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Abstract— Accurately forecasting the future movements of
surrounding vehicles is essential for safe and efficient operations
of autonomous driving cars. This task is difficult because a
vehicle’s moving trajectory is greatly determined by its driver’s
intention, which is often hard to estimate. By leveraging atten-
tion mechanisms along with long short-term memory (LSTM)
networks, this work learns the relation between a driver’s
intention and the vehicle’s changing positions relative to road
infrastructures, and uses it to guide the prediction. Different
from other state-of-the-art solutions, our work treats the on-
road lanes as non-Euclidean structures, unfolds the vehicle’s
moving history to form a spatio-temporal graph, and uses
methods from Graph Neural Networks to solve the problem.
Not only is our approach a pioneering attempt in using non-
Euclidean methods to process static environmental features
around a predicted object, our model also outperforms other
state-of-the-art models in several metrics. The practicability and
interpretability analysis of the model shows great potential for
large-scale deployment in various autonomous driving systems
in addition to our own.

I. INTRODUCTION

Autonomous driving is a revolutionary technology to free
people from tedious and repetitious driving tasks. During op-
eration, an autonomous driving system repeatedly performs
the following four tasks at a high frequency: perceiving the
surrounding environment, predicting the possible movements
of adjacent objects, planning the ego vehicle’s motions, and
controlling itself to follow them. Trajectory prediction of
surrounding vehicles plays a crucial role in the overall system
because the ego vehicle relies on it to calculate a safe and
comfortable moving trajectory.

However, accurately predicting a moving object’s trajec-
tory is a challenging task. Unlike many other sequence
prediction problems where a sequence’s future states can
be inferred merely based on its own historical and current
states (e.g. in our case, vehicle past trajectory, and turn
signal status, etc.), an object’s moving trajectory can be
greatly affected by many other external factors, which can
be categorized into two types: 1) surrounding static environ-
ment, such as landscapes, lane-lines, and road shapes in the
vicinity of the predicted object, and 2) surrounding dynamic
environment, such as moving objects next to the predicted
one and social interaction among them.

There have been extensive researches on learning the
dynamic interaction and using it to guide the prediction.

1 Authors are with Baidu USA LLC, 1195 Bordeaux Drive, Sunnyvale,
CA 94089, USA. (jiachengpan@gmail.com)

2 Now with Google Research.

Fig. 1. Predicting a vehicle’s future behaviors by learning its relation to
the surrounding lanes.

Most of them aim at forecasting pedestrians’ trajectories in
crowded scenarios. Early works tackled the problem in a
Euclidean (i.e. grid-like or sequence-like) way, by dividing
the space into grids and applying occupancy grid pooling
or social pooling [1]; these works were soon superseded
by non-Euclidean methods that treated the objects and their
interaction as a graph and used attention mechanisms [2] or
other methods found in Graph Neural Networks (GNN) to
exploit the pairwise interaction.

However, moving vehicles’ behaviors, especially on the
long run, are much more constrained by lane information
(Fig. 1), rather than by vehicle dynamics or the occasional
interaction with adjacent cars. Therefore, the impact of static
environment can be dominant in determining a vehicle’s
future moving trajectory, as also indicated by the results
and analyses of [3]. There have been fewer works in the
studies of static environment’s influence on vehicle trajectory
prediction. Also, existing state-of-the-art solutions treated
road infrastructures as Euclidean data (e.g. semantic map
[4]), which might not necessarily capture their essence due
to the following observations:

• The structure of lanes on roads is not uniform. There
can be any number of lanes around a predicted vehicle,
ranging from one to some great number (e.g. when
entering a big intersection with many branches). Also,
the shapes or directions of lanes are very diverse: on
high-ways, lanes are mostly straight; whereas within
intersections, lanes may branch into several completely
different directions.

• While driving, people have their attentions on one or a
few of the lanes based on their intention. They tend to
follow, if not exactly, the direction of those lanes.

We focus on improving the accuracy of vehicle’s trajectory
prediction through better modeling of static environment’s
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Fig. 2. The evolution from grid-like processing to non-Euclidean methods
(II → I) has enabled better modeling of the dynamic interaction. We aim at
improving the modeling of static environment in the same way (III → IV).

influence. Inspired by the aforementioned approaches [2]
to analyze dynamic environment in terms of pairwise in-
teraction, and motivated by the above observations that
pairwise relations among a vehicle and its surrounding
lanes play significant roles in predicting the vehicle’s future
movements, we propose a novel method, the Lane-Attention
Neural Network, that treats the lanes as a graph and uses
attention mechanisms to aggregate the static environmental
information, so that we can achieve successful forecasting of
vehicles’ moving trajectories (Fig. 2).

Our model (Quadrant IV of Fig. 2) has the following
novelties and advantages:

• It is a pioneering attempt to model the static environ-
ments using Graph Neural Networks, and its ability to
better learn the relation among vehicles and lanes has
been proven by the more accurate prediction results than
other state-of-the-art works. We hope this embarkment
on a new area can enlighten more upcoming attempts to
further improve the understanding and modeling of the
influence from surrounding environment on a predicted
object.

• Our solution is adoptable to different autonomous driv-
ing solutions without additional cost: our approach can
be applied to both high definition (HD) map and non-
HD map based autonomous driving. Note that in the
HD map based autonomous driving, the lane informa-
tion is provided by the stored HD maps; in the non-
HD map based autonomous driving, for example, we
could leverage camera-detected lanes combined with a
few pre-collected human driving paths as lane-structure
information.

• As will be shown, by visualizing the learned attention
scores, it can be seen that our algorithm, rather than

being a black box itself, provides intuitive explanations
of its behaviors. This great interpretability can also
benefit other downstream modules of an autonomous
driving system.

II. RELATED WORK

A. Traditional Models

Many works used traditional models to predict vehicles’
moving trajectories. Some models, e.g. kinematic models
[5] and dynamic models [6], based the prediction purely
on the observed motion history. Kalman Filter [7] has been
widely adopted to account for uncertainties in prediction.
Some works used Logistic Regression [8], Support Vector
Machine [9], or Hidden Markov Model [10] to consider a
driver’s maneuver intention. There have also been attempts
[11] to model interaction among vehicles.

B. Sequence Prediction (Euclidean Methods)

Great progress has been made in deep neural networks
(DNN) in the recent years. Recurrent Neural Networks
(RNN), as well as their variants Long Short-Term Memory
(LSTM) [12] and Gated Recurrent Units (GRU) [13], are
good at learning the temporal relations among input fea-
tures. They have achieved excellent performance in sequence
prediction tasks, such as speech recognition [14], machine
translation [15], and trajectory prediction [16], etc. There
have also been attempts [17] to combine Convolutional
Neural Networks (CNN) and LSTM for trajectory prediction.

C. Graph Neural Networks (GNN)

RNNs and CNNs work well in extracting features from
Euclidean data (those with natural orderings like images
or texts), because they impose strong relational inductive
biases of locality and translational invariance in time and
space [18]. In parallel, there exists another class of networks,
Graph Neural Networks (GNN) [19], that are more effective
in handling non-Euclidean inputs or excavating the pairwise
relation properties out of input data. GNN and its variants,
such as Graph Convolution Networks [20], are proven useful
not only in processing nonuniform data such as social
networks [21] or knowledge graphs [22], but also in tasks like
object detection [23] and neural machine translation [24].

The Spatio-Temporal Graph Neural Networks (ST-GNN)
[25], a derivative of GNN, use nodes to represent entities
and two kinds of edges to represent temporal and spatial
relations. ST-GNNs find applications in robotics [26], and
in many other tasks that require both spatial and temporal
reasonings [27]. Our work gains inspiration from ST-GNNs.

D. Modeling Social Interactions

In [28], interaction among pedestrians was modeled by
hand-crafted social forces. Later, [29] used fine occupancy-
grid maps to represent neighboring objects and applied
LSTM to learn social interaction among them. Differently,
Social-Pooling [1] [30] applied coarse grids and used pooling
layers to aggregate the neighbor information. These methods
belong to the Quadrant II of Fig. 2.
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Fig. 3. Unfolding the history of vehicle’s motion on lanes formulates a spatio-temporal graph. Note that in the given example, before their bifurcation,
lane 1 and lane 2 are treated as two separate nodes with the same features.

On the other hand, Social-GAN [31], corresponding to the
Quadrant I of Fig. 2, used Max-Pooling as the symmetric
function 1 to aggregate all neighbor information. Similarly,
Social-Attention [2] and SR-LSTM [32] formulated the
problem as ST-Graphs and utilized attention mechanisms.
TrafficPredict [33] used a ST-Graph with multiple node
categories to model various relations among different types
of traffic participants.

E. Modeling Static Environments

To model the static environment, Scene-LSTM [34], SS-
LSTM [35], and other works [17] [36] applied CNN to a
bird’s-eye view photo of the environment, directly or after
some preprocessing. Alternatively, the inputs to CNN could
be semantic maps [4], processed from pre-collected HD-
maps, with a variety of colors representing different lane
directions and with fading rectangles to capture vehicle
movement history. One recent work [3] projected a predicted
vehicle onto a given lane, and used the lateral and longitu-
dinal displacements as input features. These methods all fall
in the Quadrant III of Fig. 2, and our work explores their
missing counterpart in the Quadrant IV.

III. METHODS

A. Problem Definition

We receive as inputs each vehicle’s historical positions
from t = −Tobs to the current time-step t = 0, at increments
of ∆t, the sampling period of sensors. It is also assumed
that at each time-step, every vehicle’s surrounding lanes are
given, and the number of lanes is denoted as N . Our goal is
to predict each vehicle’s future positions over a time-span of
Tpred, which should be an integer multiple of ∆t. To avoid
cumbersome indexing, all the notations below refer to an
arbitrary single vehicle instance out of all the input data.

1A symmetric function takes any number of inputs but generates a fixed-
dimension output.

B. Spatio-Temporal Graph (ST-Graph) Formulation

To clearly manifest pairwise relations, we formulate the
problem as a spatio-temporal graph: G = (V, ET , ES), where
V is the set of nodes, ET is the set of temporal edges, and
ES is the set of spatial edges.

V = {vt, lti}, and ES = {sti}, where sti = (vt, lti),
∀t ∈ [−Tobs/∆t, Tpred/∆t] and ∀i ∈ [1, N ]. (1)

ET = {(sti, st+1
i ), (vt, vt+1)},

∀t ∈ [−Tobs/∆t, Tpred/∆t− 1] and ∀i ∈ [1, N ]. (2)

(1) means that V contains two kinds of nodes: a vehicular
node vt represents a vehicle at a given time t, and a lane
node lti represents one of the local lanes around the predicted
vehicle at time t. The pair-wise relations between vt and lti
at the same t form the set of spatial edges ES . (2) indicates
that there are two types of temporal edges, one about the
vehicle’s state evolution and the other about the evolution
of lane-vehicle relationship over time. In a nutshell, it could
be seen as the vehicle’s movement history, as well as its
changing relation with the surrounding lanes, is unrolled over
time to form an ST-graph (Fig. 3).

At every instant, vt receives the vehicle’s new spatial
position (xtv, y

t
v); lti is also refreshed to reflect lanes in the

vehicle’s current neighborhood. Typically lti contains a set of
ordered lane-points. The lane information can come directly
from the sensed and perceived lane-lines. Alternatively, it can
be derived by first localizing the vehicle’s position, and then
fetching the lanes around it from a pre-collected HD map.
With these new features, all the sti ∈ ES of this instant are
then readily updated with the vehicle’s new spatial relation
to its local lanes (Fig. 4 (a)).

Next, there will be temporal evolution to update ET and
spatial aggregation to update vt of this time-step, with details
covered in the following sub-sections.
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Fig. 4. At every time-step, there will be (a) reception of new information, (b) temporal evolution to update ET , (c) spatial aggregation to update vt,
details of which (Lane-Attention) are shown in (d), and (e) updates of the overall state.

C. Temporal Evolution

1) Vehicle State Evolution: Long Short-Term Memory
networks (LSTM) have been successful in learning the
patterns of sequential data. A standard LSTM network can
be described by the following equations:

ft = σ(Wfxt + Ufht−1 + bf ), (3)
it = σ(Wixt + Uiht−1 + bi), (4)
ot = σ(Woxt + Uoht−1 + bo), (5)
ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc), (6)
ht = ot � tanh(ct), (7)

where ft, it, ot, and ct stand for forget gate, update gate,
output gate, and cell state, respectively. ht is the hidden state
and contains encoded patterns of the sequential inputs. We
will use

ht = LSTM(ht−1, xt; Θ) (8)

for the rest of the paper as the abbreviation of (3) – (7).
A vehicle’s movement is a form of sequential data, and it

is in part governed by, especially in short term, kinematics
and vehicle dynamics. For example, a vehicle can’t complete
a sharp turn instantaneously; nor can it slow down from
60 mph to 0 in a blink. Therefore, we use a standard LSTM
network to learn this underlying driving force:

etvv = MLP((xtv − xt−1
v , ytv − yt−1

v );Wvv), (9)

htvv = LSTM(ht−1
vv , etvv,Θvv). (10)

The network first embeds the relative displacement using a
Multi-Layer Perceptron (MLP) network as in (9), and then
uses the embedding and the previous hidden state as inputs
to update the new hidden state for the temporal vehicle-to-
vehicle edge (vt, vt+1) as in (10) (Fig. 4 (b)).

2) Lane-Vehicle Relation Evolution: In addition to the
laws of physics, what’s also determining a vehicle’s move-
ment is the driver’s intention. One’s intention is often not
expressed explicitly, but can be inferred based on the ve-
hicle’s changing relation with each lane because drivers
tend to follow one or a few lanes to stay courteous and to
avoid accidents. We capture this relation with another LSTM
network.

First, with the vehicle’s new position (xtv, y
t
v) and the

updated local lane information lti , we project the vehicle’s
location onto each lane to get a projection point (xtp,i, y

t
p,i).

Then, we get the difference between projection points and
vehicle position, and use MLP to embed this vector: (11).
Finally, as shown in (12), this embedding and the previous
hidden state are used to update the new hidden state htss,i,
which corresponds to the temporal edge (sti, s

t+1
i ) connect-

ing sequential lane-vehicle relation pairs (Fig. 4 (b)).

etss,i = MLP((xtp,i − xtv, ytp,i − ytv);Wss), (11)

htss,i = LSTM(ht−1
ss,i , e

t
ss,i,Θss). (12)

htss,i is expected to contain the learned evolving relation
between a vehicle and the ith lane. We will next show how
this hidden state, as well as other information, of all lanes
can be aggregated to infer a driver’s intention and accurately
predict the vehicle’s future trajectory.

D. Spatial Aggregation

For each lane, we have an encoding htss,i of its historical
evolving relation with the vehicle. We can further encode its
current relative position to the vehicle and its future shape,
each using an MLP network:

etcur,i = MLP((xtp,i − xtv, ytp,i − ytv);Wcur), (13)

etfut,i = MLP(lti ;Wfut), (14)
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and concatenate all three vectors together to form ettot,i, the
overall encoding for each lane at t:

ettot,i = concatenate(htss,i, e
t
cur,i, e

t
fut,i). (15)

To jointly reason across multiple lanes, we must effectively
aggregate the encodings of all lanes (Fig. 4 (c)). This is a
challenging task, because there can be variable number of
lanes but the aggregated output should be compact and of
fixed dimension. Also, different lanes play different roles
in determining a vehicle’s future movement, and the ag-
gregation module needs to take that into consideration too.
Therefore, we tried two different methods for this.

1) Lane-Pooling: The Lane-Pooling method assumes the
deciding factor is a single lane. This single lane is the one
that’s closest to the vehicle and it may vary over time. At
each time-step, Lane-pooling selects the encoding of the lane
that’s closest to the vehicle, and uses it as the aggregated
encoding at:

ipooling = arg min
i

((xtp,i − xtv)2 + (ytp,i − ytv)2), (16)

at = ettot,ipooling
. (17)

2) Lane-Attention: However, it may not be the case that
a driver only focuses on single lane while driving; the
driver may rather pay attention to multiple lanes. Also,
in some cases, such as in the middle of a lane-changing
behavior, there will be an abrupt change in the lane-pooling
result, and this may introduce some negative impacts on the
subsequent network modules. To resolve the above problems,
we developed Lane-Attention.

For the operation of Lane-Attention, first, we compute an
attention score for each lane based on its current location
and historical relation to the vehicle,

score(i, t) = MLP((concatenate(etcur,i, h
t
ss,i));Wscore).

(18)

Then, the overall encoding at is computed by taking a
weighted sum (Fig. 4 (d)) of each lane’s total encoding ettot,i
from (15), with the weights being the normalized attention
scores,

at =

N∑
i=1

exp (score(i, t))∑N
j=1 exp (score(j, t))

· ettot,i. (19)

The resulting aggregated lane encoding at, either from
Lane-Pooling or from Lane-Attention, is expected to contain
learned encoding of a driver’s intention. Next, at, together
with the previous encoding of vehicle’s movement history,
will be combined and used to update the overall hidden-state
corresponding to the vehicular node vt:

etv = concatenate(at, htvv), (20)

Ht
v = LSTM(Ht−1

v , etv,Θv). (21)

Ht
v gets updated at every time-step (Fig. 4 (e)), and can be

used to infer a vehicle’s future moving trajectory.

E. Trajectory Inference and Loss Function

When predicting the trajectory of each vehicle at time t ∈
[1, Tpred/∆t], we assume that each trajectory point follows
a bi-variate Gaussian distribution, and we train the network
to learn all the parameters of the distribution. Therefore, we
process the hidden states Ht

v of vehicular node using an MLP
with the last rectified linear units (ReLU) layer removed,
and output a 5-dimensional vector for each trajectory point,
containing values of the mean vector and covariance matrix:

[µt
x, µ

t
y, σ

t
x, σ

t
y, ρ

t] = MLP(Ht
v;Wpred). (22)

We then use the expectation of the predicted distribution,
(µt

x, µ
t
y), as the delta displacement and add it to (xtv, y

t
v) to

generate the new spatial position of the vehicle: (xt+1
v , yt+1

v ),
which will serve as the input to the LSTM of the subsequent
cycle. This process is repeated until we finish predicting all
the trajectory points up to t = Tpred/∆t.

We use the negative log-likelihood as the loss function and
train the network by minimizing this loss:

L = −
Tpred/∆t∑

t=1

log (P (xtv, y
t
v|µt

x, µ
t
y, σ

t
x, σ

t
y, ρ

t)). (23)

IV. EVALUATION

Our model has been implemented and tested using the
Apollo open-source platform [37]. This section presents the
experimental setup and quantitative and qualitative analysis
of results.

A. Dataset Description

We collected traffic data in urban areas using our
autonomous vehicles built on Lincoln MKZs, equipped
with Velodyne HDL-64E LiDAR and Leopard LI-USB30-
AZ023WDRB cameras. The collected data includes 1) point
clouds from LiDARs for object detection and localization;
2) images from cameras for object and lane-line detection.
The raw data was immediately processed by computer vision
algorithms to detect and track objects. The sampling period
∆t is 0.1 second for our system.

For the detected objects, we filtered out non-vehicular
objects and those with less than 3 seconds of tracking. For
each remaining object, we used 3 seconds of trajectory as the
ground-truth label and the history right before that (which
can contain as small as 0.1 second and up to 2 seconds of
records) as input features, for model training and testing.

The resulting dataset contains 870,107 samples. Among
them, 6.2% are left-turn or U-turn behaviors, 5.9% are right-
turn behaviors, 6.4% are lane-changing, and the rest 81.5%
are mostly driving along the road, straight or curvy. We split
them into three sets for training, validation, and testing. The
partition is based on dates so that no samples from the same
day are spread into different sets. This can greatly decorrelate
the data and ensure good generalizability learned by models.
The numbers of samples in training, validation, and testing
sets follow a ratio of 6 : 2 : 2.5.
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TABLE I
PERFORMANCE COMPARISON

Tpred Metrics LSTM Semantic Map Single-Lane Lane-Pooling Lane-Attention

1 sec.
ADE† 0.2595 0.2826 0.2286 0.2280 0.2238
FDE‡ 0.4823 0.5674 0.4097 0.4085 0.3979

3 sec.
ADE† 1.3257 1.3970 0.9557 0.9374 0.9045
FDE‡ 3.3415 3.1792 2.2885 2.2336 2.1299

† ADE: average displacement error (in meters).
‡ FDE: final displacement error (in meters).

B. Implementation Details

For the two LSTM networks of Fig. 4 (b), the dimensions
of embeddings and hidden states are 32 and 64. All the htss,i,
etfut,i, and etcur,i of Fig. 4 (c) are 64-dimensional vectors.
Therefore, after aggregation in Fig. 4 (d), the resulting at

has a size of 192. Finally, the combined size of at and htvv
is 256, which is processed by the LSTM of Fig. 4 (e) that also
uses 256 as the size of hidden states. The model was trained

LSTM Semantic
Map

Single
Lane

Lane
Pooling

Lane
Attention

Ground
Truth

Observed
History

Fig. 5. A few representative cases showing all models’ prediction for (a)
left-turning, (b) right-turning, and (c) high-speed driving and lane-changing.
Lane-Attention made the best prediction. Legends are shown in (d).

using Adam with a initial learning rate of 0.0003. When
the validation loss plateaued for more than three epochs, the
learning rate was reduced to 0.3× the previous value. The
entire pipeline was implemented using PyTorch framework
and the training was done on a single Nvidia Titan-V GPU.

C. Experimental Results

We separately trained models to predict 1 second and 3
seconds of future trajectory, and evaluated their performance
using the following metrics:

• Average Displacement Error (ADE): the Euclidean dis-
tance between predicted points and ground truth, aver-
aged over the entire predicted time steps.

• Final Displacement Error (FDE): the Euclidean distance
between the predicted position at the final timestamp
(t = Tpred) and the actual final location. This is also
the maximum displacement error in most cases, because
the models predict delta displacements and errors will
accumulate and reach the peak at the end.

Besides the Lane-Pooling and Lane-Attention models, we
trained three more models for benchmark purposes:

• LSTM: A simple LSTM that considers motion history
only, without modeling the surrounding lanes.

• Semantic Map [4]: This approach used a rasterized
semantic map to represent environmental features. We
reproduced the semantic maps, which contain lanes
highlighted in different colors indicating their relations
(adjacent, connected, or of reverse direction, etc.), inter-
section and road boundaries, and bounding boxes with
fading colors to represent the predicted object’s motion
history. 2 CNNs are used to process the semantic map
to help with the trajectory prediction.

• Single-Lane [3]: This method focuses on a single lane of
interest. We implemented it by selecting the lane based
on its proximity to the vehicle at the beginning of the
prediction period. This lane’s encoding was treated as
the pooled result of (17) and the remaining processing
was the same as that of the Lane-Pooling method.

As indicated by the test results, the Lane-Attention model
achieved the best prediction accuracy across all metrics
(Table 1). Also, we note that although the gaps among model
performance are relatively small when predicting 1 second of
trajectory (e.g. the ADE of LSTM is only 16% higher than

2Since code and the original dataset are not available, we implemented
the algorithm and trained the model on our own dataset.
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Fig. 6. (a)-(f) show a few examples of the Lane-Attention model’s prediction vs. actual trajectories, and corresponding visualizations of the learned
attention for each lane as a function of time. (g) is the legend for them.

that of Lane-Attention), they get much larger when 3 seconds
of future trajecotry are predicted (e.g. the ADE of LSTM is
now ∼ 1.5× that of Lane-Attention. So is the FDE.). This
validated our prior expectation that long-term prediction is
more heavily dependent on a driver’s intention which is better
learned by our Lane-Attention Neural Network. The final
displacement error is 0.3979 m after 1 second. It is 2.1299 m
after 3 seconds, roughly the width or half the length of a
mid-size car.

We would also like to point out that, compared with other
works [4], HD map is not a requirement for our model.
Our model works even with the minimum perception of
predicted objects and lane center-lines, without the need to
know details like intersection or road boundary, and reverse
lane information, etc. This makes our model feasible for
many low-cost pure-visual autonomous driving solutions as
well, such as Apollo Lite [38]. The resulting prediction
accuracy is also dependent on the sensors used and hardware
configurations.

Figure 5 shows a few representative cases comparing the
prediction from various models. Among all, Lane-Attention
achieved the closest forecasting to the actual trajectories. The
model also demonstrates strong de-noising capability. For
example, as in Figure 5 (c), even with measurement errors
in longitudinal displacements, the model still achieved an
accurate prediction for a lane-changing vehicle.

D. What Has the Model Learned?

It is of great interest to see what has the model learned
to accomplish the great performance. One tangible way is
to visualize the learned attention scores on various lanes as
functions of time, and a few exemplary cases are shown in
Fig. 6. We make a few observations:

• As indicated by Fig. 6 (a) and (b), the model has learned
to gradually shift its attention away from lanes that are
becoming irrelevant and focus on the really significant
ones which the driver intends to follow.

• From the comparison between (a)(b) and (c) of Fig. 6,
it could be seen that the model learned to focus on
multiple lanes ahead while driving straight, but pay high

amount of attention to the edge lane if following curvy
roads, quite similar to what a human driver would do.

• There are cases when our prediction deviates from the
ground truth (Fig. 6 (d)). A significant number of such
cases happen when a maneuver is done at some future
time and there is no sign of that at the moment. Even
human drivers cannot make correct predictions for these
scenarios. However, whenever such sign appears, even
if it is inconspicuous, our model will correctly predict
the future trajectory as in Fig. 6 (e) (a few hundred
milliseconds after Fig. 6 (d)). Also, Fig. 6 (e) indicates
that during lane-changing, our model gradually shifts
the attention from the vehicle’s original lane to the target
one.

• In addition to lane bifurcation cases as in Fig. 6 (a) and
(b), the model has also learned to predict in cases of
lane merging (Fig. 6 (f)). Note that lanes have the same
attention scores after merging, which makes sense as
they become one lane.

In summary, our model has learned to infer human drivers’
intention. This learned results (e.g. attention scores), in
addition to the predicted trajectories, can also be passed to
the subsequent planning module of an autonomous driving
system for a more reasonable planning of ego vehicle’s
behaviors, on which will be elaborated by our future works.

V. CONCLUSION

This paper presents a deep neural network that leverages
motion history and surrounding environment to predict a ve-
hicle’s moving trajectory. By formulating the task as a spatio-
temporal graph, using LSTM-based temporal evolution, and
applying spatial aggregation of attention mechanisms, our
model has been trained to learn drivers’ intention, manifested
as the different levels of attention scores. The evaluation
of our model’s performance on road-test data collected in
real environment has demonstrated its ability to predict
trajectories that are highly representative of real ones, as
well as its better prediction accuracy than existing models
implementing Euclidean techniques.

Our model, as indicated by Quadrant IV of Fig. 2, tries
to fill in the missing piece of modeling static environment
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using non-Euclidean methods. Combining it with various
methods in Quadrant I of Fig. 2 can enable a more robust
prediction in complicated environment with congested traf-
fics. Furthermore, with advancement in V2X [39], limits like
an autonomous vehicle being unable to perceive traffic lights
seen by other vehicles can be overcome. This traffic light
feature can be considered to enhance model performance in
the future.
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