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Abstract— Identifying new, moved or missing objects is an
important capability for robot tasks such as surveillance or
maintaining order in homes, offices and industrial settings.
However, current approaches do not distinguish between novel
objects or simple scene readjustments nor do they sufficiently
deal with localization error and sensor noise. To overcome these
limitations, we combine the strengths of global and local meth-
ods for efficient detection of novel objects in 3D reconstructions
of indoor environments. Global structure, determined from 3D
semantic information, is exploited to establish object candidates.
These are then locally verified by comparing isolated geometry
to a reference reconstruction provided by the task. We evaluate
our approach on a novel dataset containing different types of
rooms with 31 scenes and 260 annotated objects. Experiments
show that our proposed approach significantly outperforms
baseline methods.

I. INTRODUCTION

The ability to detect new, moved or missing objects in
large environments is key for enabling many robot tasks such
as surveillance, tidying up, or maintaining order in homes or
workplaces. These tasks share the commonality of operating
in the same environment every day. As such, revisiting
a particular environment enables robots to utilize domain
knowledge and to exploit their memory from previous visits.
By storing a reference map of the environment, a robot can
check for scene consistency and therefore detect changes on
the object level. A household robot, for example, uses the
cleaned-up version of the environment as a reference map
to discover objects it should tidy-up (see Figure 1). While a
surveillance robot knows which objects are expected in its
environment and triggers an alarm when the comparison to
the current state reveals a missing object. In both cases, the
robot is only interested in new or removed objects, but not
in objects that have a permanent place, such as a lamp or
computer keyboard, which may move only slightly.

The standard approach to detect inconsistencies in the
scene is to compute the difference between a reference and
the current situation. This has the advantage over recognition
methods, e.g. [1]–[3], since no object models are required
and it is therefore suitable for open-set conditions. Some
methods apply scene differencing on single frames and
specify waypoints to guide the robot to regions of interest [4],
[5]. This, however, restricts the search space, which leads
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Fig. 1: A household robot tidying-up a room. It compares a
previously acquired reference map to the current state of the
environment. Although the chair and other permanent objects
moved slightly (colored in green), only the mug (colored in
pink) should be detected as novel and therefore tidied-up.

to objects being missed if the viewpoints do not cover
the whole environment. Therefore, more recent approaches
compute a global scene difference on reconstructions of en-
tire environments [6]–[11]. A disadvantage, however, is that
change detection applied at a large scale is sensitive to sensor
noise and localization error. Furthermore, readjustment of
uninteresting objects such as furniture or decorations cannot
be distinguished from new objects.

This paper presents a new approach to detect objects in
real-world indoor environments based on reconstructions and
overcomes the limitations of existing global scene differenc-
ing methods. Our idea is to exploit the strength of different
approaches by combing full knowledge about scene context
with local geometry. At a global level, semantic segmentation
reveals structures where objects are likely to be located, such
as on a table, couch, or floor. In agreement with the real-
world fact that objects are mainly placed on surfaces [5],
[12], we use relevant structures to identify horizontal planes.
The set of object candidates that are extracted from the
planes are processed at a local level through geometrical
verification against the reference map. In contrast to global
scene differencing, local alignment is robust to the effects of
sensor noise and localization error.

For the quantitative evaluation of our method, we present
a new annotated dataset for novel object detection. While
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datasets exist for related problems, e.g. [8], [10], none
simultaneously fulfill the requirements of comprising dif-
ferent environments, containing many objects (especially
small ones), and are recorded by a mobile robot. Our new
dataset consists of differently sized scene reconstructions
with each scene consisting of an object-free setup (i.e.
reference map) and with various additional setups containing
novel objects and rearranged furniture and permanent items.
Overall, we consider five distinct environments and a total
of 31 reconstructions are provided including 260 annotated
objects. Experiments with this new dataset show that our
approach significantly outperforms the baseline methods.

In summary, the contributions of this paper include:
• Exploitation of knowledge from the task domain such

as previous visits and the structure of the environment,
• Proposal of a unified approach for open-set 3D novel

object change detection that combines semantic infor-
mation, surface extraction, and local verification,

• A new robotic dataset for this problem comprising
rooms with varying complexity and rearranged furniture
and permanent objects, and

• Significantly improved detection rate of novel objects
using our combination of knowledge and perception in
comparison to competing approaches.

The remainder of the paper is as follows. Section II
reviews relevant literature. Section III outlines our proposed
approach. Section IV describes the new robotic dataset. Sec-
tion V presents experimental results. Section VI concludes
and discusses future work.

II. RELATED WORK

Change detection is widely used to discover objects in 3D
environments. An advantage of change detection is that it
requires no training or a priori object information. Instead,
the principle of scene differencing identifies the change
between multiple observations for data structures such as
point clouds [5], [8], [13] or voxel grids [4], [7], [9]–[11],
[14]. For long-term operation, where a robot observes the
same environment multiple times, the static map can be
retrieved in order to apply change detection during revisits
to the same scene [8], [10]. These methods have shown the
capability of the principle for object discovery, however, they
are confounded by sensor noise and mapping errors. As a
result, post-processing steps are applied such as removing
planar [5] or small clusters [8], enforcing spatial consistency
with a Markov random field [6], or morphological operations
like opening [10].

An alternative approach is to learn geometric descriptors
from local 3D patches as in [15], [16]. Large datasets
are used to learn descriptors by feeding a deep network
with matching and non-matching pairs of small 3D vol-
umes. These approaches do not require 3D models and can
operate efficiently on full reconstructions. However, they
detect objects by finding correspondences across scenes. In
other words, they only re-localize objects. The methods are
incapable of identifying newly introduced objects that have
never been seen.

A final approach to find objects in 3D scenes is to establish
correspondences between the scene and known 3D models.
A variety of 3D descriptors have been developed for this
purpose and are applied not just for detection but also for
instance recognition, e.g. SHOT [1], and pose estimation, e.g.
PPF [2], [17]. While these methods report accurate detection
results, they rely on given 3D models. As such, they are
unsuitable for detecting unknown objects.

In contrast to the existing change detection methods,
we derive object candidates from semantic information and
apply change detection only in local regions. This is more
robust to sensor noise, map misalignment and map warping.
While it is a requirement to have a reference map, this
is easily created by combining observations from an envi-
ronment at different times. The methods presented in [8]
or [10] can be applied. The main advantage of our, and
related change detection approaches, is that no specific
object information is necessary. In particular, no knowledge
such as shape, geometry or learned descriptors are needed.
Therefore, we can identify completely novel objects, which
is more general than model-based or learned local descriptor
matching methods.

III. METHOD

This work addresses the problem of detecting novel ob-
jects in 3D environments. Novel or new objects refer to those
that are introduced into the scene. These differ from perma-
nent objects that were already present in the scene but might
have moved slightly. Our approach, as outlined in Figure 2,
combines multiple sources of information. Semantic informa-
tion with horizontal plane detection is used at the scene level
to generate an initial set of object candidates. The candidates
are then verified through local geometric alignment. The
local verification step overcomes the inaccuracies of global
differencing because smaller regions suffer less from noise
and warping in the reconstruction. The global detection stage
is necessary to determine where to apply local verification,
which would be time consuming if performed exhaustively.

This section describes the proposed approach. We first
explain the procedure for extracting object candidates from
the global scene using semantic information. We then outline
the verification procedure using local geometry.

A. Object Detection from Global Semantic Context

We consider 3D reconstructions of entire rooms to be
independent of single camera perspectives and robot trajecto-
ries. From the global reconstruction, semantic information is
exploited to discover new objects. Semantic segmentation has
received most attention in the computer vision community
for pixel-wise classification of images and the rise of deep
learning, in particular CNNs, has drastically improved re-
sults [18], [19]. The introduction of the ScanNet dataset [20]
has enabled the transition to apply semantic segmentation
to dense 3D reconstructions of indoor scenes. In this work,
semantic segmentation generates class labels for all vertices
in the 3D reconstruction. We use SparseConvNet [21] trained
on ScanNet, however, other methods and other training
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Fig. 2: Overview of our proposed object discovery method
showing object detection results for each step. Detected
objects are displayed in pink.

datasets could also be applied. Specific details of our im-
plementation are given in Section V-A.2.

We identify objects or parts of objects by searching for
protrusions on supporting planes, i.e. horizontal surfaces on
which objects may lie. Instead of searching on all horizontal
planes, the semantic information is leveraged by limiting
the search to surfaces belonging to relevant classes1. The
reconstruction vertices corresponding to these labels are
clustered and for each cluster, horizontal planes are fit using
RANSAC [22]. Considering only the semantically relevant

1Floor, cabinet, bed, chair, sofa, table, bookshelf, counter, desk, shelves,
night stand, other structure, other furniture and other props.

Fig. 3: Examples from ScanNet showing annotation inac-
curacy. Small objects are incorrectly labeled, either under-
segmented or not separated from the supporting structure.
Top: original scan. Bottom: annotation with objects in pink.

subset of vertices not only reduces the number of points
that need to be processed but also achieves more accurate
plane estimates because there are fewer outliers. Candidate
objects are found by segmenting the vertices that lie above
the detected semantic planes using Euclidean clustering [12].

Many semantic segmentation methods also predict the
otherprop class (as defined in ScanNet), which is a
general label typically associated to small items that do
not belong to indoor structures. The vertices with the
otherprop prediction could be used to directly identify
objects, however, they are insufficient for discovering novel
objects as we show in our evaluation (see Section V). The
main reason is that the ground truth scenes in ScanNet are
labeled on pre-segmented patches, therefore, trained models
do not exhibit high precision around object boundaries.
This is particularly problematic for small objects that either
lack precise boundaries or are merged with the supporting
structure (see Figure 3). Nonetheless, we also include all
clusters of the otherprop class in the initial set of object
candidates. These are then verified using local geometry as
described next.

B. Object Verification with Local Geometry

Change detection is commonly used to identify novel
objects in a scene as it requires no prior object information.
Typically, a difference is computed between two spatially
aligned observations. Points in the result set D are points
from observation C that do not have a corresponding point
in observation S within a distance d (adapted from [8]):

D = {c|c ∈ C ∧ 6 ∃ s ∈ S, ‖c, s‖ < d}. (1)

This formulation is highly sensitive to the distance threshold
used. Furthermore, the pervasiveness of noise from depth
sensors and localization error reduce detection accuracy.

Our approach leverages the idea of change detection
but applies the operation locally. Since object candidates
are already generated from the full scene using semantic
information, it is no longer necessary to perform global
change detection. It is sufficient to apply the operation in
local regions around the initial candidates. This is a two-
stage process. First, for each detected object cluster, we
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Fig. 4: The two steps of the local verification are shown for a
permanent and a novel object. The reference crop is colored
in turquoise, object and supporting plane in orange. Note
in the novel object example, the two-step approach prevents
ICP from aligning the object to the reference plane.

extract the supporting plane in its surrounding. It is aligned
to the nearest horizontal plane in the reference map (plane-
plane alignment) by applying the Iterative Closest Point
(ICP) algorithm [23] with fixed rotation around the x- and
y-axes. This initial step makes the verification of the actual
object more efficient and robust since the second ICP step
allows only transformations in the x- and y-direction and
rotation around the z-axis to align the object cluster with the
reference map (object-map alignment). For this operation, we
use a crop of the reference map with some margin around
the potential object location as input. Moreover, the plane
points detected in the first step are removed to ensure better
alignment. Figure 4 exemplifies the steps of local verification.

Given ICP convergence, we transform the object point
cloud and use Eq. (1) to determine the object’s overlap with
the reference map. Objects that have a very small overlap are
considered to be introduced into the scene. Details about the
parameters used in the local verification stage are provided
in Section V-A.3.

Applying local verification has advantages over global
differencing. Firstly, it can adapt to subtle changes between
the observations, thus accounting for moved objects that are
not necessarily novel. Secondly, the inaccuracy of warped
reconstructions can be absorbed. In contrast, differencing is
anchored to the full scene, which means it is inflexible and
requires precisely aligned observations.

In our formulation, permanent objects are identified if they
only move within the dimension specified by the crop. We
use a dimension of 20 cm to account for reasonable scene
rearrangements. In reality, if a permanent object moves a
greater distance, it is in fact out of place and should be
detected. If a room is rearranged, a new reference map would
need to be made.

IV. DATASET

To evaluate our proposed approach for novel object discov-
ery we present a new robotic dataset.2 The dataset consists
of five diverse scenes: office, kitchen, living room, small
room and a large room. The scenes range from partially
viewed rooms (office, kitchen, living room) to complete
rooms of different size (small and large room). The RGB
and depth streams were recorded from the onboard RGBD
sensor of a mobile robot that navigated through the scenes.
The recorded data also includes the transformation matrices
between coordinate frames and is used to generate recon-
structions with [24]. For each environment, data from a
reference setup was recorded in which no novel objects were
present. Data from additional setups were recorded for each
room consisting of 3–18 novel objects in various locations.
Furniture and permanent objects such as decorations were
also rearranged. In total we provide five different scenes
with 31 observations (including the reference maps) and 260
annotated novel objects.

Objects introduced into the scenes were from the YCB
dataset [25]. We selected objects of diverse size ranging from
small such as a screwdriver to large such as a plastic water
pitcher. The reconstructions were annotated by first aligning
the 3D object models in the reconstruction and finding all
points within a small distance threshold to the model points
using a kd-tree. As a final step, single points were manually
added to or removed from the object masks. This is necessary
because most objects are usually not reconstructed precisely.

The characteristics of our dataset are summarized and
compared to other datasets applicable for object discov-
ery in Table I. The publicly available datasets are those
in [5], [13], [10] and [16]. The dataset of [5] is captured over
a long period of time using a mobile robot. Despite the large
amount of data, only a single environment is considered.
Also, objects are not annotated so it cannot be used for
quantitative evaluation. The dataset of [13] consists of data
from a robot in a regular indoor environment, so it includes
a large variety of objects and even people. However, the
dataset only considers one room and the base of the robot
was not moved during acquisition. Only the RGB-D sensor
was rotated on a pan/tilt unit. As a result, the room is
always viewed from the same perspective. Unfortunately, no
reference map is provided, therefore, the distinction between
novel and permanent objects is unclear. Some specially
selected objects are annotated as new objects while others
that are physically new in a scene compared to a previous
one are not. The dataset of [10] provides raw recordings from
a handheld Google Tango for three different rooms. The main
focus of the work was not on object detection but static room
recovery. Therefore, the dataset mainly contains furniture that
moved between successive observations. It does not consider
small items. It also does not provide annotations of the
objects. The recent dataset of [16] also provides recordings
from a handheld Google Tango. While a massive number

2https://www.acin.tuwien.ac.at/object-change-detection-dataset-of-
indoor-environments/
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TABLE I: Comparison of object discovery and change detec-
tion datasets. Columns for novel objects, small objects and
furniture indicate if these categories change between scenes.
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Finman et al. [7] 2 67 – – X – – ? –
Langer et al. [11] 1 4 X X X – – – –
Katsura et al. [14] 2 10+? X X X – – ? –
Herbst et al. [6] 4 24 – – X – – X –3

Mason et al. [5] 1 67 X – X X X – X4

Ambrus et al. [13] 1 88 X – X X X –5 X
Fehr et al. [10] 3 23 – X – – X – X
Wald et al. [16] 478 1482 – – ? – X X X
Ours 5 31 X X X X X X X

of observations are captured, mainly large items such as
furniture are changed in the setups. Different to [10], all
instances are segmented, however, the annotation tool from
ScanNet [20] is used, which means that small items are
inaccurately labeled due to the pre-segmentation step.

V. EXPERIMENTAL RESULTS

This section presents experimental results with our col-
lected dataset. We first describe our implementation, in
particular, for reconstruction and semantic segmentation.
We then describe the comparison methods and outline the
metrics used for evaluation. Lastly, we present quantitative
and qualitative results as well as show the generality of our
approach by applying it to different reconstruction methods.

A. Implementation Details

1) Reconstruction: The Voxblox framework [24] is used
to generate reconstructions. It was initially developed for
planning purposes, but is shown to be suitable for other
robotic applications, such as incremental scene segmenta-
tion [26] and for extracting 3D object models [27]. Voxblox
creates dense 3D maps based on the TSDF representation.
We use the robot pose from the recordings instead of using
camera tracking. However, the option to refine the pose by
aligning the input data to the existing structure with ICP
is employed. The Voxblox framework is very suitable for
robotic applications not only because the pose of the robot
can be used, but also because it runs directly on a CPU.
Details about the parameters are given in Table II.

2) Semantic Segmentation of Dense 3D Maps:
SparseConvNet [21] is used to perform semantic segmenta-
tion on the full 3D reconstructions. It accepts a set of colored
points as input. The output from Voxblox is converted to
this format by taking the centroid and average color of
each voxel in the reconstruction. The network is trained on
the ScanNet [20] dataset with the standard test, validation
and training splits. The annotations use the second version
of the dataset. Data is augmented using the provided tools

3The URL provided in the publication no longer works.
4Rosbags available on request.
5Only partially and inconsistently annotated.

TABLE II: Parameters used for the experiments.

Method Parameter Value Method Parameter Value
Voxblox resolution [m] 0.01 LV reference crop margin [m] 0.2
Voxblox method simple LV current crop margin [m] 0.05
Voxblox max. ray length [m] 2.0 LV ICP max. dist. plane [m] 0.05
RANSAC dist. threshold [m] 0.01 LV ICP max. dist. object [m] 0.15
RANSAC angle threshold [deg] 5.0 LV max. diff. dist. [m] 0.014
Clustering dist. threshold [m] 0.02 LV min. rejection overlap 0.7

from SparseConvNet. To train the model we used the default
settings of SparseConvNet except for the following param-
eters: m=32, residual blocks=True, scale=50, block reps=2,
batch size=5. In addition to the 20 classes in the ScanNet
benchmark, we included otherprop to have a total of 21
classes.

3) Parameters: Table II lists all parameters used in our
implementation. This comprises the parameters for creating
the reconstructions with Voxblox, for detecting objects above
the semantic planes using RANSAC and the object clustering
threshold. The various parameters in the local verification
(LV) stage are also given.

B. Comparison Methods

We select two baseline methods to compare our method
against. Both perform scene differencing to detect dynamic
objects. The method proposed by Ambrus et al. [8] (Meta-
room) creates a reference map from several observations.
This point-based volumetric representation is called meta-
room and is further used for change detection. After aligning
an observation to the meta-room, the difference between
them is computed. The remaining points are clustered, then
planar and small clusters are removed. Because the focus of
our paper is object change detection, we use our object-free
reference map created with Voxblox as the meta-room when
evaluating the change detection scheme in [8]. To ensure a
fair comparison, we adapted the original parameters to the
characteristics of our dataset, which achieved better results.

As another baseline, we compare against the method
in [11] that uses an octomap [28] (Octomap) for represen-
tation and differencing. The effect of noisy sensor input is
slightly reduced due to the quantization of the points into
voxels and also the dilation applied to the reference map.
We modified the method to detect all objects, not only those
on the floor as in the original approach.

In addition to the two baseline methods, we give results
for the important modules of our proposed approach. We use
the direct output of semantic segmentation on the object level
by considering all vertices labeled with the otherprop
class (Semantic segm.). Ours (no planes) states the result
when applying semantic segmentation and locally verify the
object candidates, but without including possible objects
from supporting planes. We also evaluate our proposed
method using only object detection from global semantic
context and without the verification stage of ICP alignment
and local differencing (Ours (no LV)) to demonstrate the
improvements of the final stage of our pipeline (Ours (full)).

Note that our method without local verification (as well as
semantic segmentation) can only propose potential objects,
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TABLE III: Comparison of different methods on the robotic dataset.
(Pr = precision, Re = recall, F1 = F1-score, M = missed objects, W = wrongly detected objects)

Small Room Big Room
Pr Re F1 M W Pr Re F1 M W

Octomap [11] 0.11±0.05 0.61±0.18 0.19±0.08 15 176 0.07±0.04 0.42±0.15 0.12±0.07 42 434
Meta-room [8] 0.04±0.03 0.39±0.13 0.07±0.05 29 260 0.25±0.30 0.55±0.05 0.25±0.28 32 465
Semantic segm. 0.15±0.13 0.39±0.32 0.22±0.18 32 81 0.48±0.10 0.59±0.09 0.52±0.05 41 103
Ours (no planes) 0.30±0.25 0.39±0.31 0.34±0.27 42 35 0.73±0.05 0.58±0.09 0.65±0.07 41 54
Ours (no LV) 0.23±0.07 0.72±0.11 0.35±0.09 5 204 0.29±0.05 0.74±0.05 0.41±0.05 7 488
Ours (full) 0.48±0.222 0.70±0.13 0.56±0.17 8 84 0.59±0.16 0.73±0.04 0.65±0.12 8 173

Living Room (partial) Office (partial)
Pr Re F1 M W Pr Re F1 M W

Octomap [11] 0.11±0.08 0.50±0.08 0.17±0.10 19 74 0.18±0.07 0.77±0.13 0.28±0.10 8 73
Meta-room [8] 0.13±0.19 0.45±0.12 0.13±0.15 13 115 0.15±0.20 0.41±0.21 0.16±0.18 12 149
Semantic segm. 0.62±0.27 0.39±0.08 0.45±0.13 24 29 0.18±0.08 0.62±0.04 0.27±0.10 8 61
Ours (no planes) 0.95±0.05 0.38±0.08 0.54±0.09 17 25 0.71±0.35 0.60±0.03 0.60±0.19 12 10
Ours (no LV) 0.45±0.16 0.63±0.07 0.51±0.11 5 81 0.16±0.06 0.81±0.03 0.26±0.08 0 148
Ours (full) 0.75±0.23 0.61±0.07 0.65±0.13 8 37 0.61±0.28 0.76±0.06 0.63±0.17 2 28

Kitchen (partial) Average
Pr Re F1 M W Pr Re F1 M W

Octomap [11] 0.43±0.08 0.41±0.08 0.41±0.07 9 40 0.18±0.14 0.54±0.18 0.23±0.13 18.6 159.4
Meta-room [8] 0.66±0.17 0.35±0.12 0.46±0.14 10 58 0.25±0.28 0.43±0.14 0.22±0.21 19.2 209.4
Semantic segm. 0.30±0.08 0.73±0.20 0.40±0.09 6 143 0.35±0.22 0.55±0.21 0.38±0.15 22.2 83.4
Ours (no planes) 0.67±0.16 0.68±0.18 0.66±0.12 7 58 0.67±0.28 0.53±0.19 0.56±0.16 23.8 36.4
Ours (no LV) 0.27±0.06 0.75±0.16 0.39±0.07 1 149 0.28±0.12 0.73±0.10 0.39±0.11 3.6 214.0
Ours (full) 0.75±0.18 0.68±0.16 0.69±0.09 5 58 0.63±0.22 0.70±0.10 0.64±0.13 6.2 76.0

but can not exclude objects because they do not incorporate
knowledge from a reference map.

C. Metrics

A number of different metrics are considered for the
evaluation. The commonly used metrics of precision and
recall are applied at the point level. These measure the
accuracy of the object detections by considering all detected
points in the scene and all points from the ground truth
annotation. Precision measures the proportion of detected
points that correspond to the ground truth (TP/(TP +FP ))
and recall measures the proportion of ground truth points that
are in the detection set (TP/(TP + FN)). The F1-score is
also reported as it provides the harmonic mean of the two
quantities.

Since we are concerned about detection performance of
objects, we also report two additional metrics. We measure
the number of missed objects by comparing the overlap of
the clustered detections with the ground truth objects. If no
point of a ground truth object is detected then it is considered
missing. To measure overestimation (i.e. false positives), we
sum the number of detected clusters that do not overlap with
a ground truth object for each setup. While this is not an
accurate measure for false positive detections, it allows an
additional comparison of approaches at the object level.

D. Results

Table III shows the performance of the evaluated meth-
ods for each room in the robotic dataset. The results are
averaged over the different setups for precision, recall and
F1-measure. We also provide the standard deviation for
these three metrics. Missed objects and wrong detections
objects are summed. The total average for all rooms is also
given. Qualitative results for some example scenes using our

Ours Ground Truth

Fig. 5: Qualitative examples from three scenes. Detected/-
ground truth objects colored in pink. Top: small room,
middle: living room, bottom: kitchen.

method are shown in Figure 5 and further examples are given
in the supplementary video.

The quantitative results show that our approach clearly
outperforms the baseline methods. Precision increases drasti-
cally for the methods that apply local verification. This shows
the benefit of performing differencing only in restricted local
areas. Both Meta-room and Octomap report lower recall than
our approach because of their post-filtering step, which is
used to address the limitations of global differencing.

Semantic segmentation (Semantic segm.) performs sur-
prisingly well in terms of recall, given the fact it was
trained on a completely different dataset. However, the high

8458



Kintinuous     F1 = 0.94 ElasticFusion     F1 = 0.93 ScalableFusion     F1 = 0.96

Fig. 6: Qualitative examples of our approach applied on the same scene for different reconstruction methods. Detected
objects are visualized in pink, wrong detections are highlighted with a yellow ellipse. All reconstructions are displayed with
original point size.

number of missed objects indicates that especially smaller
objects can not be detected. Comparing the object candidates
proposed by semantic segmentation to the reference map by
applying our local verification step (Ours (no planes)) results
in higher precision and it decreases the number of wrong
objects. However, objects are still missing and the recall
remains low. This is improved by exploiting the semantic
information to explore horizontal planes (Ours (no LV)) and
find small objects. However, without utilizing the knowledge
from a reference map the number of wrongly detected objects
explodes. Incorporating both proposed steps, semantic plane
detection and local verification (Ours (full)), results in the
best trade-off. The full method achieved both good precision
as well as recall and therefore the highest F1-score overall.
On average, our method identifies 97.6 % of all novel objects
in the dataset while detecting only 3 false positives per scene.
This shows the importance of combining global and local
procedures for accurate novel object detection.

The most common failure case of our method occurs when
spatial clustering is not able to separate new and permanent
objects that are touching. An example of this can be seen
in Figure 5 at the bottom where the yellow-white sugar
box is clustered together with the coffee machine. During
local verification, the whole cluster is removed because the
alignment of the coffee machine leads to a high overlap. In
order to deal with this case, a segmentation algorithm could
be applied to separate objects. This is left for future work.

E. Generality to Different Reconstruction Methods

Our approach is applied to the output of different re-
constructions to show its generality. We consider Kintinu-
ous [29], ElasticFusion [30] and ScalableFusion [31]. Re-
constructions of the reference map as well as observations
are generated using the default implementations of each men-
tioned method. The outputs of these methods are converted
to a point set by taking the centroids (and average color
values) of the voxels [29] or surfels [30] or taking the mesh
vertices from [31]. For ElasticFusion and ScalableFusion, the
differencing threshold is reduced by half to 0.007 m (d in
Eq. (1)) due to the higher point density.

Figure 6 shows example outputs from the reconstruction
methods for a sample of the office room. The setup includes
four new objects to be detected. All mentioned reconstruction
methods are able to produce reasonable results, achieving

high F1-scores. In all three cases, every novel object was
identified. ElasticFusion and ScalableFusion detected one
very small wrong object each.

VI. CONCLUSION

This work addressed the problem of detecting novel
objects in 3D environments. We presented an approach
that analyzes the scene globally and detects objects using
semantic information. The semantic context is exploited to
extract objects on horizontal planes from relevant structures.
The detected objects are then verified by performing change
detection with a reference map in a local region. Results
with our new dataset show that our combined approach
outperforms existing baselines.

Our approach correctly detects new objects while exclud-
ing moved furniture and decoration. It is even possible to
detect only partially visible objects and also cluttered novel
objects. Our approach, however, sometimes rejects small
objects in the course of local verification because they can be
aligned to the reference map with high overlap. For future
work, this could be improved by using descriptive object
features. This would also help to detect novel objects that
are placed in locations that were previously occupied by
permanent objects in the reference map. Another direction
for future work is to incorporate more context in the form of
an ontology. This would allow high-level semantic reasoning
in the verification process. Finally, we expect our approach
to be highly valuable for surveillance applications and we
plan to investigate missing object detection in the future.
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