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Abstract— In this paper, a new remote center of motion (RCM)
mechanism is presented whose end-effector is able to move through
an entire hemisphere. In general, minimally invasive surgery (MIS)
applications, an elliptic cone workspace with vertex angles of 60◦
and 90◦ gives the surgeon enough freedom to operate. Therefore,
the majority of the developed RCM mechanisms have such a cone
as the workspace. However, there are still situations in which a larger
workspace is required, like the breast ultrasound scanning applica-
tion in which the RCM mechanisms should be able to move over a
hemisphere to do the breast scanning. The proposed RCM mecha-
nism is developed based upon a spherical scissor linkage and benefits
from the high stiffness characteristics of parallel structures while
eliminating the common problem of linkage collision in parallel
structures. It has two rotational degrees of freedom that are decou-
pled from each other. The Jacobian and the stiffness of the mecha-
nism while considering the bending of the links is calculated through
the virtual joints method (VJM). The kinemato-static equations and
the methodology for calculating stiffness are described in detail. The
optimal arc angle of the mechanism’s links is found using a multi-
objective genetic algorithm optimization. A prototype of the mech-
anism is built and forward kinematic of the proposed mechanism
is examined experimentally. The experiments indicate that the pro-
posed mechanism is able to provide a hemisphere as its workspace
while the RCM point of the mechanism is fixed in the space.

I. INTRODUCTION

The employment of robots and mechanisms in the medical
application such as surgeries and therapies offers benefits
including high accuracy, repeatability, and remote accessibility.
One of the specific applications where robots are used in medical
procedures is ultrasound imaging with robots. In standard
practice, the ultrasound probe is manipulated by a physician. The
experience and knowledge of the physician directly influence the
ultrasound image quality. Physicians find it difficult to hold an
ultrasound transducer for a long period of time in a fixed position
and apply a proper perpendicular force to the patient’s body
in order to obtain a high-quality ultrasound image. Therefore,
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one of our motivations is to design a system to support the
human-assisted ultrasound examination to avoid musculoskeletal
injuries prevalent among ultrasound technicians.

In this paper we propose the design of a spherical RCM
mechanism to be used as a breast ultrasound scanning probe
holder. An ultrasound probe can be attached to the proposed
spherical RCM mechanism, where the hemispherical workspace
of the RCM will allow for straightforward scanning of a patient’s
breast at any desired angle. The main design requirements for the
spherical RCM mechanism are as follows:

1) The workspace of the proposed mechanism should cover
a full hemisphere.

2) The proposed mechanism should not have any internal
singularities within the workspace.

3) For the sake of simplicity in manipulation and control,
degrees of freedom of the mechanism should be decoupled.

4) The total stiffness of the mechanism should be high in order
to guarantee ultrasound positioning accuracy in the presence
of robot/tissue contact.

To achieve these requirements, an RCM mechanism which is built
upon a spherical scissors linkage will be devised. The suggested
mechanism has two decoupled rotational DoFs and an RCM
located outside the mechanism. The proposed RCM mechanism
can provide a complete hemisphere workspace without any singu-
larities within the workspace. This mechanism can be motorized
and has the advantage that the motors stay in a fixed position on
the mechanism base (i.e. the motors do not move with the links).

Studies demonstrate that the conical workspace, provided by an
RCM, with vertex angles of 60◦ and 90◦ degrees suffices for most
procedures in minimally invasive surgery (MIS) [1]. The position-
ing of the RCM mechanism is critical when a limited workspace
is provided, and a user has to move and adjust the position of the
RCM mechanism when a surgeon needs to operate from multiple
directions around the patient’s body. An RCM mechanism with
a large workspace, like hemisphere/sphere, is able to mitigate the
necessity for RCM repositioning during the operation. Therefore,
another motivation for this paper is to design an RCM mechanism
that has a larger workspace, covering an entire hemisphere.

The paper is organized as follows: Background material will
be reviewed in Section II. Mechanism design and kinematics will
be presented in Sections III-A and III-B. An analytic stiffness
derivation and the isotropy will be discussed in Sections IV and
V, respectively. Further analysis and design optimization will
be elaborated in Section VI. Prototype design and experimental
evaluation will be presented in Section VII, and the paper will
be completed by a conclusion in Section VIII.
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II. BACKGROUND

Generally, RCM mechanisms can be classified into several
basic categories based on their kinematics [2]. The eight kinematic
categories include isocenters, parallelograms, circular tracking arcs,
synchronous belt transmission mechanisms, spherical linkages,
parallel manipulators, compliant mechanisms, and passive RCMs
[2]. Among those categories, parallelograms and parallel spherical
linkages have gained the most popularity in the literature.

Most of the studies on RCM mechanism have focused on
MIS robots, in which designed laparoscopic instruments need
to undergo spherical motions pivoted at the point of entry into
the patient’s body [3]. For ultrasound imaging assistance, RCM
mechanisms are typically employed as a dexterous robotic wrists,
where the tip of the ultrasound probe is placed at the RCM point of
the mechanism; however, when an RCM mechanism is intended
to be used as a probe holder for ultrasound breast examination, the
probe need to have a spherical motion centered at the breast center.
Many works have been conducted to utilize robotic platforms for
breast examination [4], however, an RCM mechanism has never
been developed specifically for this application.

Many of the MIS robots have been built upon primary
parallelogram mechanisms including Neurobot [5], and
BlueDRAGON [6]. The authors in [7] proposed a rotating
pantograph, generating a conical workspace for ultrasound
scanning. A three DoFs movable robot, which works based on
a parallel pantograph and a gimbal mechanism and should be
mounted on the patient’s body, is designed in [8]. Three degrees
of freedom in this robot are coupled together and in order to
reach a specific configuration, all joints should move together in
a controlled manner. Additional configurations of parallelogram
such as dual triangular-mechanism [9] and a combination of a dual
parallelogram and Peaucellier-Lipkin straight-line linkage [10]
have been developed. Parallelogram-based RCM mechanisms
have the drawback of linkage collision and workspace-boundary
singularity. To avoid collision between the two transverse bars
of the parallelogram, the bars should be mounted far enough from
each other, which increases the RCM mechanism size.

Two other categories of RCM mechanisms, spherical and
circular tracking arc mechanisms, benefit from the geometric
features of sphere and circle, respectively. Circular tracking-based
RCM mechanisms have the ability to provide relatively large
workspace and high mechanism stiffness. A limitation of circular
tracking-based RCM mechanisms is that the arced links must be
very large in order to maintain an acceptable distance between the
desired RCM location and robot links to guarantee that robot does
not confine the surgeon’s workspace during the operation. An
RCM mechanism comprising of circular guides linked together
in a serial arrangement was constructed in [11]. The bulkiness
of the system is one of its main drawbacks.

In spherical mechanisms, linkages are spherical sections with
a common rotation center being the RCM point. Spherical RCM
mechanisms exist in both serial and parallel configurations. Cures
[12] and Raven-II [13] are RCM robots that adopted the concept
of serial spherical linkages in their structure. A serial spherical
linkage by mounting a two-revolute joint spherical mechanism on
a circular guide is developed in [1]. The arc angle of each spherical

link in [1] was derived through an optimization problem with the
aim of maximizing the manipulability index while preserving the
compactness of the system. In this work, the parallel configuration
of the mechanism was also investigated. In-vivo suturing and
tissue manipulation experiments were used to assess the rate of
collision problem in a serial and parallel configuration; higher
collisions were reported for the parallel configuration [1].

One concern that exists for spherical serial manipulators is
their low stiffness; however, parallel manipulators have shown
superiority in stiffness and precision in comparison to their serial
counterparts. A parallel spherical mechanism consisting of three
“limbs,” with each limbs consisting of two spherical links in series
(3RR), is devised in [14]. A three-limb spherical RCM mechanism
utilizing prismatic joints (3PRP) was developed in [15]. The
complicated structure of these mechanisms, which consists of at
least three limbs, leads to linkage interferences and an internal
singularity if the limbs are not sufficiently long. Additionally,
these 3-limb mechanisms cannot cover an entire hemisphere.
A 2-DoF spherical parallel mechanism in [16] can provide the
standard cone workspace without interference and singularity in
a compact and simple form. Again, however, the workspace of
this mechanism is limited to a cone. Our proposed mechanism,
which can be categorized as parallel spherical mechanisms, is able
to sufficiently provide a hemispherical workspace without internal
singularity and with the required stiffness for medical purposes.

III. MECHANISM DESIGN AND KINEMATICS

In this section, first, the main conceptual design and
embodiment of the mechanism will be represented. Secondly, the
kinematics of the proposed spherical mechanism, in which the
individual link compliance is taken into account, is introduced.

A. Conceptual Design
In spherical mechanisms, all of the device’s links are curved

and are constrained to move on a spherical surface, defined
the radius of the links. In this paper, the number of links and
their arc angles are designed in order to cover a hemisphere.
Fig. 1a and Fig. 1b show the mechanism at its starting and final
configurations, respectively. Considering geometric constraints
between the links in the scissor mechanism, the end-effector is
confined to move along a circle, at the intersection between the
hemispherical workspace and the mechanism’s plane shown in
Fig. 1b. Therefore, the mechanism can traverse a circular path in
a 2D plane with only one control input, which controls the relative
angle between the first and second links. In order to eliminate the
“dead length” of the conventional scissor mechanism, we designed
the mechanism to consist of various stages, which are arranged in
a cascade manner. Each link is associated with a spherical section
with the spherical radius differing between links; as illustrated in
Fig. 1. In this paper, the number of links and their arc angles are
designed in order to cover a hemisphere. Fig. 1a and Fig. 1b show
the mechanism at its starting and final configurations, respectively.
While it is also possible to optimize for the radii of the arced links,
we have chosen them based on the size of the ultrasound probe.

B. Forward Kinematics
One of the most important performance indicators of manip-

ulators is their mechanical stiffness. The mechanical stiffness of
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Fig. 1: Model of the mechanism with four stages.

the manipulator defines the amount of deflection with respect to
external force/torque exerted to the end-effector. The higher the
mechanical stiffness of a manipulator, the lower its positioning
error under load. Low positioning error is crucial in medical
robotics; hence, the mechanical stiffness of the robot should be
high. To model the manipulator stiffness, we will use the Virtual
Joint Method (VJM), which is regarded as a computationally
efficient approach and is generally used in the pre-design stage.

In VJM, elastic deformations of links and joints are modeled
using virtual springs located at joints. The axis of the virtual spring
at each joint is normal to the link’s bending plane. To simplify
VJM implementation and derivation of the governing kinematics
for the proposed mechanism, a distinction will be made between
1) actuated joints, 2) virtual joints and 3) passive joints.

1) Actuated joints: For the proposed mechanism, we only need 2
DoFs (two actuated joints) to cover our desired hemispherical
workspace. The first actuated joint, Θ1, controls the relative
angle between the two curved links in stage one of the
mechanism, which provides a circular planar motion for the
mechanism. The second actuated joint, Θ0, rotates the entire
mechanism along the common axis of the mechanism and
provide 3D motion of the mechanism (Fig. 2). Activation for
Θ1 and Θ0 can be provided either by motors placed at those
joints, or by a user moving the end-effector on a sphere. 1

2) Virtual joints: Each flexible links is substituted by a rigid
link, which is connected to the previous link by a torsion
spring. The joints parameters corresponding to virtual
springs are called virtual joints.

3) Passive joints: All other joints in the mechanism structure,
which are driven by actuated joints are called passive joints.

The forward kinematics will be derived based on the Denavit-
Hartenberg (DH) convention. The DH parameters of the actuated
and virtual joints, as generalized coordinates, contribute to the
forward kinematics equations. The passive joints parameters can
be calculated based on actuated and virtual joint parameters using

1https://youtu.be/wxHEEwwRnGU

analytical equations. Following the conventional approach for
the forward kinematic analysis of closed-loop mechanisms, the
mechanism is separated into two branches, where the right and left
branches are depicted in Fig. 2. There is a repetitive pattern for DH
parameters between stages of the mechanism. The DH parameters
for the first stage of the left branch links are summarized in Table
I, and the generic DH parameters for the other stages of the left
branch links are summarized in Table II. Due to the symmetry
of the mechanism, the angles θi and αi of the right branch are
equal to the negative of those for the left branch, and the lengths
ai and di are equal for both branches. The link frames and virtual
frames of the links associated with the left branch and the first
stage of the mechanism are illustrated in Fig. 3. In Fig. 3, red
frames represent the real link frames (similar to those for the usual
rigid mechanism), and blue frames indicate the virtual frames
associated with each virtual spring, which are shown. For more
illustration about θi parameters in Table I, each θi, which is the
angle between xi−1 and xi along zi, is shown in detail in Fig. 3.
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Fig. 2: Partitioning and links labeling of left/right branches in the
mechanism.
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TABLE I: Denavit-Hartenberg for the links of the first stage of
the mechanism from the left branch.

Links θi αi ai di

1 Θ0 0 0 0

2 −Θ1 0 0 0

3 β+γ1
−π

2 0 0

4 ψ1
π

2 R3sin(β) R3−R3cos(β)

5 β+γ2
−π

2 0 0

6 −2Θ1
π

2 R5sin(β) R5−R5cos(β)

In Table I, R3 and R5 are the distances between the RCM point
and the centers of the 3th and 5th links, respectively. β is the arc
angle that is common to all links. ψ1 is the rotation angle (Fig. 3),
which is a passive angle and should be found based on Θ1,β ,γ1,
and γ2. In Table II, s is the stage number of the mechanism. To

TABLE II: Denavit-Hartenberg for the links of the other stages
of the mechanism from the left branch

Links θi αi ai di

4(s−1)+3 β+γ2(s−1)+1
−π

2 0 0

4(s−1)+4 ψs
π

2 R4(s−1)+3sin(β) R4(s−1)+3−R4(s−1)+3cos(β)

4(s−1)+5 β+γ2(s−1)+2
−π

2 0 0

4(s−1)+6 −2Θ1
π

2 R4(s−1)+5sin(β) R4(s−1)+5−R4(s−1)+5cos(β)

find ψi in each stage, we will consider the standard homogeneous
transformation for the left branch LTn and the right branch RTn
of the mechanism separately where,

RT0
n (θ)=

RT0
1 (θ1)

RT1
2 (θ2)...

RTn−1
n (θn)

=

[ RR0
n

RP0
n

0T 1

]
(1)

LT0
n (θ)=

LT0
1 (θ1)

LT1
2 (θ2)...

LTn−1
n (θn)

=

[ LR0
n

LP0
n

0T 1

]
(2)

Given that the end-effector position in both the left and right
branches in each stage must be equal, i.e. RP0

n ≡ LP0
n , an analytic

formula to derive ψi can be found as

ψi=cos−1(
a1,i

√
a2

1,i+a2
2,i−a2

3,i+a2,ia3,i

a2
1,i+a2

2,i
) (3)

where

a1,i=cot(Θ1), a2,i=cos(β+γi), a3,i=−cot(β+γi+1)sin(β+γi)
(4)

such that, γi is the DH parameter for virtual links (i.e. virtual
springs ) in each stage and β is arc angle of links.

IV. MECHANICAL STIFFNESS

In order to derive the stiffness equation, we need to analytically
develop kinemato-static set of equations. The nonlinear kinematic
equation is given by

p= f (θ ,γ) (5)

Here, vector p represents the position/orientation of end-effector
in the Cartesian space. Vectors θ and γ contain the actuated and
the virtual joint coordinates, respectively. From (5), we can get

δ p=Jθ δθ+Jγδγ (6)

where δγ is the virtual angular displacement due to the bending of
links from a nominal static position and δθ is the virtual angular
displacement of the actuated joints. Jθ and Jγ are the kinematic
Jacobin with respect to θ and γ coordinates, respectively.

A kinemato-static model can be developed based on the prin-
ciple of virtual work in equilibrium static condition. The equation

FT
δ p−τ

T
γ δγ−τ

T
θ δθ =0 (7)

explains the static equilibrium equations extracted from the virtual
work principle. Here, F is the external force exerted to end-effector.
τγ is the reaction torque in the γ coordinates and τθ is the actuator’s
torques in the θ coordinates. Putting (6) into (7) results in

FT Jγ =τ
T
γ

FT Jθ =τ
T
θ

(8)

An auxiliary torque-angular displacement equation, from Hooke’s
law for virtual coordinates, γ, governs the virtual coordinates:

τγ =Kγδγ (9)

Kγ is the stiffness matrix in the virtual joint coordinates. Given
an external force F and the desired end-effector position p,
the mechanism configuration (θ ,γ) must be derived from the
following system of nonlinear equations:

p= f (~θ ,γ)

JT
γ F=Kγδγ

(10)

In (10), the first equation describes nonlinear kinematic equation
and the second equation describes the relationship between the
applied force to the virtual joints with the angular deflections of
virtual joints based on Hooke’s law. As an inverse-kinematics
problem, (10) is required to be solved numerically. Despite
the non-linearity of (10), the linear stiffness matrix is much
more desirable for design purposes. Therefore, we perform the
linearization for the model around θ coordinates. As we intend
to extract the part of end-effector displacement that is resulted
from the link’s deflection, we assume that δθ =0. Then

JT
γ F=Kγδγ=KγJT

γ δγ (11)

rearrangement of (11) results in

F=JγKγJT
γ δγ (12)

where
Kc=JγKγJT

γ (13)

represents the Cartesian stiffness of the manipulator (Kc). Kγ ,
is the equivalent stiffness of a curved flexible beam which is
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subjected to the bending force at its free end while the other end
is clamped, is given by [17]

∆=
FiR3

i
EiIi

(
1
2

φi−
1
2

sinφicosφi

)
(14)

where ∆ is the deflection of beam’s free end due to bending
force, Fi, and φi and Ri are radius and arc angle of the curved
beam (Fig. 4). Our objective is to replace flexible curved links
with a torsional spring mounted on the base of a rigid one. The
torsional stiffness of virtual spring is what leads to the same tip
deflection for the beam under the equivalent torque. Based on the
work-energy principle, the amount of bending force work is equal
to the deflection energy stored in the torsional spring. Therefore,
the equivalent stiffness is given by

Fi∆=
1
2

Kγi(Γi)
2 (15)

such that Kγi is the equivalent torsional stiffness of the beam. Γi,
which is deflection angle, can be estimated by (based on Fig. 4).

Γi=
∆

Li
=

∆

Ri
sin(ϕi)

cos( 1
2 ϕi)

(16)

Therefore, Kγi can be calculated as

Kγi =
4EiIisin(ϕi)

2

Ricos(1
2ϕi)2(ϕi−sin(ϕi))cos(ϕi)

(17)

where Ei is the modulus of elasticity and Ii is the moment of
inertia. There are various approaches for deriving algebraic
characteristic of the stiffness matrix, such as trace and eigenvalue,
in order to be used as the stiffness index. In this paper, given that
the probe applies force along the radial direction, the stiffness in
the radial direction is much more important than the stiffness in
other directions. At each configuration the total Cartesian stiffness
matrix calculated by (13) should be rotated and represented based
on the frame coordinate of the last revolute joint frame coordinate.
Finally, one diagonal element of the stiffness matrix, which is
in the direction of the radial axis of the sphere, is adopted as the
mechanism’s stiffness index in the optimization problem.

Fig. 4: Curved beam diagram.

V. ISOTROPY INDEX

A Jacobian matrix relates the change of actuated joint
angular/linear displacement to the angular/linear displacement
of the end-effector. In (6), the Cartesian displacement of the
end-effector depends on the displacement of the actuated joints
and virtual joints. To put it differently, the total Jacobian of a
flexible mechanism depends on both the kinematic configuration
and the value of external wrench applied to the mechanism. We
will define an extra static equation,

S(F,θ ,γ)=JT
γ F−Kγ (18)

such that the relationship between δγ and δθ can be derived.
Noting that the external force F and Hooke’s law forces Kγ are
balanced, we know that S(F,θ ,γ) = 0. By taking the derivative
of S(F,θ ,γ), i.e,

∂S
∂θ

δθ+
∂S
∂γ

δγ=0, (19)

we can find the net Jacobian by putting (19) into (6), resulting in

~p=

[
Jθ+Jγ

(
∂S
∂γ

)−1
∂S
∂θ

]
δθ =Jnetδθ (20)

If the mechanism is considered to be fully rigid then Jγ =0 and
Jnet =Jθ . Generally, the Jacobian transforms a hyper-plane in the
joint space into an ellipsoid which is referred to the manipulability
ellipsoid in the Cartesian space. The closer to a unit sphere the
manipulability ellipsoid is, the lower the level of error in control
positioning of the manipulator’s end-effector. The condition
number of the Jacobian can be used as a performance index that
characterizes the amount of error amplification from the joint space
to the Cartesian space, ranging from 1 to infinity. The manipulator
is called isotropic when the condition number is equal to 1, which
means the manipulator has identical movement performance in all
directions. Usually, the manipulability index, which is the inverse
of the condition number and ranging from 0 to 1, is used to evaluate
the mechanical performance through the workspace. Given that
the manipulability index value depends on the manipulator
configuration, a global condition index (GCI) introduced by [18]
will be used to calculate the kinematic performance. GCI is simply
an average of isotropy index over the workspace.

GCI=
∫
W
( 1

κ

)
dW∫

W dW
(21)

where W is the manipulator’s reachable space and κ = σmax
σmin

is
the condition number of the Jacobian matrix. σmax and σmin are
maximum and minimum singular value of the Jacobian matrix,
respectively. In case of internal singularity, the determinant of the
Jacobian matrix is zero and the condition number of the Jacobian
matrix reaches to infinity (i.e. a large number).

VI. FURTHER ANALYSIS AND DESIGN OPTIMIZATION

The maximum reachable angle in mechanism’s workspace,
Θmax, is found from the arc angle of links, β , and the number of
links in each branch (left/right) of a mechanism, N (see Fig. 1).

Θmax=βN (22)

thus, given a desirable Θmax, there are many options to choose
a pair of β and N. However, the isotropy and the stiffness of the
mechanism vary based on the choice of this pair. To cover a large
range of workspace, either β or N should increase. Fig. 5 and
Fig. 6 depict the mechanism’s minimum stiffness and GCI index
variation, respectively, across various possible pairs of N and β .
Fig. 5 indicates that given a fixed workspace line, a structure that
has a larger number of links (a larger N) and a smaller β is stiffer
than a structure with a fewer number of links and a larger β ; in
fact, the parallel structure of the mechanism causes this. As shown
in Fig. 6, different combinations of N and β affect the isotropy
index as well. If N is increased, with β decreasing in proportion to
N such that Θmax remains constant, the isotropy index will remain
constant or grows slightly. If β expands, while N remaining fixed,
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the isotropy index will initially increase to some maximum value
and then decrease. To plot the stiffness and the isotropy index map,
we choose the modulus of elasticity of aluminum, E =200Gpa,
and curved links with a rectangular section of size 1×3cm2.

Fig. 5: Minimum stiffness map in the β-N plane.

Fig. 6: Global Isotropy index (GCI) map in the β-N plane.

Consequently, we are faced with an optimization problem of
finding an optimal β , as a design variable, in order to enhance
the stiffness and the isotropy of the mechanism simultaneously.
In this paper, β is constrained to be between 10◦ and 45◦. To find
β , we faced with a multi-objective optimization problem as

max
β

{Kc(β),GCI(β)}

constraints =

{
Nβ = π

2
10◦�β�45◦

(23)

Generally, in multi-objective optimization problems a set of solu-
tions called the Pareto frontier, Pf , are attained instead of one partic-
ular optimum solution. The Pareto frontier is a border that its points
cannot dominate each other in terms of optimization objectives.
Each point selected from the Pareto frontier, pi=〈GCIi,Ki〉∈Pf ,
can be used as an optimum solution based on the user’s preference.

In this paper, we select the one that has higher stiffness among the
Pareto frontier’s points, such that 〈GCIi,Ki〉optimal =maxpi(Ki).

A genetic algorithm (GA) is used to perform the optimization
problem.Due to the stochastic nature of the GA, the results that
are obtained from each run differ from each other. In Table III, the
mean and standard deviation of 10 optimization results are shown.
The stiffness and the isotropy index of the mechanism through the

TABLE III: The optimal parameters averaged over 10 runs.

Mean Standard Deviation
β 18.21◦ 0.39◦

GCI Index 0.45 1.75e−4
Stiffness (N/m) 1.99e+5 0.07

entire hemispherical workspace are depicted in Fig. 7a and Fig.
7b, respectively, for selected β = 18◦. The isotropy index equal
or close to 0, represents the singularity of the mechanism within
the workspace. The minimum isotropy index of the mechanism
across the workspace is 0.0382, which is associated with the
boundaries of the workspace. Such a minimum isotropy index
for boundaries is common among all mechanisms. Considering
the isotropy index distribution of the mechanism in Fig. 7b, being
singularity free of the mechanism can be approved.

(a) Stiffness across the workspace (b) Isotropy across the workspace

Fig. 7: Stiffness and isotropy map.

VII. PROTOTYPE DESIGN AND EXPERIMENTAL EVALUATION

A prototype of the proposed mechanism with curved angle of
β =18◦ was built (Fig. 8). The Fig. 8a ,and Fig. 8b describe the
initial configuration of the mechanism when links are completely
closed and the final configuration in which the mechanism
completely cover a 90◦ arc in space, respectively.

To experimentally validate the spherical workspace and
forward kinematic derivation of the proposed RCM device
an electromagnetic tracker was attached to the center of
the end effector of the fabricated prototype spherical RCM
mechanism (shown in Fig. 8). The RCM mechanism was tested
by changing the angle Θ1 (see Fig. 2) in discrete steps such that
Θ1∈{45◦,50◦,...80◦}. For each value of Θ1 that was tested, the
device was rotated about Θ0, the first degree-of-freedom, within
the range Θ0∈ [−π/8:π/8] while the end effector position data
was measured by the electromagnetic tracker. For the fabricated
prototype device, the distance from the RCM point to measured
end effector position should ideally be 0.24 m throughout the entire
workspace, and was experimentally measured to be 0.246±0.004
m. Fig. 9 shows the results of the work space validation graphically.
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(a) Initial configuration (b) Final configuration

Fig. 8: Prototype of the proposed spherical RCM mechanism.

The contour value in Fig. 9 describes the difference between the
real position of the prototype’s end-effector and the ideal position
from forward kinematic calculation. These results indicate that the
workspace of the fabricated prototype device closely matches the
designed workspace and that the RCM mechanism functions as
expected also the correctness of the forward kinematic calculation
is verified. For these tests, an Aurora electromagnetic tracker with a
Planar 20-20 V2 Field Generator (NDI Europe GmbH, Radolfzell,
Germany) was used. The ranges of the values for Θ0 and Θ1 were
chosen to ensure the end-effector electromagnetic tracker remained
within the tracking volume provided by the planar field generator.

Fig. 9: Comparison of measured end-effector position of prototype
and theoretical end-effector position.

VIII. CONCLUSION

In this paper, the kinemato-static equation for a novel spherical
RCM mechanism with an arbitrary number of stages was
introduced. A closed-form solution for the forward kinematics
of the mechanism was derived. Presented kinematic equations
took the links flexibility into account. A relationship for the
mechanism stiffness was derived. The stiffness, the isotropy index
and singularity of the mechanism were investigated throughout
the entire hemispherical workspace. The result of the isotropy
analysis indicates that the mechanism is singularity free within

this workspace. The optimal links arc angle for a hemispherical
workspace was found by considering the isotropy index and the
stiffness as the mechanism performance index.
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