
Bounded Sub-optimal Multi-Robot Path Planning Using
Satisfiability Modulo Theory (SMT) Approach

Pavel Surynek1

Abstract— Multi-robot path planning (MRPP) is a task of
planning collision free paths for a group of robots in a graph.
Each robot starts in its individual starting vertex and its task
is to reach a given goal vertex. Existing techniques for solving
MRPP optimally under various objectives include search-based
and compilation-based approaches. Often however finding an
optimal solution is too difficult hence sub-optimal algorithms
that trade-off the quality of solutions and the runtime have
been devised. We suggest eSMT-CBS, a new bounded sub-
optimal algorithm built on top of recent compilation-based
method for optimal MRPP based on satisfiability modulo
theories (SMT). We compare eSMT-CBS with ECBS, a major
representative of bounded sub-optimal search-based algorithms.
The experimental evaluation shows significant advantage of
eSMT-CBS across variety of scenarios.

I. INTRODUCTION AND MOTIVATION

Multi-robot path planning in graphs (MRPP) [1]–[4] and
related pebble motion on graphs (PMG) [5], [6] represent
important concepts for understanding motion planning in
robotics from the combinatorial perspective. The MRPP
problem consists a graph, G = (V,E) and a set R =
{r1, r2, . . . rk} of k robots where each robot is placed in
a vertex so that at most one robot resides in a vertex.

The task is to find a sequence of move/wait actions for
each robot ri, moving it from its initial position to a given
individual goal such that robots do not collide, i.e., do not
occupy the same location at the same time while moving
towards their goals following the plan.

Although MRPP assumes discretization of both time and
space it has many applications in continuous physical en-
vironments (see [7] for a survey). Examples include multi-
robot navigation and coordination [8], robot reconfiguration
in automated warehouses [9], ship collision avoidance [10],
or formation maintenance and maneuvering of aerial vehicles
[11]. The scope of this paper is limited to the setting of fully
cooperative robots that are centrally controlled.

The discretization of space and time in MRPP is important
for simplifying the problem - solving MRPP is often easier
than solving the corresponding problem in the continuous
space and time [12]. Moreover discrete plans can be executed
on physical robots if robots’ movements are synchronized
with the discrete plan. The synchronization can be achieved
for example by reflex capabilities of robots as we show in
our simulations with OZOBOT Evo robots [13].

1Faculty of Information Technology, Czech Technical University
in Prague, Thákurova 9, 160 00 Praha 6, Czech Republic
pavel.surynek@fit.cvut.cz

The author has been supported by GAČR - the Czech Science Foundation,
grant registration number 19-17966S.

MRPP is usually solved aiming to minimize one of
commonly-used global cumulative cost functions such as:
(1) sum-of-costs is the summation, over all robots, of the
number of time steps required to reach the goal location [3],
[14]–[16] or (2) makespan - the time until the last robot
reaches its goal vertex [17]–[19].

Optimal solvers for MRPP can be divided to two classes.
(1) Search-based solvers. These algorithms consider MRPP
as a graph search problem. Some of these algorithm are
variants of the A* algorithm that search [3], [20]. Others
algorithms such as ICTS [15] and CBS [7], [21] employ novel
(non-A*) search tree.

(2) Compilation-based solvers. By contrast, some op-
timal solvers compile MRPP to known problems such
as constraint satisfaction (CSP) [22], Boolean satisfiability
(SAT) [23], Inductive Logic Programming [24] and Answer
Set Programming [25]. These solvers employ a polynomial-
time reduction from MRPP to the target formalism. In this
paper we further widen this direction and introduce SMT-
based bounded sub-optimal solver built using previous
state-of-the-art compilation-based solver SMT-CBS [26].

Many suboptimal solvers were developed for MRPP to
trade-off the quality of solutions and the runtime. Some
suboptimal solvers aim to to quickly find paths for all robots
while paying no attention to the quality of the solution, i.e.,
how far it is from the optimal solution. We refer to such al-
gorithms as any solution MRPP solvers. Many any solution
MRPP solvers were proposed [1], [22], [27]–[29], and there
are even polynomial time any solution MRPP solvers such
as PUSH-AND-SWAP [30], PUSH-AND-ROTATE [31], and
BIBOX [32]. Polynomial time algorithms are usually used
when k is large, but they guarantee the quality of solutions
only roughly.

In some cases, the user might ask for some guarantee on
the quality of the solution. A common type of such a require-
ment is that the solution found is bounded suboptimal, that
its cost is ≤ (1 + ε) × copt where copt is the cost of the
optimal solution and ε is a parameter that sets the desired
amount of suboptimality - sometimes called the error. A
solver that returns bounded-suboptimal solutions is referred
to as a bounded-suboptimal algorithm or more specifically
(1 + ε)-bounded suboptimal.

Despite the large number of works devoted to optimal or
to suboptimal solutions, there are only few approaches that
provide bounded suboptimal solutions: ECBS [33] and CBS
with highways [27], both are modifications of the conflict
based search (CBS) algorithm, and eMDD-SAT [34], a sub-
optimal variant of the SAT-based solver MDD-SAT [35].

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11631

α+

α0 r1

r2

r3

r1

r2

r3

α0 α1 α2 α3 α4= α+

A C C C D

B B A A A

D D D B B

B C

D
r1

r2

r3 B C

D

A A

Fig. 1. An MRPP instance with three robots r1, r2, and r3.

A. Contributions

We introduce a new satisfiability modulo theory-based
solver eSMT-CBS. The new solver is built on top of the
existing optimal SMT-based solver SMT-CBS [26]. The SMT
paradigm [36], [37] is similar to SAT-based solvers but
integrates the underlying SAT solver [38] in a more active
way into the solving process for the target problem.

The organization of the paper is as follows. We first give
the background in conflict-based search. Then prerequisites
for constructing SMT framework for robot path planning are
recalled, the SAT-based MRPP solving and the satisfiability
modulo theory-based SMT-CBS algorithm. On top of this,
the bounded sub-optimal algorithm eSMT-CBS is developed.
Finally, an experimental evaluation comparing eSMT-CBS
with major search-based sub-optimal algorithm ECBS [39]
is presented showing that eSMT-CBS achieves significantly
better or comparable performance across diverse scenarios
and hence represents a viable alternative to search-based
solvers

II. BACKGROUND

We first recall multi-robot path planning (MRPP) [1], [40]
formally and related solvers as they appear in the literature.

A. Multi-robot Path Planning

In MRPP, the time is discretized into time steps. The
configuration of robots at time-step t is denoted as αt :
R 7→ V . Formally, an MRPP instance is a tuple Σ =
(G = (V,E), R, α0, α+) where α0 : R 7→ V is an
initial configuration of robots and α+ : R 7→ V is a goal
configuration of robots. A solution for Σ is a sequence of
configurations S(Σ) = [α0, α1, ..., αµ] such that αt+1 results
from valid movements from αt for t = 1, 2, ..., µ − 1, and
αµ = α+. Orthogonally, the solution can be represented as
a set of paths for individual robots.

At each time step a robot can either move to an adjacent
location or wait in its current location. Robots must not
conflict, i.e., must not occupy the same location at the same
time. Typically, a robot can move into adjacent unoccupied
vertex provided no other robot enters the same target vertex
but other rules for movements are used as well 1.. An
example of MRPP instance and its solution is shown in
Figure 1.

Our bounded sub-optimal solver will use the sum-of-costs
as the objective function formally introduced as follows:

1Different movement rules such as train-like movements where only
the leading robot needs to enter a vacant vertex while other robots can
immediately follow it are also used.

Definition 1: Sum-of-costs denoted ξ is the summation,
over all robots, of the number of time steps required to
reach the goal. Formally, ξ =

∑k
i=1 ξ(path(ri)), where

ξ(path(ri)) is an individual path cost of robot ri connecting
α0(ri) calculated as the number of edge traversals and wait
actions. 2

Observe that in the sum-of-costs we accumulate the cost of
wait actions for robots not yet reaching their goal vertices. A
feasible solution of a solvable MRPP instance can be found
in polynomial time [5], [6]; precisely the worst case time
complexity of most practical algorithms for finding feasible
solutions is O(|V |3) (asymptotic size of the solution is also
O(|V |3)) [30], [31], [41], [42]. This is also asymptotically
best what can be done as there are MRPP instances requiring
Ω(|V |3) moves.

Finding an optimal solution with respect to the sum-of-
costs objective is NP-hard [17], [43] and also determining
the existence of a solution that differs from the optimum by
a factor less than 4/3 in case of the makespan optimization
is NP-hard too [44]. Therefore designing algorithms based
on search and Boolean satisfiability (SAT) [45] for MRPP is
justifiable.

B. Conflict-based Search

Conflict-based search (CBS) [16] is a major search-based
algorithm for MRPP. CBS resolves conflicts lazily; that is, a
solution of MRPP is not searched against the complete set of
movement constraints that forbids collisions between robots
but with respect to initially empty set of collision forbidding
constraints that gradually grows as new conflicts appear. The
advantage of CBS is that it can find a valid solution before
all constraints are added.

The high level of CBS searches a constraint tree (CT)
using a priority queue in breadth first manner. CT is a binary
tree where each node N contains a set of collision avoidance
constraints N.constraints - a set of triples (ri, v, t) forbid-
ding occurrence of robot ri in vertex v at time step t, a
solution N.paths - a set of k paths for individual robots,
and the total cost N.ξ of the current solution.

The low level process in CBS associated with node N
searches paths for individual robots with respect to set of
constraints N.constraints. For a given robot ri, this is a
standard single source shortest path search from α0(ri) to
α+(ri) that avoids a set of vertices {v ∈ V |(ri, v, t) ∈
N.constraints} whenever working at time step t. For details
see [16].

CBS stores nodes of CT into priority queue OPEN sorted
according to ascending costs of solutions. At each step CBS
takes node N with lowest cost from OPEN and checks
if N.paths represent paths that are valid with respect to
movements rules in MRPP. That is, N.paths are checked for
collisions. If there is no collision, the algorithms returns valid
MRPP solution N.paths. Otherwise the search branches by
creating a new pair of nodes in CT - successors of N .

2The notation path(ri) refers to a sequence of vertices and edges
connecting α0(ri) and α+(ri) while ξ assigns the cost to a given path.

11632

Assume that a collision occurred between robots ri and rj
in vertex v at time step t. This collision can be avoided if
either robot ri or robot rj does not reside in v at timestep
t. These two options correspond to new successor nodes
of N - N1 and N2 that inherit set of conflicts from N
as follows: N1.conflicts = N.conflicts ∪ {(ri, v, t)} and
N2.conflicts = N.conflicts ∪ {(rj , v, t)}. N1.paths and
N1.paths inherit path from N.paths except those for robot
ri and rj respectively. Paths for ri and rj are recalculated
with respect to extended sets of conflicts N1.conflicts and
N2.conflicts respectively and new costs for both robots
N1.ξ and N2.ξ are determined. After this N1 and N2 are
inserted into the priority queue OPEN.

The CBS algorithm ensures finding sum-of-costs optimal
solution. Detailed proofs of this claim can be found in [16].
The high-level of CBS is similar to Dijkstra’s algorithm for
finding shortest path [46] using only g-values for selecting
the next node for expansion. It can be modified towards more
A*-like algorithm by adding heuristic h-values [47] and also
towards bounded sub-optimal algorithm where g values (or
g + h values) could differ from the correct value by factor
(1 + ε) [33].

III. MRPP COMPILATION

A major alternative to CBS is represented by compilation
of MRPP to Boolean satisfiability (SAT) [34], [48] and using
the satisfiability modulo (SMT) theory approach [26].

A. SAT-based Approach

The idea is to construct a Boolean formula whose sat-
isfiability corresponds to existence of a solution of sum-
of-costs ξ to a given MRPP Σ. Moreover, the approach is
constructive; that is, a solution to MRPP can be reconstructed
from satisfying assignment of the formula.

There are two ways how to connect satisfiability of the
formula and solvability of Σ: using either equivalence or
implication.

Definition 2: (complete Boolean model) Boolean for-
mula F(ξ) is a complete Boolean model of MRPP Σ if the
following condition holds:
F(ξ) is satisfiable ⇔ Σ has a solution of sum-of-costs ξ.

Complete Boolean models were the used in makespan
optimal SAT-based solvers for MRPP [49] and in MDD-
SAT [34], the first sum-of-costs optimal SAT-based solver.
A natural relaxation from the complete Boolean model is an
incomplete Boolean model where instead of the equivalence
between solving MRPP and the formula we require an
implication only. Incomplete models are inspired from the
SMT paradigm are used in the recent sum-of-costs optimal
solver SMT-CBS [26].

Definition 3: (incomplete Boolean model). Boolean for-
mula H(ξ) is an incomplete Boolean model of MRPP Σ if
the following condition holds:
H(ξ) is satisfiable ⇐ Σ has a solution of sum-of-costs ξ.

Being able to construct formula F one can obtain optimal
MRPP solution by checking satisfiability of F(0), F(1),
F(2),... until the first satisfiable F(ξ) is met. This is possible

Algorithm 1: Framework of SAT-based MRPP
1 SAT-MRPP (G = (V,E), R, α0, α+)
2 paths← {shortest path from α0(ri) to α+(ri)|i = 1, 2, ..., k}
3 ξ ←

∑k
i=1 ξ(paths(ri)); µ← maxk

i=1 ξ(paths(ri))
4 while True do
5 F(ξ)← encode-Complete(µ, ξ,G,R, α0, α+)
6 assignment← consult-SAT-Solver(F(ξ))
7 if assignment 6= UNSAT then
8 paths← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1; µ← µ+ 1

due to monotonicity of MRPP solvability with respect to
increasing values of common cumulative objectives such as
the sum-of-costs. In practice it is however impractical to start
at 0; lower bound estimation is used instead - sum of lengths
of shortest paths can be used in the case of sum-of-costs. The
framework of SAT-based solving is shown in pseudo-code in
Algorithm 1.

The advantage of the SAT-based approach is that state-of-
the-art SAT solvers can be used for determining satisfiability
of F(ξ) [38] and any progress in SAT solving hence can be
utilized for increasing efficiency of MRPP solving.

B. Details of Boolean Encoding

We recall important aspects of Boolean encoding used in
MDD-SAT and SMT-CBS. The construction of both F(ξ) and
H(ξ) relies on the time expansion of underlying graph G.

Having ξ, the basic variant of time expansion determines
the maximum number of time steps µ (also refered to as a
makespan) such that every possible solution of the given
MRPP with the sum-of-costs less than or equal to ξ fits
within µ timesteps (that is, no robot is outside its goal
vertex after µ-th timestep if the sum-of-costs ξ is not to be
exceeded).

The time expansion itself makes copies of vertices V for
each timestep t = 0, 1, 2, ..., µ. That is, we have vertices vt

for each v ∈ V time step t. Edges from G are converted to
directed edges interconnecting timesteps in time expansion.
Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., µ−1
whenever there is {u, v} ∈ E. Wait actions are modeled
by introducing edges (ut, tt+1). A directed path in time
expansion corresponds to trajectory of a robot in time. Hence
the modeling task now consists in construction of a formula
in which satisfying assignments correspond to directed paths
from α0

0(ri) to αµ+(ri) in the time expansion.
Assume that we have time expansion (Vi, Ei) for robot ri.

Boolean variable X tv(ri) is introduced for every vertex vt in
Vi. The semantics of X tv(ri) is that it is TRUE if and only
if robot ri resides in v at time step t. Similarly we introduce
Eu, vt(ri) for every directed edge (ut, vt+1) in Ei.

Next, constraints are added so that truth assignments are
restricted to those that correspond to valid solutions of a
given MRPP. Added constraints together ensure that F(ξ) is
a complete Boolean model for given MRPP.

We here illustrate the model by showing few representative
constraints. We omit here constraints that concern the objec-

11633

tive function. For the detailed list of constraints we refer the
reader to [35].

First, there is a constraint stating that if robot ri appears
in vertex u at time step t then it has to leave through exactly
one edge (ut, vt+1). This can be established by following
constraints:

X tu(ri)⇒
∨

(ut,vt+1)∈Ei

Etu,v(ri), (1)

∑
vt+1 | (ut,vt+1)∈Ei

Etu,v(ri) ≤ 1 (2)

Collisions between robots can be eliminated by the fol-
lowing constraint over X tv(ri) variables for every v ∈ V and
timestep t. This constraint is however omitted in H(ξ) mak-
ingH(ξ) essentially incomplete as its satisfying assignments
may correspond to plans leading to a collision.∑

ri∈A | vt∈Vi

X tv(ri) ≤ 1 (3)

C. SMT-based Approach

A common approach in satisfiability modulo theories
(SMT) [37] for deciding the satisfiability problem in some
complex theory T is to divide it into an abstract Boolean
part that keeps the Boolean structure of the decision problem
and a simplified decision procedure DECIDET that decides
fragment of T restricted on conjunctive formulae. A general
T -formula Γ is transformed to a Boolean skeleton by replac-
ing atoms with Boolean variables. The standard SAT-solving
procedure then decides what variables should be assigned
TRUE in order to satisfy the skeleton - these variables
tells what atoms hold in Γ. DECIDET then checks if
the conjunction of atoms assigned TRUE is valid with
respect to axioms of T . If so then satisfying assignment is
returned. Otherwise a conflict from DECIDET (often called
a lemma) is reported back and the skeleton is extended with
a constraint forbidding the conflict.

The above observation stands behind rephrasing CBS in
terms of SMT, the SMT-CBS algorithm. The paths validation
procedure acts as DECIDET and reports back a set of
conflicts found in the current solution. Hence axioms of T
are represented by the movement rules of MRPP. SMT-CBS
is listed as Algorithm 2.

The algorithm is divided into two procedures: SMT-CBS
representing the main loop and SMT-CBS-Fixed solving the
input MRPP for a fixed cost ξ. The major difference from the
standard CBS is that there is no branching at the high level.
The high level SMT-CBS roughly correspond to the main
loop of MDD-SAT. The set of conflicts is iteratively collected
during the entire execution of the algorithm. Procedure
encode-Complete from MDD-SAT is replaced with encode-
Incomplete that produces encoding that ignores specific
movement rules (collisions between robots) but in contrast
to encode-Complete it encodes collected conflicts into H(ξ).

The conflict resolution in standard CBS implemented as
high-level branching is here represented by refinement of

Algorithm 2: SMT-based MRPP solver
1 SMT-CBS (Σ = (G = (V,E), R, α0, α+))
2 conflicts← ∅
3 paths← {shortest path from α0(ri) to α+(ri)|i = 1, 2, ..., k}
4 ξ ←

∑k
i=1 ξ(paths(ri)); µ← maxk

i=1 ξ(paths(ri))
5 while TRUE do
6 (paths, conflicts)← SMT-CBS-Fixed(conflicts, µ, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths
9 ξ ← ξ + 1; µ← µ+ 1

10 SMT-CBS-Fixed(conflicts, µ, ξ,Σ)
11 H(ξ)← encode-Incomplete(conflicts, µ, ξ,Σ)
12 while TRUE do
13 assignment← consult-SAT-Solver(H(ξ))
14 if assignment 6= UNSAT then
15 paths← extract-Solution(assignment)
16 collisions← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ri, rj , v, t) ∈ collisions do
20 H(ξ)←H(ξ) ∪ {¬X t

v(ri) ∨ ¬X t
v(rj)}

21 conflicts← conflicts ∪ {[(ri, v, t), (rj , v, t)]}

22 return (UNSAT , conflicts)

H(ξ) with disjunction (line 20). Branching is thus deferred
into the SAT solver. The advantage of SMT-CBS is that
it builds the formula lazily; that is, it adds constraints
on demand after conflict occurs. Such approach may save
resources as solution may be found before all constraint are
added.

IV. BOUNDED SUBOPTIMAL SMT-BASED SOLVER

The key to the new bounded-suboptimal SMT-based solver
is the modification of cost bound ξ used in the construction
of H(ξ). Inside H(ξ), the ξ bound is used to bound the
sum-of-costs using the cardinality constraint [50]. Since now
the number of time expansions will not be derived directly
from ξ parameter we will denote the formula as H(µ, ξ)
where µ = µ0 + ∆ will be the number of time expansions,
µ0 = maxki=1 ξ(path(ri)) where path(ri) is the shortest
path for ri, and the second parameter will be the cost bound
used in the cardinality constraint. Instead of incrementing ξ
we will increment ∆.

In SMT-CBS, ξ is incremented by one in every iteration.
Allowing ξ = ξ0 + ∆ parameter to be less restrictive, we
will replace ∆ with ∆′ = ∆ + δ, where δ ≥ 0 is an integer
value, producing a formula of the same size but representing
more solutions 3. Since ∆′ > ∆, we expect a formula with
the sum-of-costs bounded by ∆′ to be easier to solve than
that with the original ∆.

The following proposition shows that for a solvable MRPP
Σ the sum-of-costs of the solution obtained by the above
process differs from the optimal one by at most δ.

3The change from ∆ to ∆′ does not affect the number of clauses
that represent the cardinality constraint, because we encode the cardinality
constraints using a sequential counter, whose size is proportional to the
number of Boolean variable involved but not to the value of the bound
[51].

11634

Algorithm 3: eSMT-CBS, an (1+ε)-bounded suboptimal
SMT-based MRPP solver

1 eSMT-CBS(Σ = (G = (V,E), R, α0, α+))
2 conflicts← ∅
3 paths← {shortest path from α0(ri) to α+(ri)|i = 1, 2, ..., k}
4 ξ0 ←

∑k
i=1 ξ(paths(ri)); µ0 ← maxk

i=1 ξ(paths(ri))
5 ∆← 0
6 while TRUE do
7 ∆′ ← ∆ + ε · (ξ0 + ∆)
8 (paths, conflicts)←

SMT-CBS-Fixed(conflicts, µ0 + ∆, ξ0 + ∆′,Σ)
9 if paths 6= UNSAT then

10 return paths
11 ∆← ∆ + 1

Propositon 1: Let δ be a non-negative integer and let
H(µ0 + ∆, ξ0 + ∆ + δ) be the first satisfiable formula
corresponding to a valid MRPP solusion encountered in the
sequence of formulae H(µ0, ξ0 + δ), H(µ0 + 1, ξ0 + 1 +
δ),...,H(µ0 +∆−1, ξ0 +∆+δ−1), H(µ0 +∆, ξ0 +∆+δ).
Then solution represented by H(µ0+∆, ξ0+∆+δ) has sum-
of-costs ξ ≤ ξopt + δ where ξopt is the optimal sum-of-costs
for Σ.
Proof: Formula H(µ0 +∆−1,∆+δ−1) in the penultimate
iteration could not be augmented by adding collision
avoidance constraints to represent a valid solution and
eventually became unsatisfiable. This means that no solution
of makespan at most µ0 + ∆ − 1 and sum-of-costs at
most ξ0 + ∆ + δ − 1 exists. But we also know that all
solutions of sum-of-costs ξ0 + ∆− 1 fit under the makespan
of at most µ0 + ∆ − 1. Hence unsolvability of formula
H(µ0 + ∆ − 1,∆ + δ − 1) together with δ ≥ 0 implies
that there is no solution of sum-of-costs ξ0 + ∆ − 1 at all.
Therefore, the optimal sum-of-costs is at least ξ0 + ∆. The
solvability of H(µ0 + ∆,∆ + δ) says that there is a solution
of Σ of sum-of-costs ξ0 + ∆ + δ which differs from the
optimum by at most δ. �

Observe that the only property of δ we used was that it
is a non-negative integer but there is no requirement that it
must be constant across individual iterations of the algorithm.
Proposition 1 holds even if we use a non-negative δ as a
function of ∆ instead of a constant. This property can be
used to modify the above SAT-based framework to an (1+ε)-
bounded suboptimal algorithm.

Corollary 1: Given an error ε > 0 the SMT-based sub-
optimal framework can modified to an (1 + ε)-bounded
suboptimal algorithm by appropriate setting of δ(∆).
Proof: Let δ(∆) = ε · (ξ0 + ∆). Hence the sum-of-costs
of the solution returned by the algorithm is at most
(1+ ε) · (ξ0 +∆) while the optimum is at least ξ0 +∆ hence
the ratio between the sum-of-costs of returned solution and
the sum-of-costs of the optimal one is at most (1 + ε). �

The pseudo-code of the (1+ε)-bounded suboptimal SMT-
based algorithm is presented as Algorithm 3. We refer to this
algorithm as eSMT-CBS.

Observe that in any solution to a MRPP problem it holds
that µ ≤ ξ ≤ m · µ. Therefore, if ξ0 +∆+δ(∆) ≥ µ ·k then
there is no need to add any cardinality constraints to H(µ, ξ),
as the solution is guaranteed to be bounded by µ · k.

This inequality represents a limit of the degree of re-
laxation achievable by allowing more freedom over the
cost bound imposed by the cardinality constraint. Hence
the eSMT-CBS algorithm will effectively be an

(k·(µ0+∆)
ξ0+∆

)
-

bounded algorithm in the worst case.

V. EXPERIMENTAL EVALUATION

We evaluated eSMT-CBS on standard benchmarks from
movingai.com [15], [21], [52]. Representative part of
results is presented in this section.

A. Benchmarks and Setup

We implemented eSMT-CBS in C++ using the existing
implementation of SMT-CBS on top of the Glucose 3.0 SAT
solver [53] that still ranks among the best SAT solvers
according to recent SAT solver competitions [54]. Across
the series of incremental refinements of H(µ, ξ) the SAT
is consulted in the incremental way. Concerning ECBS, we
used existing implementation by [33] written in C#.

All experiments were run on system consisting of Xeon
2.8 GHz cores, 32 GB RAM, running Ubuntu Linux 18 (for
testing eSMT-CBS) and Windows 10 (for ECBS tests). 4

The experimental evaluation has been done on diverse
instances consisting of 4-connected grid maps ranging in
sizes from small to large.

These grid maps were obtained synthetically or as a
discretization of real environments. In 4-connected grids,
robots traverse the map using orthogonal movements; di-
agonal movements are not used, hence unit time per move
can be realistically assumed. This makes 4-connected grids
suitable for finding plans to be executed on physical robots.
In a related study [13], we simulated discrete plans found
for 4-connected grid graphs on a group of OZOBOT Evo
robots. Minor deviations from the discrete plan occurring
during execution can be compensated by reflex capabilities
of robots so that synchronization of robots’ movements with
the discrete plan can be achieved.

We varied the number of robots to obtain instances of
various difficulties while initial and goal configurations of
robots were generated according to scenarios provided on
movingai.com. Depending on the map size we used 64
to 128 robots and 25 different instances per number of
robots. The timeout in all test was set to 128 seconds.
Presented results were obtained from instances solved within
this timeout. Both tested algorithms were used in 4 different
setups with different error: ε = 1.00 (optimal MRPP),
ε = 1.01, ε = 1.05, and ε = 1.10.

4To enable reproducibility of presented results we provide complete
source code of our solvers and detailed experimental data on author’s web:
http://users.fit.cvut.cz/∼surynpav/iros2020.

11635

0

0,2

0,4

0,6

0,8

1

0 8 16 24 32 40 48 56 64

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate | empty-16-16

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance
Sorted Runtimes| empty-16-16

ECBS 1.00

ECBS 1.01

ECBS 1.05

ECBS 1.10

eSMT-CBS 1.00

eSMT-CBS 1.01

eSMT-CBS 1.05

eSMT-CBS 1.10

0

0,2

0,4

0,6

0,8

1

0 8 16 24 32 40 48 56 64 72 80

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate | random-32-32-20

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400 1600

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance
Sorted Runtimes | random-32-32-20

ECBS 1.00 ECBS 1.01

ECBS 1.05 ECBS 1.10

eSMT-CBS 1.00 eSMT-CBS 1.01

eSMT-CBS 1.05 eSMT-CBS 1.10

Fig. 2. Success rate and runtime comparison on small-sized maps.

B. Runtime Results

Results are presented in Figures 2, 3, and 4. We present
success rate and sorted runtimes. Success rate shows the ratio
of instances solved under the time limit of 128 seconds out
of 25 instances per number of robots. Sorted runtimes are
inspired by cactus plots from the SAT Competition [54]. We
took runtimes of all instances solved under the time limit by
a given algorithm and sorted them along x-axis; so the x-th
data-point represents the runtime of x-th easiest instance for
the given algorithm. The faster algorithm yields to a lower
curve in the cactus plot.

0

0,2

0,4

0,6

0,8

1

0 8 16 24 32 40 48 56 64 72

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate | room-64-64-8

0,001

0,01

0,1

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance Sorted Runtimes | room-64-64-8

ECBS 1.00

ECBS 1.01

ECBS 1.05

ECBS 1.10

eSMT-CBS 1.00

eSMT-CBS 1.01

eSMT-CBS 1.05

eSMT-CBS 1.10

0

0,2

0,4

0,6

0,8

1

0 8 16 24 32 40 48 56 64 72 80 88

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate | maze-128-128-10

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400 1600

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance Sorted Runtimes| maze-128-128-10

ECBS 1.00 ECBS 1.01

ECBS 1.05 ECBS 1.10

eSMT-CBS 1.00 eSMT-CBS 1.01

eSMT-CBS 1.05 eSMT-CBS 1.10

Fig. 3. Success rate and runtime comparison on medium-sized maps.

The general trend observable across all tested values of ε
and all maps from sorted runtimes is that ECBS is faster
for easy instances but its performance quickly degrades
as instances gets harder. This is quite expectable since
ECBS compared to eSMT-CBS has smaller overhead but
on the other hand lacks advanced learning and propagation
mechanisms that help the SMT-based solver in harder cases.

As instances get harder, eSMT-CBS starts to perform better
than ECBS. In some cases ECBS experience sharp increase

0

0,2

0,4

0,6

0,8

1

0 16 32 48 64 80 96 112

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate
| warehouse-10-20-10-2-1

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
| warehouse-10-20-10-2-1

ECBS 1.00

ECBS 1.01

ECBS 1.05

ECBS 1.10

eSMT-CBS 1.00

eSMT-CBS 1.01

eSMT-CBS 1.05

eSMT-CBS 1.10

0

0,2

0,4

0,6

0,8

1

0 8 16 24 32 40 48 56 64 72 80 88 96 104

Su
cc

e
ss

 R
at

e

Number of robots

Success Rate | lak303d

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance Sorted Runtimes| lak303d

ECBS 1.00 ECBS 1.01

ECBS 1.05 ECBS 1.10

eSMT-CBS 1.00 eSMT-CBS 1.01

eSMT-CBS 1.05 eSMT-CBS 1.10

Fig. 4. Success rate and runtime comparison on large-sized maps.

in the runtime after crossing certain level of difficulty (this
is well observable in empty-16-16 with ε = 1.01 and ε =
1.05, and in room-64-64-8 with ε = 1.01 and ε = 1.05).

There is significant difference in how relaxing the ε
parameter reduces the difficulty. The most significant change
happens by switching from the optimal MRPP (ε = 1.00) to
slightly sub-optimal (ε = 1.01) which dramatically reduces
the difficulty for both tested solvers (this change is the most
dramatic in case of ECBS on random-32-32-20). On
the other hand, changing ε from 1.05 to 1.10 sometimes
has almost no effect (especially in large instances like
warehouse-10-20-10-2-1 and lak303d).

The disadvantage of earlier SAT-based MRPP solvers was
worse scalability for large maps compared to CBS/EBCS
which was caused by the need to construct a huge formula.
This has been largely eliminated in SMT-CBS that constructs
incomplete Boolean model that is significantly smaller than
the complete model even on large maps. Therefore eSMT-
CBS maintains its leads over ECBS even in large maps.

VI. CONCLUSION

We introduced eSMT-CBS, a novel bounded sub-optimal
algorithm for MRPP based on satisfiability modulo theories
(SMT). The new algorithm combines strengths of SAT-based
solving, which due to powerful clause learning mechanism
and Boolean constraint propagation can successfully solve
combinatorially hard cases of MRPP, with lazy construction
of the Boolean formula using the SMT-inspired mechanism
that enables scalability of the solver even for large maps.

The advantage of eSMT-CBS appears in harder instances
with long runs of the SAT solver where the clause learning
mechanism has enough time to prune the search space
efficiently. On the other hand the SMT-based approach has
an overhead of building formula and communication with
the external solver which negatively affects performance in
sparsely occupied instances.

One of possible future research directions is to integrate
the SAT solver and the high-level MRPP solving scheme
more closely. Currently we need to wait for a complete

11636

assignment of Boolean variables before the extracted paths
are validated with respect to MRPP rules. Potentially we can
validate paths extracted from partial assignments as done
in DPLL(T) solvers.

REFERENCES

[1] D. Silver, “Cooperative pathfinding,” in AIIDE, 2005, pp. 117–122.
[2] M. R. K. Ryan, “Graph decomposition for efficient multi-robot path

planning,” in Proceedings of IJCAI, 2007, pp. 2003–2008.
[3] T. Standley, “Finding optimal solutions to cooperative pathfinding

problems.” in Proceedings of AAAI, 2010, pp. 173–178.
[4] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots

on graphs,” in Proceedings of ICRA, 2013, pp. 3612–3617.
[5] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group,”

Journal of Combinatorial Theory, Series B, vol. 16, no. 1, pp. 86 –
96, 1974.

[6] D. Kornhauser, G. L. Miller, and P. G. Spirakis, “Coordinating
pebble motion on graphs, the diameter of permutation groups, and
applications,” in Proceedings of FOCS, 1984, pp. 241–250.

[7] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp.
40–66, 2015.

[8] R. Luna and K. E. Bekris, “Network-guided multi-robot path planning
in discrete representations,” in Proceedings of IROS, 2010, pp. 4596–
4602.

[9] F. Basile, P. Chiacchio, and J. Coppola, “A hybrid model of complex
automated warehouse systems - part I: modeling and simulation,” IEEE
Trans. Automation Science and Engineering, vol. 9, no. 4, pp. 640–
653, 2012.

[10] D.-G. Kim, K. Hirayama, and G.-K. Park, “Collision avoidance in
multiple-ship situations by distributed local search,” Journal of Ad-
vanced Computational Intelligence and Intelligent Informatics, vol. 18,
pp. 839–848, 09 2014.

[11] D. Zhou and M. Schwager, “Virtual rigid bodies for coordinated agile
maneuvering of teams of micro aerial vehicles,” in Proceedings of
ICRA, 2015, pp. 1737–1742.

[12] A. Andreychuk, K. S. Yakovlev, D. Atzmon, and R. Stern, “Multi-
agent pathfinding with continuous time,” in Proceedings of IJCAI.
ijcai.org, 2019, pp. 39–45.

[13] J. Chudy, N. Popov, and P. Surynek, “Multi-agent path finding simula-
tion with a swarm of physical robots: cooperative behavior via reflex-
based control,” in Proceedings of ROBOVIS. SCITEPRESS, to appear,
2020.

[14] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” JAIR, vol. 31, pp. 591–656, 2008.

[15] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing
cost tree search for optimal multi-agent pathfinding,” Artif. Intell., vol.
195, pp. 470–495, 2013.

[16] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp.
40–66, 2015.

[17] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in Proceedings of AAAI. AAAI Press, 2010.

[18] ——, “Compact representations of cooperative path-finding as SAT
based on matchings in bipartite graphs,” in Proceedings of ICTAI,
2014, pp. 875–882.

[19] ——, “Reduced time-expansion graphs and goal decomposition for
solving cooperative path finding sub-optimally,” in IJCAI, 2015, pp.
1916–1922.

[20] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artif. Intell., vol. 219, pp. 1–24, 2015.

[21] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel,
and S. Shimony, “ICBS: improved conflict-based search algorithm for
multi-agent pathfinding,” in IJCAI, 2015, pp. 740–746.

[22] M. Ryan, “Constraint-based multi-robot path planning,” in Proceed-
ings of ICRA, 2010, pp. 922–928.

[23] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in PRICAI, 2012, pp. 564–576.

[24] J. Yu and S. LaValle, “Planning optimal paths for multiple robots on
graphs,” in Proceedings of ICRA, 2013, pp. 3612–3617.

[25] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller, “A general
formal framework for pathfinding problems with multiple agents,” in
Proceedings of AAAI, 2013.

[26] P. Surynek, “Unifying search-based and compilation-based approaches
to multi-agent path finding through satisfiability modulo theories,” in
Proceedings of IJCAI. ijcai.org, 2019, pp. 1177–1183.

[27] L. Cohen, T. Uras, and S. Koenig, “Feasibility study: Using highways
for bounded-suboptimal mapf,” in SOCS, 2015, pp. 2–8.

[28] A. Botea and P. Surynek, “Multi-agent path finding on strongly
biconnected digraphs,” in Proceedings of AAAI, 2015, pp. 2024–2030.

[29] Q. Sajid, R. Luna, and K. Bekris, “Multi-agent pathfinding with
simultaneous execution of single-agent primitives,” in Proceedings of
SoCS, 2012.

[30] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in IJCAI, 2011, pp. 294–300.

[31] B. de Wilde, A. ter Mors, and C. Witteveen, “Push and rotate: a
complete multi-agent pathfinding algorithm,” JAIR, vol. 51, pp. 443–
492, 2014.

[32] P. Surynek, “A novel approach to path planning for multiple robots in
bi-connected graphs,” in Proceedings of ICRA, 2009, pp. 3613–3619.

[33] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proceedings of SoCS, 2014.

[34] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Sub-optimal sat-
based approach to multi-agent path-finding problem,” in Proceedings
of SoCS. AAAI Press, 2018, pp. 90–105.

[35] ——, “Efficient SAT approach to multi-agent path finding under the
sum of costs objective,” in Proceedings of ECAI 2016, 2016, pp. 810–
818.

[36] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to dpll(T),” J. ACM, vol. 53, no. 6, pp. 937–977, 2006.

[37] M. Bofill, M. Palahı́, J. Suy, and M. Villaret, “Solving constraint
satisfaction problems with SAT modulo theories,” Constraints, vol. 17,
no. 3, pp. 273–303, 2012.

[38] G. Audemard, J. Lagniez, and L. Simon, “Improving glucose for
incremental SAT solving with assumptions: Application to MUS
extraction,” in Proceedings of SAT, 2013, pp. 309–317.

[39] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proceedings of ECAI, 2014, pp. 961–962.

[40] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” J. Artif. Intell. Res. (JAIR), vol. 31, pp. 497–542, 2008.

[41] P. Surynek, “Solving abstract cooperative path-finding in densely
populated environments,” Computational Intelligence, vol. 30, no. 2,
pp. 402–450, 2014.

[42] R. Luna and K. Bekris, “Efficient and complete centralized multi-robot
path planning,” in Proceedings of IROS, 2011, pp. 3268–3275.

[43] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Proceedings of AAAI, 2013.

[44] H. Ma, C. A. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” in Proceedings of AAAI 2016. AAAI Press,
2016, pp. 3166–3173.

[45] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[46] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[47] J. Li, A. Felner, E. Boyarski, H. Ma, and S. Koenig, “Improved
heuristics for multi-agent path finding with conflict-based search,” in
Proceedings of IJCAI. ijcai.org, 2019, pp. 442–449.

[48] P. Surynek, “On propositional encodings of cooperative path-finding,”
in Proceedings of ICTAI. IEEE, 2012, pp. 524–531.

[49] ——, “Time-expanded graph-based propositional encodings for
makespan-optimal solving of cooperative path finding problems,” Ann.
Math. Artif. Intell., vol. 81, no. 3-4, pp. 329–375, 2017.

[50] J. Silva and I. Lynce, “Towards robust CNF encodings of cardinality
constraints,” in Proceedings of CP, 2007, pp. 483–497.

[51] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Proceedings of CP, 2005.

[52] N. Sturtevant, “Benchmarks for grid-based pathfinding,
http://www.movingai.com,” Trans. on Computational Intelligence and
AI in Games, vol. 4, no. 2, pp. 144 – 148, 2012.

[53] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern SAT solvers,” in Proceedings of IJCAI, 2009, pp. 399–404.

[54] T. Balyo, M. J. H. Heule, and M. Järvisalo, “SAT competition 2016:
Recent developments,” in Proceedings of AAAI, 2017, pp. 5061–5063.

11637

