
Generalizing Learned Manipulation Skills in Practice

Juan Wilches, Yongqiang Huang, and Yu Sun

Abstract— Robots should be able to learn and perform a
manipulation task across different settings. This paper presents
an approach that learns an RNN-based manipulation skill
model from demonstrations and then generalizes the learned
skill in new settings. The manipulation skill model learned
from demonstrations in an initial set of setting performs well
in those settings and similar ones. However, the model may
perform poorly in a novel setting that is significantly different
from the learned settings. Therefore a novel approach called
generalization in practice (GiP) is developed to tackle this
critical problem. In this approach, the robot practices in the
new setting to obtain new training data and refine the learned
skill using the new data to gradually improve the learned skill
model. The proposed approach has been implemented for one
type of manipulation task – pouring that is the most performed
manipulation in cooking applications. The presented approach
enables a pouring robot to pour gracefully like a person in
terms of speed and accuracy in learned setups and gradually
improve the pouring performance in novel setups after several
practices.

I. INTRODUCTION

A. Background

The reason we can perform everyday tasks in various
settings is that we can generalize learned skills. Robots
should have the ability to learn and perform a manipulation
task across different settings as well. A primary goal in
designing a learning approach for manipulation skills is
to guarantee that the learned skill model will generalize -
perform accurately in new settings after being trained in a
finite number of settings.

Analytical models can generalize well if they are based
on physics laws and have all necessary variables and coeffi-
cients. However, these models are hard to define for manip-
ulation tasks since it is unrealistic to obtain all the variables
and their accurate coefficients, especially when dealing with
fluid and soft objects. Neural network models such as a
recurrent neural network (RNN) [1], [2] can learn complex
dynamics, but may not generalize well to data outside of the
training distribution. Regularization techniques such as drop-
out can reduce the model complexity and thereby achieve a
better generalization. In [3], the authors provide an insightful
discussion on explicit and implicit regularization techniques
and their effects on improving the generalization of neural
networks.

Generalization of a neural network does not depend on
only its architecture and training techniques, but also the
training dataset. For manipulation tasks, the training samples
must be sufficiently large and come from a vast of different

The authors are members of the Robot Perception and Action Lab (RPAL)
in the Department of Computer Science & Engineering at the University of
South Florida, Tampa, FL, USA. {jwilches,yongqiang,yusun}@mail.usf.edu

settings. However, before we have a physics simulator that
can accurately simulate dynamics for fluid and soft objects,
manipulation training samples will remain costly to obtain.
So, it is unrealistic to obtain large training samples in a vast
of settings.

Inspired by the human ability to transfer the manipulation
skills learned in a small number of settings to a new setting
after several practices, we have developed an approach called
Generalization in Practice (GiP) for a robot to generalize the
learned manipulation skills. Our approach first learns a skill
model in several settings. Then a robot practices the learned
skill in a new setting that is very different from the training
settings. The model is refined using the data collected during
the practices in the new setting with one trick that is when
training the model, the desired outcomes in the data are
replaced by the real outcomes of the manipulation during the
practices. Switching out the desired outcome with the real
outcomes in training makes the neural network re-calibrate
to the new setting.

To demonstrate the approach, we choose pouring water
as the manipulation task to evaluate the proposed approach
because not only pouring is the most performed manipulation
in cooking applications [4], but also water is difficult to
model and control [5]. It is especially challenging for a robot
to achieve accurate pouring, a problem that cannot be solved
using traditional control policies for two reasons:

1) Lack of precise dynamics models: modeling fluid or
granular motion precisely is either impossible or unfea-
sible because there are many unobservable parameters,
and those parameters vary with many factors such as
the material and the shape of the pouring device.

2) Un-reversible feature of the task: poured material cannot
come back to the pouring device once it is poured out.
Therefore there cannot be overshoot in the system’s
response.

The two difficulties go hand-in-hand. The irreversibility of
pouring calls for a predictive approach that can predict when
to stop and rotate back the pouring container to avoid over-
pouring.

B. Related Works

In order to teach a robot manipulation skills, researchers
have developed many learning-from-demonstration (LfD)
approaches [6], in which a teacher demonstrates how to
perform a task, a policy is derived from the demonstration
and then transferred to a robot [7]. Several works have been
published related to robot learning manipulation skills by
using LfD. In [8] the authors applied reinforcement learning
to learn how to turn a valve and grasp a bottle from a table.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9322

In [9], a robot learned to place, push, and pick-and-place
a new object from a demonstration of a single video. Other
successful LfD applications include playing table tennis [10],
grasping and using tools [11]–[13], and many more [14]–
[16].

Recent works have proposed approaches for the accurate
pouring of liquids. The approaches in [17] and [18] used
RGB-D cameras to measure the water height in the receiving
container and control the rotation of the pouring container
with a simple PID controller. Their smallest mean errors were
38 milliliters (ml) and 13.2 ml, respectively. However, those
methodologies start the container’s backward rotation when
the target height is reached, a technique that might lead to
over-pouring since liquid still comes out when the backward
rotation starts. The approach in [19] used reinforcement
learning with a water simulator to learn a policy for ac-
curately pouring water and transfer the policy to the robot,
which had a mean error of 19.96 ml. The authors also used
RGB-D cameras to detect liquid height. In [20] the authors
rely on an audio spectrogram to determine the volume poured
by the robot. The mean volume errors reported for different
receiving containers ranged from 6.42 ml to 13.79 ml, such
small errors are achieved by the usage of a spout at the
opening of the pouring containers, which reduces the speed
of pouring.

In [2], the authors propose predictive model control (MPC)
for accurate robotic pouring in which they achieved mean
volume errors ranging from 7.25 ml to 26.13 ml for different
pouring containers. Another work [1] presented a Long-
Short-Term Memory (LSTM) model that was trained using
demonstration data. However, the learned model was only
evaluated in simulation. In [21] the authors use both vision
and weight, achieving a pouring error of less than 5 ml with a
time from 20 to 45 seconds per pour. In our dataset, collected
from human demonstrations, the pouring time ranged from
3.2 to 8.7 seconds to pour water. If requested, humans can
also achieve a small pouring error by pouring slowly.

II. LEARNING MANIPULATION SKILL

To learn a manipulation skill, we first define a general
time-sequence model as

y(t) = F(y(1, ..., t− 1),o(1, ..., t− 1),u) (1)

where y(t) represents the manipulation motion signal such
as velocity at time t; y(1, ..., t − 1) and o(1, ..., t − 1)
are the motion signals and the outcomes respectively of all
previous times, while u denotes the setting and the desired
outcome. F(·) is a non-linear function. The model gives
a general representation of a manipulation skill where the
motion signal at the current time is a function of the setting,
the desired outcome, the outcomes of all previous time steps,
and the motion signals of all previous signal steps.

Using pouring as an example, the current pouring rotation
velocity is a function of the setting – the pouring cup size,
the condition – initial water volume in the pouring cup, and
the goal – the desired volume in the receiving cup, and
states including the water volumes in the receiving cup of all

previous steps (the outcomes of all previous time steps) and
all previous pouring rotation velocities (the motion signals
of all previous signal steps). Therefore, we can represent the
general time-sequence model from Eq. (1) with:

ω(t) = F
(
ω(τ)t−1τ=1, v(τ)

t−1
τ=1, h, κ, vinitial, vdesired

)
(2)

where ω(t) is the angular velocity of the pouring container
at time step t, ω(τ) are the pouring container’s velocities
at all previous time steps, v(τ) are the volumes of water
in the receiving container at at all previous time steps, h
is the height of the pouring container, κ = 2/d is the
body curvature of the pouring container with d being the
diameter of the container, vinitial is the initial amount of
water present in the pouring container before pouring, and
vdesired is the desired water amount should be poured into
the receiving container. F(·) represents a dynamical system
that establishes relationship among the motion signals, the
outcomes and the settings. For pouring, the angular velocity
ω(t) is the action that pushes the motion forward.

Based on the time-sequence features of the manipulation
skill model, we selected RNN as the skill model’s structure
since it is capable of processing time series inputs and has
been shown to be an universal approximator of dynamic
systems [22]. At each time, an RNN model takes in the
current input and the hidden state of the RNN model at
the previous time. The current outcome of the manipulation
motion can be used as the input of the RNN model, while
the past outcomes and motion signals can be represented in
the hidden state of the RNN model at the previous time.
The setting and the desired outcome can be provided to the
RNN model either as the initial hidden state or as a part
of the input. Based on our previous work [1], we designed
the learning model using peephole long short-term memory
(LSTM) units [23]. The inputs and outputs are processed
inside the peephole LSTM cell for each time step t as
follows:

it = σ (Wixt +Uiyt−1 + bi + pi � ct−1) (3)
ft = σ (Wfxt +Ufyt−1 + bf + pf � ct−1) (4)
gt = tanh (Wgxt +Ugyt−1 + bg) (5)
ct = ft � ct−1 + it � gt (6)
ot = σ (Woxt +Uoyt−1 + bo + po � ct) (7)
yt = ot � tanh(ct) (8)

where it, ot, and ft are the input, output, and forget
gates respectively. The matrices (W∗,U∗,b∗,p∗) represent
the weights, biases and peephole connections weights to
be learned respectively. The sequences xt, ct, and yt are
the input, cell state and hidden state of the network at
time step t respectively. σ represents the sigmoid function
that controls the information flow through the gates. “tanh”
represents the tanh function that is used to alleviate the
vanishing or exploding gradients. � represent element-wise
multiplication. The illustration of the peephole LSTM cell is
shown in Fig. 1.

9323

Fig. 1: Mechanism of a peephole LSTM cell

From Eq. (2) we established the inputs to the network at
each time step as:

xt = [θt, vt, h, κ, vinitial, vdesired] (9)

where θt is the pouring container’s angle at time step t that
represents the numerical integration of the velocities of all
previous time steps, vt is the volume of water in the receiving
container at time step t that represents the outcome volume
of all previous time steps. The rest of the features are the
same as in Eq. (2). The inputs can be represented as:

xt = [θt, vt, z]
> (10)

where z = [h, κ, vinitial, vdesired] represent the setting of the
pouring task that distinguishes one task from another. The
variables θt and vt represent the change of the dynamics of
the system.

The output of the network is:

ωt = Wωyt + bω (11)

where ωt is the angular velocity of the pouring container at
time step t, Wω and bω represent the weights of a fully
connected layer that reduces the vector yt to a scalar. The
processing of the recurrence of inputs and outputs is shown
in Fig. 2.

LSTM LSTM LSTM . . . LSTM

θ1v1
z

 θ2v2
z

 θ3v3
z

 θtvt
z

ω1 ω2 ω3 ωt. . .

c1, h1 c2, h2 c3, h3

. . .

Fig. 2: High level view of the LSTM model inputs and outputs with
z = [h, κ, vinitial, vdesired]

>

Training. The LSTM RNN skill model was trained with
pouring data in the open Daily Interactive Manipulation
(DIM) dataset [24], [25]. The DIM dataset does not have

a direct volume reading of the receiving container. Instead,
it has the recording of a force sensor under the receiving
container. The volume is proportional to the weight reading.
The dataset has 284 pouring trials of 9 containers, from
which 221 were used for training and 63 for validation. The
loss function in the training is defined as the mean squared
error between the recorded and predicted angular velocity
ωt:

L =
1

N

N∑
i=1

1

Ti − 1

Ti−1∑
t=1

(ω̂it − ωit)2. (12)

where ω̂it and ωit are the predicted angular velocity and
actual angular velocity for trial i and time step t respectively,
N is the number of trials, and Ti is the number of time steps
of the trial. After trying and training different LSTMs with
varying number of layers and units, the final skill model
architecture is composed of 1 layer and 16 LSTM units. The
number of units establish the vector size of Eqs. (3) to (8).
The model was trained for 2000 epochs with 50% dropout
and learning rate of 1 × 10−3. The model with the lowest
validation loss was selected as the pouring skill model. We
refer to this network as model M0 in the paper.

III. GENERALIZATION IN PRACTICE

As expected the trained manipulation skill model (model
M0) pours accurately with the same or similar pouring
containers used in training as shown in the evaluation section
IV-B. However, the model performs poorly when the setting
is changed – using dramatically different containers as shown
in Section IV-C. This requests the novel generalization in
practice (GiP) approach.

Practice. When the robot is facing a new set – an unseen
container that is significantly different from the ones in the
learning set, the robot can performs pouring practices using
the learned skill model M0. The outcomes are observed and
recorded. If the outcome is not satisfactory, such as the error
of the poured amount is much higher than an averaged human
pouring error, the robot knows the learned skill model M0

does not work well in the new setting. However the data
collected during practices are useful to fine-tune the skill
model. If we replace the desired pouring goals with the actual
pouring outcomes in the practice data, we can fine-tune the
model using the practice data for the new setting.

Fine-tuning. The practice data for the fine-tuning have
inputs including the new setting, the goal – the actual out-
come in practices, initial conditions, and states. The output
in the practice data would be the robot’s current manipulation
motion at each time step. For pouring manipulation and the
LSTM model, he inputs of the data for fine-tuning are
• h: height of the pouring container.
• κ = 2/d: body curvature of the pouring container with
d being the diameter of the container.

• vinitial: the initial amount of water present in the
pouring container before pouring.

• vdesired: the final water volume in the receiving con-
tainer in the practice, not the desired value provided
to the robot for practice.

9324

• vt: the volume of water received in the receiving con-
tainer in the practice at time t.

• θt: pouring container’s current angle in the practice at
time t.

For fine-tuning, the desired outcome is replaced by the actual
outcome in the practice as indicated above in bold. The
output of the fine-tuning is

• ωt: the angular velocity of the pouring container in the
practice.

Using the altered inputs and output, the data generated in
practice can be used to fine-tune the skill model.

Gradual Fine-tuning. The practicing and fine-tuning (or
transfer learning) can be carried out iteratively. However,
in practice, one sample does not provide enough data for
a stable fine-tuning. Instead, we fine-tune the skill model
using a small number of practices in each iteration. The
resulting new skill model is tested to verify whether its
performance is better than the previous one with a new set
of practices. If it is not, the new practices are added into the
fine-tuning dataset. Then a new model is fine-tuned, and its
performance is verified again. This iteration is done until a
good enough performance is reached. Algorithm 1 describes
this working mechanism with n < 15. We represent the
performance of the skill model using an error whose lower
value indicates better performance. The skill model is fine-
tuned for several epochs equivalent to 10 times the number
of available samples with 50% dropout and learning rate of
1× 10−4.

Batch Fine-tuning GiP can also be carried out in batch
mode. The skill model is fine-tuned once for all after a large
number of practising data has been accumulated. In this case
only one fine-tuning is performed, instead of several fine-
tunings in gradual fine-tuning mode. It is a result of running
only one loop of Algorithm 1 with n > 30. However, this
model could be risky and costly as the robot needs to practise
the initial skill model for a large number of times and the
performance in all the practices is poor. The skill model is
fine-tuned with the same hyperparameters used for gradual
fine-tuning.

The generalization in practice (GiP) with gradual fine-
tuning is described in Algorithm 1.

IV. EXPERIMENTS AND EVALUATIONS

A. Pouring System

To evaluate the proposed approach, we have designed and
developed a pouring robot. It consists of a Dynamixel MX-64
motor and ATI mini40 force-torque sensor. The motor was
placed at a certain height above the surface with the pouring
container attached to it and the force sensor was placed below
the receiving container. Fig. 3 shows the configuration of the
pouring system. This system works at 60 Hz which allows it
to pour water at a pace similar to human pouring. We also
tested our proposed approach in a UR5e collaborative robot
arm.

Algorithm 1 Generalization in Practice (Gradual fine-tuning)

1: Minit ← Initial model
2: n← Number of practices
3: P ← {(p1s, p1d), ..., (pns , pnd)} A set of n manipulation

practices
4: . pis ← start status; pid ← desired outcome
5: err sa← Satisfactory precision
6: D ← {}
7: procedure PRACTISE(M , n, P)
8: repeat
9: Robot executes one practice in set P , using

model M
10: D ← D ∪ {(x, y)} . (x, y) : input/output and

outcomes of the practice are added into D
11: until n practices are executed
12: error ← averaged error between actual outcomes

and desired outcomes for all practices
13: return error
14: end procedure
15: procedure GIP
16: Mnew ←Minit

17: while True do
18: err ← PRACTISE(Mnew, n, P)
19: if err < err sa then
20: break
21: else
22: Mnew ← Fine-Tune(Mnew,D) . Fine-tune

the model using all practice data in D
23: P ← Generate-Random-Practices (n) .

Randomly generate another set of practices
24: end if
25: end while
26: return Mnew

27: end procedure

Network

Motor

Force Sensor

h
κ

vinitial
vdesired

ω(t)

v(t)

θ(t)

Fig. 3: Pouring robot architecture. The constant features
[h, κ, vinitial, vdesired] are sent to the network, the force sensor
measures v(t), the motor measures θ(t) and the network outputs
ω(t). All features are handled by the network at each time step.

B. Pouring Evaluations in Similar settings
We tested the accuracy of the pouring system for five dif-

ferent pouring containers not present in the training dataset.

9325

The model used for these experiments is model M0 that
results from training using LfD. Fig. 4 shows the training
and testing pouring containers where we can see that the Red
Cup was used for training and testing. Table I summarizes
the mean and standard deviation errors over 15 water pours
performed by different robotic systems for each pouring
container. The time taken for the system to perform the
pouring motion ranged from 2.8 to 7.6 seconds. We can
see that our system pours accurately to the testing cups and
our mean errors are comparable to those encountered in the
related works of accurate robotic pouring already discussed
in section I-B. We can also see that the model worked for a
UR5e collaborative robotic arm shown in Fig. 5 with a slight
increase in pouring error 1.

Fig. 4: Cups used in the initial experiments.

Fig. 5: Pouring example with UR5e collaborative robotic arm.

We compared our results with a baseline controller that
applies a constant angular velocity for the forward and back-
ward rotation. The goal of this experiment was to explore
the difficulty of achieving accurate pouring using a simple
controller. The forward constant velocity is applied to the
pouring container until the target volume is reached, a similar
approach used in [17], [18] but in our experiment we used
a force sensor instead of vision to measure the volume of

1A video of pouring with the UR5e arm can be found at:
https://youtu.be/xp9nEDTntU4

TABLE I: Accuracy for pouring water from different pouring
containers.

Robotic System Pouring Container µe (ml) σe (ml)

Pouring Robot

Red Cup 4.78 3.56
Water Bottle 4.12 4.29
Bubble Cup 6.77 5.76

Glass 7.32 8.24
Tall Bottle 12.35 8.88

Measuring Cup 13.13 8.04
UR5e robotic arm Water Bottle 7.83 6.62

water in the receiving container. Then, the backward constant
velocity is applied until the pouring container is in vertical
position. The results can be seen in Table II for two pouring
containers and baselines. The baseline ω1 controller used 20
deg/sec as forward velocity and −30 deg/sec as backward
velocity. The baseline ω2 controller used 5 deg/sec as forward
velocity and −7.5 deg/sec as backward velocity. We can
see that when the forward angular velocity becomes smaller,
the mean volume error decreases. This is expected since the
pouring speed is decreased. However, we can also see that
when the forward velocity is higher (similar to the human
pace) the results of our model shown in Table I outperform
the baselines’ shown in Table II.

TABLE II: Results of Pouring with a Baseline Controller

Pouring Container Baseline µe (ml) σe (ml)

Red Cup ω1 33.50 7.76
ω2 4.50 1.87

Bubble Cup ω1 56.25 5.85
ω2 22.25 4.29

C. Evaluations in Different settings

We aimed to evaluate model M0 using new pouring
containers, specifically a wine bottle and a blue bottle which
have different geometry than the already trained and tested
containers. Fig. 6 shows the scatter plot of height and diam-
eter for the original training and testing containers and also
for the wine bottle and blue bottle. We can see that these new
containers are far in terms of height and diameter from the
ones already used by the pouring system. In the evaluation,
we kept all the other factors (initial volume, desired volume
for each trial) the same to give a fair comparison.

Table III shows the mean and standard deviation error of
the desired volume versus the actual volume for 15 pouring
motions executed by the system. The system is inaccurate
for pouring from the wine bottle and blue bottle more than
ten times in average than pouring from the red cup. It is also
inaccurate for pouring from the measuring cup around three
times in average than pouring from the red cup.

D. Evaluating GiP

We evaluated our approach of GiP using batch fine-tuning
for the wine bottle, blue bottle and measuring cup. The
gradual fine-tuning approach was tested for the wine bottle
as well. We tested the accuracy of the system by pouring 15

9326

TABLE III: Comparison of accuracy for Red Cup, Wine Bottle,
Blue Bottle and Measuring Cup of M0.

Pouring
Container

LSTM
Model µe (ml) σe (ml)

Red Cup M0 4.78 3.56
Wine Bottle M0 51.22 39.61
Blue Bottle M0 55.85 47.32

Measuring Cup M0 13.13 8.04

Fig. 6: Scatter plot of height vs diameter for pouring containers.

times per experiment for batch fine-tuning and carried out
the experiments maintaining the same sets of volumes for
fair comparison.

1) Wine Bottle: We collected a total of 36 pouring mo-
tions using the pouring system with the wine bottle as
pouring container for different vinitial and vdesired. Then,
we fine-tuned the original LSTM RNN skill model using
such dataset. Fig. 7(a) shows the mean and standard deviation
errors for 15 pours using before and after fine-tuning M0.
Model M1 was the result of applying GiP to M0 using the
wine bottle dataset. We can see that the wine bottle’s mean
error had a reduction of around 3 times compared with the
initial 51.22 ml mean error. We can see that for model M0

most of the trials resulted in over pouring. However, for
model M1 there are some trials that over pour but others
under pour.

We also tested the gradual fine-tuning approach of GiP
using the wine bottle. We decided to use it taking into
account the high mean error it presents for pouring using
the original LSTM model. We collected 10 pouring motions
using the robot for each fine-tuning also for different vinitial
and vdesired. Table IV shows the evolution of the accuracy
for the fine-tuning algorithms we carried out. The mean and
standard deviation errors for this case are different from the
ones shown in Table III as the vinitial, vdesired and number
of trials were different. We can see that after three fine-tuning
runs the mean volume error is similar to that achieved by
using batch fine-tuning.

2) Blue Bottle: We decided to apply only batch fine-
tuning for the blue bottle. We collected 54 pouring motions

(a) Wine Bottle M0 vs M1

(b) Blue Bottle M0 vs M5

(c) Measuring Cup M0 vs M6

Fig. 7: Accuracy comparison for applying GiP to different cups for
the same vinitial and vdesired.

TABLE IV: Accuracy for Wine Bottle after gradual fine-tuning.

Base
Model

Fine-tuned
Model µe (ml) σe (ml)

M0 80.23 49.13
M0 M2 38.67 11.98
M2 M3 30.04 17.26
M3 M4 18.21 8.76

using the blue bottle as pouring container. Fig. 7(b) shows
the mean and standard deviation errors for 15 pours using
before and after fine-tuning M0. Model Model M5 was the
result of applying GiP to M0 using the blue bottle dataset.
We can also see for this bottle the reduction in mean error.

9327

3) Measuring Cup: We collected 36 pouring motions
using the measuring cup. We also decided to use batch fine-
tuning for this pouring container and applied GiP. M6 results
from applying GiP to M0 using the measuring cup dataset.
We can see a reduction again in mean error when comparing
the desired and actual volume poured by the system.

V. CONCLUSION

In this paper, we presented a novel approach called
generalization in practice (GiP) and demonstrated how it
could be applied to accurate robotic pouring. The approach
expands the generalization ability of a trained manipulation
skill model to new settings. GiP considers the actual practice
outcomes as the desired results and then uses them for
training. We evaluated our approach with three pouring
containers that are significantly different in geometry from
the training containers. They were a wine bottle, a blue
bottle, and a measuring cup that presented volume mean
errors of 51.22 ml, 55.85 ml and 13.13 ml before applying
GiP. Then, we applied GiP with batch fine-tuning, and the
model achieved mean volume errors of 15.78 ml, 14.35 ml,
and 8.38 ml for the same pouring containers, respectively.
These results demonstrate that the proposed GiP approach
can generalize learned manipulation skills to new settings.
The GiP approach works for any applications, in which actual
outcomes in practices can be used as the desired outcomes
so that the actual outcome can substitute the desired outcome
for training. In different manipulation tasks, outcomes could
be a volume, a state [26], or a state change [27].

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1421418, No.
1560761 and No. 191004.

REFERENCES

[1] Y. Huang, Y. Sun, Learning to pour, in: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp.
7005–7010. doi:10.1109/IROS.2017.8206626.

[2] T. Chen, Y. Huang, Y. Sun, Accurate pouring using model predictive
control enabled by recurrent neural network, in: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 7688–7694. doi:10.1109/IROS40897.2019.8967802.

[3] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understand-
ing deep learning requires rethinking generalization, arXiv preprint
arXiv:1611.03530 (2016).

[4] D. Paulius, Y. Huang, J. Meloncon, Y. Sun, Manipulation motion
taxonomy and coding for robots, in: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp.
5596–5601. doi:10.1109/IROS40897.2019.8967754.

[5] T. López Guevara, N. Taylor, M. Gutmann, S. Ramamoorthy, K. Subr,
Adaptable pouring: Teaching robots not to spill using fast but approx-
imate fluid simulation, 2017, 1st Conference on Robot Learning 2017,
CoRL 2017 ; Conference date: 13-11-2017 Through 15-11-2017.
URL http://www.robot-learning.org/

[6] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming
by demonstration, in: B. Siciliano, O. Khatib (Eds.), Handbook of
Robotics, Springer, Secaucus, NJ, USA, 2008, pp. 1371–1394.

[7] B. D. Argall, S. Chernova, M. Veloso, B. Browning, A
survey of robot learning from demonstration, Robotics
and Autonomous Systems 57 (5) (2009) 469 – 483.
doi:https://doi.org/10.1016/j.robot.2008.10.024.

[8] A. Gupta, C. Eppner, S. Levine, P. Abbeel, Learning dexterous
manipulation for a soft robotic hand from human demonstrations, 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2016) 3786–3793.

[9] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, S. Levine,
One-shot imitation from observing humans via domain-adaptive meta-
learning, CoRR abs/1802.01557 (2018). arXiv:1802.01557.
URL http://arxiv.org/abs/1802.01557

[10] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, A. G.
Billard, Learning and reproduction of gestures by imitation,
IEEE Robotics Automation Magazine 17 (2) (2010) 44–54.
doi:10.1109/MRA.2010.936947.

[11] Y. Lin, Y. Sun, Grasp planning based on strategy extracted from
demonstration, in: 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, 2014, pp. 4458–4463.

[12] Y. Lin, Y. Sun, Robot grasp planning based on demonstrated grasp
strategies, The International Journal of Robotics Research 34 (1)
(2015) 26–42.

[13] Y. Lin, Y. Sun, Task-oriented grasp planning based on disturbance
distribution, in: Robotics Research, Springer, 2016, pp. 577–592.

[14] Y. Huang, Y. Sun, Generating manipulation trajectory using mo-
tion harmonics, in: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 4949–4954.
doi:10.1109/IROS.2015.7354073.

[15] D. Paulius, Y. Sun, A survey of knowledge representation in service
robotics, Robotics and Autonomous Systems 118 (2019) 13–30.

[16] D. Paulius, N. Eales, Y. Sun, A motion taxonomy for manipulation
embedding, in: Robotics: Science and Systems (RSS), 2020, pp. 1–9.

[17] C. Schenck, D. Fox, Visual closed-loop control for pouring liquids,
2017 IEEE International Conference on Robotics and Automation
(ICRA) (2017) 2629–2636.

[18] C. Do, W. Burgard, Accurate Pouring with an Autonomous Robot
Using an RGB-D Camera: Proceedings of the 15th International
Conference IAS-15, 2019, pp. 210–221. doi:10.1007/978-3-030-
01370-7 17.

[19] C. Do, C. Gordillo, W. Burgard, Learning to pour using deep deter-
ministic policy gradients, 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2018) 3074–3079.

[20] H. Liang, S. Li, X. Ma, N. Hendrich, T. Gerkmann, F. Sun,
J. Zhang, Making sense of audio vibration for liquid height estima-
tion in robotic pouring, in: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 5333–5339.
doi:10.1109/IROS40897.2019.8968303.

[21] M. Kennedy, K. Schmeckpeper, D. Thakur, C. Jiang, V. Kumar,
K. Daniilidis, Autonomous precision pouring from unknown contain-
ers, IEEE Robotics and Automation Letters 4 (3) (2019) 2317–2324.
doi:10.1109/LRA.2019.2902075.

[22] N. Mohajerin, S. L. Waslander, Multistep prediction of dynamic
systems with recurrent neural networks, IEEE Transactions on Neu-
ral Networks and Learning Systems 30 (11) (2019) 3370–3383.
doi:10.1109/TNNLS.2019.2891257.

[23] F. A. Gers, N. N. Schraudolph, J. Schmidhuber, Learning precise
timing with lstm recurrent networks, J. Mach. Learn. Res. 3 (2003)
115–143. doi:10.1162/153244303768966139.
URL https://doi.org/10.1162/153244303768966139

[24] Y. Huang, Y. Sun, A dataset of daily interactive manipulation, The
International Journal of Robotics Research 38 (8) (2019) 879–886.
doi:10.1177/0278364919849091.

[25] Y. Huang, M. Bianchi, M. Liarokapis, Y. Sun, Recent data sets on
object manipulation: A survey, Big data 4 (4) (2016) 197–216.

[26] A. B. Jelodar, M. S. Salekin, Y. Sun, Identifying object states in
cooking-related images, arXiv preprint arXiv:1805.06956 (2018).

[27] A. B. Jelodar, Y. Sun, Joint object and state recognition using lan-
guage knowledge, in: 2019 IEEE International Conference on Image
Processing (ICIP), IEEE, 2019, pp. 3352–3356.

9328

