre-compute the scattering matrices of the SP-EKF (see
Fig. 1). The different effects on the consistency are shown
with the ∆ANEES which is of particular interest at step 500
just after the reception of the global signal. At this step,
pre-computed Star-Product chains from step 300 to 500 are
applied for efficient re-propagation of the covariances due
to the delayed measurement. A ∆ANEES > 0 at step 500
would imply an inconsistency introduced by the Star-Product
chains. For each set of experimental parameters, Monte Carlo
simulations with 100 runs were made.

B. Comparison of EKF and Invariant EKF for Increasing
Heading Errors

As described earlier, the ideal EKF knows the true state.
So the linearization is always done at the true state and is
therefore also estimate-independent. This is reflected in the
∆ANEES being very close to zero for any initial heading
error. This means that there is no difference in the use of the
recalculation or the covariance pre-integration of the SP-EKF
for the ideal EKF.

For small initial heading errors all estimators can work
consistently and perform comparably, since deviation of state
estimates from the true trajectory is insignificant. Fig. 3
shows the ∆ANEES for the EKF and IEKF implementations
at step 500 just after the delayed measurement has been
applied (with Star-Product and naive re-calculation for each
implementation). The effect on the consistency increases
with the initial heading error for the EKF, meaning that
the application of the Star-Product to the EKF approach
significantly deteriorates the estimator consistency over the

Fig. 3. The increased inconsistency due to covariance pre-integration
through the Star-Product approach is shown for the EKF (green) and
our IEKF based implementation (blue). A wrong initial heading leads to
estimates, and thus linearization points, far from true values. The proposed
SP-IEKF method is barely affected while the SP-EKF method reaches
critical values (note the log scale on the y-axis!).

Fig. 4. The plot shows a minimal difference in consistency after the global
update for recalculation in a naive IEKF and covariance pre-integration in
our suggested efficient SP-IEKF implementation. The initial heading error
is 7◦.

naive re-calculation. At the same time, the IEKF is less
affected by the application of the Star-Product, indicating
that the covariance pre-integration of SP-IEKF is as good
as the recalculation while being much more efficient (please
note the log-scale on the y-axis in Fig. 3). The capability
to navigate for a long duration with a wrong heading and
to consistently fuse global information after a long delay is
demonstrated only for the SP-IEKF.

To better show-case the ∆ANEES and how small its value
as the difference for the IEKF implementation when naively
recalcuated (i.e. best but most costly case) versus SP-IEKF
variant is, the ANEES of both methods for the initial wrong
heading of 7◦ is shown in Fig. 4. The figure shows the time
evolution of both ANEES’ from the time of the global update
on once by using recalculations and once by using covariance
pre-integration of SP-IEKF. This underlines the claim that
SP-IEKF is not much affected by wrong linearization points.

C. Global Information and Consistency

If global information is available at any time, the SP-EKF
and the SP-IEKF perform similarly, since global updates will
drive the estimator close to the true trajectory and force
consistency. But specifically in the case of initial motion
estimation and badly initialized estimators relying on the SP-
EKF will lead to overconfident estimates as the example in
Fig. 5 shows. Starting with an initial heading error of 10◦,
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Fig. 5. A simulation is shown with a wrong initial heading of 10◦. Global
updates are received at step 500, 800, 1100, and 1400, each with a 200 step
delay (thus corrections are applied at steps 300, 600, 900, and 1200). The
error of the position estimate is plotted at the top. Only after four global
updates the estimates become consistent at time step 1400 (see plot below).
The SP-EKF remains inconsistent until then and the proposed method based
on the IEKF should be preferred. From 1200 to 1400 there is no ANEES
because the delayed update step directly propagates the covariance from
step 1200 to 1400.

Fig. 6. The time evolution of the inconsistencies is shown for the SP-EKF
(green). After the delayed global update the estimates of the EKF were reset
to consistent values. But the wrong linearization points in the covariance
pre-integration for the SP-EKF cause the filter to get overconfident again
(green). The spikes are caused by relative updates followed by propagations
that increase uncertainty, diminishing the overconfidence. For re-calculation
instead, the estimates stay consistent (orange). Indicating that the only
source of inconsistency are wrong linearization points in the covariance
pre-integration of the SP-EKF. Our approach, the SP-IEKF, is not affected
by this due to the IEKF linearization-state independency.

four global updates were required to reach consistency. While
the SP-IEKF remains more consistent in the decisive initial
phase of the trajectory.

D. Inconsistencies of the SP-EKF after Reset

The direct way to show the inconsistencies caused by
the SP-EKF covariance pre-integration is best shown by
the ∆ANEES. But there is also an alternative to show the
added inconsistencies. As the IEKF outperforms the EKF in
terms of consistecy (even with naive recalculations) for large
heading errors, we could use the estimates and covariances of
the IEKF after the delayed global update also for the EKF. By

this procedure the following constraints for the comparison
are ensured:
• both estimators have the same consistent starting point

after global information
• both estimators have done pre-computations of SP-EKF

with the same wrong estimates
• the only difference is in covariance pre-integration with

SP-EKF and estimate-dependency in Fk Hk+1 (EKF)
or Σ̃u,SC Σ̃y (IEKF)

At time step 300, after the delayed global update, the mean
of the EKF is replaced by the mean of the IEKF and the
IEKF covariance is transformed and replaces the covariance
of the EKF. The transformation is necessary because the error
variables of the IEKF (ξθ, ξx) and EKF (δθ, δx) are slightly
different, but interchangeable (see appendix, Eq. (40)).

Fig. 6 shows the time evolution of the ANEES of both es-
timators for recalculation and the use of SP-(I)EKF. At time
step 500 the delayed global information was processed. As it
can be seen for recalculation, both estimators stay consistent,
performing similarly. But when covariance pre-integration
by SP-EKF is used, inconsistencies become visible (dotted
green line). These inconsistencies can only be caused by the
estimate-dependency of F and H for the EKF and the spikes
occur at relative updates, repeatedly making the estimator
overconfident.

V. REAL DATA

For real data experiments we have used the UTIAS Multi-
Robot Cooperative Localization and Mapping Dataset [25].
In each dataset, robots move to random waypoints in an
indoor space while logging odometry data, and range-bearing
observations to landmarks.

A. The Experimental Setup

In our experiments we have considered only a single
wheeled robot, in particular Robot 1 from Dataset 1, fol-
lowing the red trajectory in Fig. 7. The traveled trajectory
is approximately 20.5 meters in 375 seconds with odometry
data sampled at 6.25Hz, thus the total length of the trajectory
is 2344 steps. As in the simulation scenario the initial head-
ing is unknown to the robot and the estimates update every
50 time steps with relative pose measurements and every
700 time steps with global range-bearing measurements,
delayed approximately by 300 time steps. Again, in this
experiment we are comparing the consistency of the star
product covariance pre-integration applied on two estimators:
the EKF, and the IEKF in terms of ∆NEES.

Different adaptions have been made in order to correctly
use the data provided by the dataset, in particular regarding
the noise. First, as no noise values are provided in the data
set, the motion noise statistics for the noisy odometry data
have been set in such a way to obtain an average NEES
equal to 1 in the case of propagation only (i.e. making
the assumption of having a consistent integrator). As a
second step, the range-bearing measurement noise statistics
has been set to be Gaussian distributed ∼ N (0,Σy) with
Σy = diag (0.3m, 0.02rad).
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To include range-bearing measurements into the IEKF
framework, we have expressed the measurement as a function
of the right invariant observations and we have derived
the estimate-independent measurement Jacobians and the
estimate-dependent noise matrix as follows, see also [15]:

yk+1 =

[
rk+1

αk+1

]
= φ (Xk+1 � Glk+1) + ny,k+1 (30)

y
′

k+1 = φ−1 (yk+1) ' X̂k+1|k � Glk+1 +∇ny,k+1
ny,k+1

(31)

∇ny,k+1
=

[
cos (αk+1)
sin (αk+1)

h(1:2,2)

]
(32)

h(1:2,2) = b1c×RT (θ̂k+1|k)(Glk+1 − x̂k+1|k)

X̂k+1|k � y
′

k+1 = e−1k+1|k � Glk+1 + X̂k+1|k � ∇ny,k+1
ny,k+1

(33)

Hk+1 =
[
−b1c× Glk+1 I

]
(34)

Σ̃y′ = R(θ̂k+1|k)∇ny,k+1
Σy∇Tny,k+1

RT (θ̂k+1|k) (35)

B. Comparison of EKF and IEKF for Increasing Initial
Heading Errors

The results obtained for the IEKF and EKF through real
data experiments and shown in Fig. 7 - 10 confirm the result
obtained through simulations. In particular, Fig. 9 shows
the NEES for both EKF and IEKF either with or without
the covariance pre-integration with an initial heading error
of 20◦. The improvement of the recalculation compared
to the SP-EKF is striking, not so for the SP-IEKF, as
expected – also showing in real data the independence of
the SP-IEKF approach to the linearization points while still
fully leveraging the complexity reduction of the Star-Product
chains. Similarly, Fig. 10 shows the ∆NEES at a fixed time
step for different initial heading errors, pointing out that the
use of scattering theory for covariance pre-integration allows
consistent and efficient fusion of delayed measurement in
a IEKF framework, while it proportionally degrades the
consistency when used in an EKF framework.

VI. CONCLUSIONS

The assumption for the SP-EKF that the effect of the
re-linearization is negligible was revisited in this work. As
a result, the impact of wrong linearization points was de-
scribed quantitatively, indicating the importance of estimate
dependency. The efficient fusion of delayed measurement
was extended by the use of the IEKF methodology to achieve
consistent results. The validity of the proposed method
was demonstrated in simulation and on a publicly available
dataset for collaborative SLAM. By the use of scattering
theory and IEKF for the covariance pre-integration, very
efficient computations without loss of consistency can be
achieved. Thus, allowing the consistent fusion of largely
delayed measurements, like database lookups or enabling the
processing of data-heavy measurements like point clouds.

Fig. 7. Wheeled robot trajectory from the UTIAS Multi-Robot Cooperative
Localization dataset (robot 1, dataset 1): ground truth (red) is shown while
the dashed blue and the dotted green show respectively the SP-IEKF and
SP-EKF estimates with an initial heading error of 20◦. The first of the 3
global updates arrives at step 700 with a delay of 300 steps.
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Fig. 8. Position and Heading RMS error for SP-IEKF (in dashed blue)
and SP-EKF (in dotted green) for the real data depicted in Fig. 7.

Fig. 9. Full state NEES for a single run of IEKF with recalculation (dashed
purple), SP-IEKF (dashed blue), EKF with recalculations (dotted brown) and
SP-EKF (dotted green) for initial heading error of 20◦. There is almost no
difference in the NEES of recalculation over covariance pre-integration for
the the IEKF, while there is significant difference of the NEES for the EKF.
In some time frames there is no ANEES because the delayed update step
directly propagates the covariance from td to td + ∆t, eg. 1100 to 1400.

4840



//

//

Fig. 10. ∆NEES for the SP-IEKF (in dashed blue) and the SP-EKF (in
dotted green) for different initial heading errors computed at a fixed time
step after the first global update and the use of covariance pre-integration.
The initial heading error does not affect the consistency of the IEKF after
the application of the covariance pre-integration, while it does for the EKF.
Thereby confirming the same results as for the simulations.
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APPENDIX

The SE(2) Group elements and action and the
bξc∧ ∈ se(2) tangent space elements:

ξ = (ξθ, ξ
T
x )T bξc∧ =

(
bξθc× ξx

0 0

)
ξ ∈ R3

e = exp(bξc∧) =

(
R(ξθ) V (ξθ)ξx

0 1

)
e ∈ SE(2)

V (ξθ) =
sin ξθ
ξθ

I +
1− cos ξθ

ξθ
b1c×

Xk =

(
R(θk) xk

0 1

)
Xk ∈ SE(2)

Xk � p = R(θk)p + xk p ∈ R2

X−1k � p = R(θk)T (p − xk)

Relation between the EKF and IEKF error variables:
e = X · X̂−1 = exp(bξc∧)

=

(
R(θ)RT (θ̂) x −R(θ)RT (θ̂)x̂

0 1

)
(36)

ξθ = δθ = θ − θ̂ ← R(θ)RT (θ̂) (37)

ξx ≈ x −R(θ)RT (θ̂)x̂ ξθ → 0 (38)
= δx− b1c×x̂δθ(

ξθ
ξx

)
=

(
1 01×2

−b1c×x̂ I2×2

)(
δθ
δx

)
= M

(
δθ
δx

)
(39)

PIEKF = MPEKFM
T PEKF = M−1PIEKFM

−T (40)
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