
SelfieDroneStick: A Natural Interface for Quadcopter Photography

Saif Alabachi1 Gita Sukthankar2 Rahul Sukthankar3

Abstract— A physical selfie stick extends the user’s reach,
enabling the acquisition of personal photos that include more
of the background scene. Similarly, a quadcopter can capture
photos from vantage points unattainable by the user; but
teleoperating a quadcopter to good viewpoints is a difficult
task. This paper presents a natural interface for quadcopter
photography, the SelfieDroneStick that allows the user to guide
the quadcopter to the optimal vantage point based on the
phone’s sensors. Users specify the composition of their desired
long-range selfies using their smartphone, and the quadcopter
autonomously flies to a sequence of vantage points from where
the desired shots can be taken. The robot controller is trained
from a combination of real-world images and simulated flight
data. This paper describes two key innovations required to
deploy deep reinforcement learning models on a real robot: 1)
an abstract state representation for transferring learning from
simulation to the hardware platform, and 2) reward shaping
and staging paradigms for training the controller. Both of these
improvements were found to be essential in learning a robot
controller from simulation that transfers successfully to the real
robot.

I. INTRODUCTION

Although there has been work on improving quadcopter
teleoperation [1], [2] and robot-assisted photography [3], [4],
the premise behind most of these investigations has been that
the user must learn the proposed interface paradigm. Our
philosophy is to make the users learn as little as possible and
the system learn as much as necessary. The SelfieDroneStick
interface mimics the functionality of a selfie stick, enabling
the user to control the quadcopter with only a mobile phone
by a simple gesture and a click as shown in Fig. 1.

The goal is to generate a well-framed selfie of the user
against the desired background, as if it were taken using a
virtual selfie stick extending from the user in the direction of
the handheld smart mobile device (SMD). The user specifies
the desired composition by taking an ordinary selfie using
the SMD, where the relative orientation directly specifies
the azimuth of the vantage point while the height, 3D space
position, and desired distance is indirectly specified by the
SMD elevation, position and size of the user’s face in the
captured frame respectively. The drone flies to the target
viewpoint based on the vantage point specified by the SMD
to capture the selfie using a learned controller. The drone
mirrors the bearing of the SMD as measured by its onboard
IMU and selects an appropriate distance such that the user’s
body visually occupies relatively the same area in the drone
selfie as the user’s face did in the SMD frame. The resulting

1Saif Alabachi is with the University of Technology, Baghdad, Iraq
s.ghassan@gmail.com

2Gita Sukthankar is with the Department of Computer Science, University
of Central Florida, Orlando, FL gitars@eecs.ucf.edu

3Rahul Sukthankar is with Google sukthankar@google.com

photos frame the user against the entire background, just as
if the user had used a impossibly long selfie stick to compose
the photograph.

Instead of attempting to use deep reinforcement learning
(RL) to learn a direct control policy based on the raw
pixel data as was done in [5], our controller utilizes an
abstract state space representation. First, our perception
system, Dense Upscaled Network (DUNet) [6], is trained to
detect a human face (which is prominent in the phone camera
image) and also the human body (visible from the drone’s
viewpoint). Deep Deterministic Policy Gradient (DDPG) [7]
is then used to learn the flight policy in simulation using an
abstract, continuous state space before being transferred to
the real robot. To create a smooth and steady flight trajectory,
we shape the reward to take into account both position and
velocity.

This work introduces a novel interface for automating
UAV selfie-photography using a mobile device. Our sys-
tem takes selfies at the specified depth, background and
orientation angle in the scene, with the user placed at
the desired position in the frame. Once trained, our RL
controller autonomously flies the quadcopter to the user-
selected vantage point. Creating a selfie using our system
typically takes 5s for the user to compose the shot and 8s for
the drone to fly the maneuver, vs. 60s to manually operate the
drone for a similar shot. Our system architecture is shown in
Figure 1, and the ROS configuration, simulated environment,
and code are publicly available.1

II. RELATED WORK

Natural user interfaces (NUI) rely on innate human actions
such as gesture and voice commands for all human-robot in-
teraction [8], [9], [10]. Alternatively, more precise navigation
in indoor and outdoor environments can be achieved through
structured waypoint designation strategies [2], [11]. Wear-
able sensors were employed in a point-to-target interaction
scenario to control and land a drone using arm position and
absolute orientation based on the inertial measurement unit
(IMU) readings [12]. Our system removes the need to employ
gestures, hand crafted strokes, or wearable devices. Any
mobile device equipped with a camera and IMU sensors can
be used to direct the quadcopter using our SelfieDroneStick
interface.

A subset of the human-robot interaction research has
specifically addressed the problem of user interfaces for
drone-mounted cameras. For instance, [2] tracks user-
specified objects with an adaptive correlation filter in or-
der to create photo collections that include a diversity of

1https://github.com/cyberphantom/Selfie-Drone-Stick

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10684

Fig. 1. SelfieDroneStick enables long-range selfie photography by allowing the user to naturally specify vantage points from which a drone can capture
well-framed photos of the user.

Fig. 2. Using the device camera, the user snaps the shot as if taking a selfie while angling the phone to modify the face size and background in the captured
frame. The camera frame and IMU sensor readings are then extracted to generate the desired vantage point. DUNet is employed to detect the human face
and body in both the images captured by the mobile device and the drone. The transformation module creates the target point, and the SelfieDroneStick
software agent autonomously navigates there using the learned control policy.

viewpoints. XPose [1] is a touch-based system for photo
taking in which the user concentrates on adjusting the desired
photo rather than the quadcopter flight path. XPose offers an
innovative, powerful user interface for taking a variety of
photos, supported by trajectory planning. For our research,
we chose to focus on the most popular photo composition
(selfie in front of sweeping background), while using deep
learning to make the vantage selection process fast and
intuitive for the user.

Deep RL has been used to learn specialized flight con-
trollers; for instance, Deep Q-Network (DQN) was used to
learn autonomous landing policies for a quadcopter with a
downward facing camera [13]. DQN also has been employed
for capturing frontal facial photos; Passalis and Tefas [14]
developed a realistic simulation for this task and trained
their system on a database of head positions. In order to use
DQN, both these systems adopted a discretized action space.
In our system, we compare the performance of DQN, PG
(policy gradient), DDPG (deep deterministic policy gradient)
and found that the DDPG produced trajectories with less

oscillation, particularly when combined with our reward
shaping method. Rodriguez et al. [15] demonstrated good
results with a similar approach on the challenging task on
autonomous multirotor landing on a moving platform. In
order to capture the perfect selfie, our learned controller must
be able to execute multiple types of flight paths and is not
limited to a single maneuver.

III. METHOD

Fig. 2 presents an overview of the SelfieDroneStick system.
First, the user specifies vantage points for the drone using
an SMD, simply by clicking a series of selfies. For each
vantage point, the system captures both a reference camera
image as well as the SMD’s corresponding orientation from
its inertial measurement unit (IMU) sensor. By combining
the orientation of the SMD with the framing of the user’s
face in the SMD camera image, we can extrapolate an ideal
vantage point for the drone. This is transformed into a
desired framing for the user in the drone’s camera. Next,
on the drone we combine information from its onboard

10685

Fig. 3. The drone vantage point is specified by the orientation of the smart
mobile device, φ and ψ, as well as the position and size of the user in
the camera frame, (cx, cy) and ω. Moving the SMD away from the user
corresponds to extending a “virtual selfie stick”, guiding the drone to capture
a photo from further away.

IMU, its front-facing camera and the vantage point. We
employ a fast object detector to localize the user in each
frame (operating at frame rate is essential, particularly in a
crowded scene) and form a state vector that is used by the
SelfieDroneStick reinforcement learning (RL) agent to plan
the drone trajectory to the next vantage point. Finally, the RL
agent, which was trained in simulation, controls the drone
via a series of velocity commands to guide it through the
sequence of vantage points. When the drone reaches each
vantage point, it captures a long-range selfie of the user.
The following sections discuss each of these steps in greater
detail.

A. A Natural Interface for Vantage Point Specification

The user activates the SelfieDroneStick by taking a regular
selfie using our web-based camera app. Then the shutter is
pressed, the SMD’s x-axis and y-axis orientation are recorded
along with the camera image (Fig. 3). The IMU information
partially specifies a bearing from the user along which the
drone should seek to position itself in order to capture the
desired shot. In addition to the bearing of the desired vantage
point, we also need to specify the range. The key idea behind
our interface is to enable the user to naturally specify the
distance to the vantage point simply by varying the distance
of the SMD from the user’s face — moving the SMD further
away should cause the drone to capture photos from further
away. Intuitively, extending the user’s arm corresponds to a
(magnified) extension of a selfie stick. This requires us to
localize where the user is located within the selfie frame.
We employ the DUNet architecture [6], a real-time object
detection CNN model, for face detection and the same model
is also used for person detection on the drone camera (see
below). The position of the user’s face (cx, cy), along with
the ratio of the face bounding box to camera frame ω and
the SMD orientation φ and ψ fully specify the drone vantage
point; this is illustrated in Fig. 3.

How do these measurements translate to a specific drone
position? Visualizing the drone as if it were mounted on a

virtual selfie stick extrapolated along the user’s arm, past the
SMD, shows that some of the coordinates map directly from
the SMD to the drone: for instance, the azimuth to the drone
is simply the yaw angle of the SMD, ψ. Others require an
explicit transform: we empirically observe that the ratio of
the user’s face to the SMD image size falls in the range of
[0.1, 0.2] while desirable drone shots have a ratio of user’s
body to drone image size of [0.03, 0.4]. Thus, we linearly
map the ranges of the former to the latter to obtain suitable
range distances for the drone. Finally, the height of the drone
is derived from a combination of SMD tilt φ and position
(cx, cy) and size ratio ω of the user’s face in the frame using
straightforward geometry.

B. Perception System

There have been recent successes of Deep Reinforcement
Learning that train end-to-end directly from pixel inputs
in the context of automated game playing. However, for
real-world robotics, it is still generally more practical to
build reinforcement learning (RL) planners on top of stable
perception systems. We use a specialized object detector
DUNet [6] that is trained for detecting small objects and
optimized for inference on compute-constrained platforms.

Since RL planners are trained in simulation, we employ
an instance of DUNet pre-trained on data collected in the
simulated world during training and replace it with a DUNet
model pre-trained on PASCAL VOC [16] for real-world
deployment. This enables the RL policy learned during
simulation to transfer to the real-world without requiring
explicit domain transfer. Since DUNet runs at real-time,
we are able to perform per-frame detection while tracking
the user through the stream of images. When the scene
contains multiple people, it is important for the system to
maintain its focus on the user; this is significantly easier in
our application compared to the general tracking problem
since the user is compliant and looking at the drone rather
than averting their face or hiding behind obstacles. DUNet
localizes detections with a bounding box and for the purposes
of the RL planner, only the size and location of bounding
boxes containing the user are relevant.

The drone’s state space st composed of: observations
– odometry derived from on-board sensors (gyroscope,
accelerometer and pressure readings) and localization of
the user in the drone’s front-facing camera (generated by
DUNet), (b) linear and angular velocities, (c) target – vantage
point specification.

When designing a state space, it is worthwhile to focus
only on the relevant features since RL scales poorly with
state space dimensionality. For this reason, we condense (a)
to a 5-D tuple that specifies the drone’s pose relative to the
user: a = [ψd,Υd, cdx, c

d
y, ω

d], corresponding to the current
azimuth to the user, drone height, and observed bounding
box location and size ratio, respectively; the superscript d

denotes that these are all measurements on the drone rather
than similar parameters measured on the SMD.

The velocity state (b) is straightforward, b = [ẋ, ẏ, ż, Ż
consisting of three linear velocity components and the an-

10686

gular velocity around the vertical axis (drone yaw rate of
change).

The final aspect of the state (c) is the location of the
next vantage point, specified using the same coordinates
as the drone pose: c = [ψv,Υv, cvx, c

v
y, ω

v], as above with
superscript v denoting that this specifies the vantage point.

The complete state vector is a concatenation of these three
tuples, st = [a,b, c], resulting in a 14-dimensional state
space.

C. Learning a Deep RL Robot Control Policy: Rewards

At a high level, the goal of the SelfieStickDrone agent is to
pilot the drone quickly and smoothly to each vantage point,
without overshooting or oscillating. A naive formulation
of such a goal in reinforcement learning (RL) would be
to place sparse rewards only at the vantage points. Such
an approach can work for simple problems in simulated
environments but is challenging on our task because RL
systems are inherently high in sample complexity and this is
exacerbated by environments with sparse rewards (confirmed
in our experiments below).

Practical RL for robotics relies heavily on training RL
policies in simulation and then transferring the learned
models to the real world. It also benefits significantly from
reward shaping and curriculum learning through staging of
rewards. We describe these in the context of our application.

Reward shaping for RL requires a careful balance between
terms that are so punishing that they drive agents to absorp-
tion states (e.g., penalizing the agent at each time step in
order to incentivize efficient flights could encourage the agent
to end its episode quickly by crashing) and reward functions
that are too rewarding near the goal that the agent chooses
to dawdle near the goal state, accumulating a long sequence
of partial rewards without achieving its objective.

Our reward function consists of two main terms: (1) a
basin of attraction surrounding the specified vantage point
to incentivize policies that fly the drone to the goal, and (2)
a term to punish high-speed flight near the vantage point to
encourage a smooth, non-oscillating approach before taking
the selfie. The reward function also considers the fact that the
drone flies through a sequence of vantage points and must
smoothly transition from one to the next.

While creating a good reward function required con-
siderable experimentation, we can explain its construction
intuitively as follows. A natural expression for distance from
the current drone pose to the next vantage point (goal) is
given by the Euclidean distance between the correspond-
ing pose vectors: ||a − c||2 = ||(ψv,Υv, cvx, c

v
y, ω

v) −
(ψd,Υd, cdx, c

d
y, ω

d)||2. We want the reward to decay with
distance from the goal, and we also want to penalize speed
when near the goal. From these, we propose the following
formulation for the reward:

R = CLIP[0,1]

(
cos(γ||a− c||2e−α||a−c||2)e−β||b||1

)
, (1)

where CLIP[0,1](.) = max(min(., 1), 0), {a,b, c} are the
three components of the RL state vector (described above)
and {α = 1.3, β = 0.35, γ = 11.3} are empirically tuned

hyperparameters. The cos(.) term bounds the basin around
the vantage point where the agent can collect partial rewards
and high speeds are not rewarded near the goal.

Each episode runs until one of the following termination
conditions is triggered:
• If the agent achieves a reward of > 0.85 in a given

timestep, the episode is terminated as an early success,
with a reward +1.

• If the drone flies outside the safe zone (exceeds height
or ratio limits), the episode is terminated as an early
failure, with reward −0.8.

• If the object detector fails to find the subject (e.g., user
is out of view), the episode is terminated early, with
reward −0.8.

• If the step counter reaches the max. episode length (41
in our experiments), the episode terminates with the
current reward, R.

At each time-step, the agent receives a reward R except for
two cases, where the reward is explicitly shaped:

1) An exploration reward of +1 is given whenever the
agent achieves R > 0.75; this is to encourage it to
explore nearby states to achieve early success.

2) When the drone moves so that the detected person falls
very close to the edge of the image (within 10 pixels
of frame), the reward is set to −0.8, but the episode is
not terminated early; unless the drone acts quickly, the
person will go outside the frame and trigger the early
condition discussed above.

The reward shaping incentivizes the agent to keep the user
in its field of view and to stay within the safe zone. Once it
can achieve these basic objectives, the agent can learn to fly
the drone towards the vantage point.

A few other subtleties are worth mentioning: we provide
the maximum reward +1 whenever the drone is within a
radius of 1m of the vantage point and within ±10◦ in
orientation. This acknowledges that the user’s specification of
the vantage point is intrinsically approximate and encourages
the drone to fly quickly to the vantage point and take
selfies while hovering rather than making unnecessary minor
adjustments in an attempt to hit the exact position, which
would have no meaningful impact on the qualities of photos
acquired. The zero reward that the agent receives when it
is far away from vantage points encourages the drone to
fly quickly through those regions and the penalty for failing
to detect the user is an incentive to keep the user in view
(when possible). The latter is a form of curriculum learning:
the drone first learns to explore while keeping the user in
view and then learns to head to the vantage point – without
losing the user.

D. Deep RL: Design Choices and Real-World Transfer

It is challenging to train a deep reinforcement agent to
fly a real-world drone from scratch on this task. Therefore,
we trained our system in a 3D emulator with a custom-built
environment and a physical simulation of our quadcopter.
The emulator creates a series of training simulations for

10687

Fig. 4. Overview of the Deep RL agent training pipeline (target networks not shown). During each episode, the simulated drone is initialized in a random
pose and assigned a random vantage point as target. The target critic network predicts the Q-value (Q′) and the critic network provides the action gradients
(∇Qπ).

Fig. 5. Training progress for different Deep RL methods. DDPG with
reward shaping improves steadily.

the SelfieDroneStick agent with different initialization poses
and vantage points. The agent tries actions, observes a new
state and collects rewards at each episodic time-step t. We
explored training the agent with a variety of Deep RL
algorithms (described below) but at a high level, the goal is
to learn a policy π(s) by updating a value function Qπ(s,a),
where s and a denote the agent’s current state and its selected
action, respectively. Fig. 5 illustrates the learning progress for
each of the tested methods.

Our action space is 4D and continuous: 3 linear velocities
(ẋ, ẏ, ż) and a yaw rate Ż. Typical RL agents in the literature
select an action from a discrete set (e.g., video game playing
RL agents that select which button to press on a game
controller) and learning in a multi-dimensional continuous
action space, as is common in robotics, is more challenging.

Fig. 4 illustrates the training phase. We consider and eval-
uate several recent approaches for model-free Deep RL that
have achieved state-of-the-art performance across relevant
domains, as detailed below.

1) Dueling Double Deep Q Network (DDDQN): DDDQN
is an updated variant on the popular Deep Q Network
(DQN) [17]. Like DQN, this algorithm requires a discretiza-
tion of the action space, for which we employ a simple
3x3x3 grid. The ‘double’ refers to the use of two independent
networks to address the over-estimation of Q values in
original DQN [18] and the ‘dueling’ splits the network into
two separate parts [19]: one for estimating the advantage of
selecting a given action among the others for the given state,
and a second for estimating the state value.

2) Policy Gradient: Policy Gradient (PG) is an on policy
approach for learning stochastic policies. In order to find
the optimal policy, it increases the probabilities of actions
that lead to higher return and reduces the probabilities of
actions that lead to a lower return. During our evaluation of
stochastic Gaussian policy gradient, we experienced conver-
gence problems, accompanied by noisy gradients and high
variance. Thus, we also considered the popular augmentation,
Deep Deterministic Policy Gradient (DDPG) [7], which is
based on the prior work on DPG [20].

3) Deep Deterministic Policy Gradient (DDPG): DDPG
is an off-policy, actor-critic algorithm that yields good
environment exploration through the use of a stochastic
behavioral policy. The intuition is that it is easier to learn
the optimal Q value by employing greedy deterministic
policy learning through following the time difference (TD)
bootstrapping error. The actor takes the state and predicts
the action using its policy network, and the critic provides
the Q value (expected return) based on the state and the
actor’s predicted action. Optimizing the Q value of the
critic network is done by minimizing the loss between the
prediction of the critic target network and the expected
return. We implemented DDPG with a continuous action
space that enables the drone to fly at a velocity of up to
4m/s in each direction.

10688

4) DDPG with shaped reward: As above, but with reward
shaping to encourage faster training. In the earlier variants,
the reward function is ablated to consider only the sparse
terms for vantage point proximity.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTS

Transferring the learned controller from simulation to the
real world is simplified by our perception system and design
of the state space. The Gazebo simulator and ROS were
configured to work with the OpenAI Gym toolkit to observe
a new state every 160ms. Training was performed on a
single NVidia Titan X GPU. To expedite the training, we
set threshold values for the human object ratio and drone
height to generate a safe zone for the drone movement. The
vertical space is set to be in the range of [0.5, 3] meters and
the yaw angle to be between [−75◦, 75◦]. To prevent the
quadcopter from being too close to the detected human or
moving too far and losing references, the human size ratio
is only valid in the range [0.5, 0.03].

Both the actor and critic networks have two hidden
layers with sizes [512, 256]. The Adam optimizer is used
for training with the learning rates set to 10−5 and 10−3

respectively. The output action selected by the actor is scaled
to be in the range of [−0.8, 0.8] as we are using a commodity
quadcopter that exhibits shaky motion when flying faster
than 0.8 (' 4m/s) in any direction; this camera shake
results in significantly degraded image quality and detection
performance. The Deep RL agent is trained for 18K epochs
in our simulated environment and then deployed on the
drone.

During training, our environment consists of a 3D domain
containing a single human and single UAV (drone) model
against a simple background. We test the system in several
realistic simulated scenarios, such as the one shown in
upper part of Fig. 7. This allows us to conduct end-to-end
experiments under repeatable conditions with known ground-
truth, with the same perception system as we employ for
real-world experiments, as shown in the lower part of Fig. 7.

Both the simulated and real-world scenarios follow a
consistent script:

1) The drone is initialized facing the human subject at a
safe distance. In simulation, take-off and landing are
straightforward; for the real drone, the user initiates
take-off by holding the SMD flat and initiates a landing
sequence by tilting the SMD 90° around the x-axis.

2) Prior to activating the SelfieDroneStick, the drone hov-
ers in front of the user, centering the user in the middle
of the image with Ωobs ' 24%.

3) Once the SelfieDroneStick agent has been activated by
the user taking a selfie using the SMD, the SelfieDrone-
Stick agent flies the drone to the specified vantage point
using the learned Deep RL controller.

4) Once the drone arrives at the bearing and range con-
sistent with the specified vantage point, it takes a long-
range selfie of the subject.

Fig. 6 illustrates drone trajectories generated by the pro-
posed controller (DDPG-reshaped) against two baselines, a

Fig. 6. Proposed controller (DDPG-reshaped) compared against a PID and
DDPG trained on sparse rewards on 4 drone photography scenarios. The
green sphere denotes target vantage point. See text for details.

TABLE I
EVALUATION OF PROPOSED REWARD SHAPING VS. BASELINE

Scenario Baseline Reward Shaped Reward
Dist Var. Vel Dist Var. Vel

1 0.133 0.168 0.144 0.141
2 0.235 0.0707 0.148 0.148
3 0.089 0.155 0.100 0.147
4 0.124 0.170 0.085 0.144

classical PID contoller and a DDPG controller trained on
sparse rewards. We see top and side views (rows) for each of
four scenarios (columns) as the drone approaches the vantage
point (green sphere). The shaped reward is better at slowing
the drone to a stable hover at the vantage point. DDPG with
sparse rewards fails on the fourth scenario.

To better understand the effects of reward shaping, we
compared the proposed shaped reward against a baseline
reward that varies linearly with distance to vantage point.
We measure both the distance to target and the variance in
velocity over 10 timesteps to assess the controller’s ability
to bring the drone to the vantage point and its stability,
respectively (see Table I).

Finally, Fig. 7 shows the SelfieDroneStick interface oper-
ating in three real-world scenarios. These experiments em-
ployed an iPhone SMD in conjunction with an AR.DRONE
2.0 UAV with a 30fps frame rate, with video streamed to a
laptop that runs percepion and control. The interface enables
the user to take multiple selfies with different backgrounds
as the user moves in the environment. Videos of the system
can be viewed at http://ial.eecs.ucf.edu/SelfieDroneStick/.

V. CONCLUSION

This paper introduces the SelfieDroneStick, our au-
tonomous navigation and selfie-photography platform that
takes long-range selfies using a drone from vantage points
specified by the user using a natural “virtual selfie stick”
interface. Designing the SelfieDroneStick interface required
overcoming several significant challenges: (1) specifying the
composition of desired selfies using the smartphone, (2)

10689

Fig. 7. Evaluating SelfieDroneStick in a custom simulation environment and in real-world using the Parrot ARDrone 2.0.

learning Deep RL policies that transfer from simulation to the
real world robustly, (3) ensuring that perception, cognition
and control operate on compute-constrained platforms at
frame-rate. Our experiments in simulation and on the quad-
copter confirm the feasibility of creating a natural interface
for quadcopter photography driven by a learned RL policy.

ACKNOWLEDGMENTS

We thank Yasmeen Alhamdan for help in figure generation.

REFERENCES

[1] Z. Lan, M. Shridhar, D. Hsu, and S. Zhao, “Xpose: Reinventing user
interaction with flying cameras,” in Robotics: Science and Systems,
2017.

[2] S. Alabachi and G. Sukthankar, “Intelligently assisting human-guided
quadcopter photography,” in Proceedings of FLAIRS, 2018.

[3] E. Cheng, Aerial photography and videography using drones. Peach-
pit Press, 2015.

[4] R. Coaguila, G. Sukthankar, and R. Sukthankar, “Selecting vantage
points for an autonomous quadcopter videographer,” in Proceedings
of FLAIRS, 2016, pp. 386–391.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[6] S. Alabachi, G. Sukthankar, and R. Sukthankar, “Customizing object
detectors for indoor robots,” in International Conference on Robotics
and Automation, 2019.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] V. L. Popov, K. B. Shiev, A. V. Topalov, N. G. Shakev, and S. A.
Ahmed, “Control of the flight of a small quadrotor using gestural
interface,” in IEEE International Conference on Intelligent Systems,
2016, pp. 622–628.

[9] R. A. Suárez Fernández, J. L. Sanchez-Lopez, C. Sampedro, H. Bavle,
M. Molina, and P. Campoy, “Natural user interfaces for human-drone
multi-modal interaction,” in International Conference on Unmanned
Aircraft Systems, 2016, pp. 1013–1022.

[10] L. Ma and L. L. Cheng, “Studies of AR Drone on gesture control,”
in International Conference on Materials Engineering, Manufacturing
Technology and Control, 2016.

[11] C. Gebhardt, B. Hepp, T. Nägeli, S. Stevšić, and O. Hilliges, “Airways:
Optimization-based planning of quadrotor trajectories according to
high-level user goals,” in Proceedings of the CHI Conference on
Human Factors in Computing Systems, 2016, pp. 2508–2519.

[12] B. Gromov, L. Gambardella, and A. Giusti, “Video: Landing a drone
with pointing gestures,” in ACM/IEEE International Conference on
Human-Robot Interaction Companion, 2018.

[13] R. Polvara, M. Patacchiola, S. Sharma, J. Wan, A. Manning, R. Sut-
ton, and A. Cangelosi, “Autonomous quadrotor landing using deep
reinforcement learning,” arXiv preprint arXiv:1709.03339, 2017.

[14] N. Passalis and A. Tefas, “Deep reinforcement learning for frontal view
person shooting using drones,” in 2018 IEEE Conference on Evolving
and Adaptive Intelligent Systems (EAIS), 2018, pp. 1–8.

[15] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, I. G. Moreno, and
P. Campoy, “A deep reinforcement learning technique for vision-
based autonomous multirotor landing on a moving platform,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1010–1017.

[16] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL visual object classes
challenge: A retrospective,” International Journal of Computer Vision,
vol. 111, no. 1, pp. 98–136, Jan. 2015.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

[18] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in AAAI, 2016.

[19] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[20] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in International
Conference on Machine Learning, 2014.

10690

