
Reactive Receding Horizon Planning and Control
for Quadrotors with Limited On-Board Sensing

Indrajeet Yadav and Herbert G. Tanner

Abstract— The paper presents a receding horizon planning
strategy for a quadrotor-type MAV to navigate through an
unknown cluttered environment at high speed. Utilizing a
lightweight on-board short-range sensor that generates point-
clouds within a narrow Field of View (FOV), the reported
approach generates safe and dynamically feasible trajectories
within the FOV of the sensor, which the MAV uses to navigate
without relying on any global planner or prior information
about the environment. The effectiveness of this planner-
controller combination is demonstrated in both indoor and
outdoor tests featuring speeds of up to of 3.5 m/s. With
minor adjustments, the local motion planner can be utilized
for interception and tracking of a moving target; evidence to
this effect are provided in the form of numerical (Gazebo)
simulations. Given the absence of any global information about
the robot’s workspace, the extent to which the local planner can
provide convergence guarantees is limited; when complemented
by a global planner and/or target tracker, the reported lower-
level, sensor-driven reactive motion control strategy completes
the autonomous MAV navigation stack, enabling navigation in
dynamic, uncertain, and partially-known environments with
guaranteed convergence to any static or dynamic target.

I. INTRODUCTION

The agility and flexibility in terms of size and payload
capacity makes quadrotor-type micro aerial vehicles (MAV)
attractive platforms in many application areas such as surveil-
lance, aerial photography and mapping, precision agriculture,
construction and defense. Although MAV of various degrees
of autonomy have been deployed in these areas, the pre-
vailing assumption has been that the environment is at least
partially known, so that a motion plan can be generated a
priori and then used for steering the vehicle to a desired goal.
For unknown environments, recent MAV literature addresses
the problem of building (or updating) the local map of the
environment using an onboard perception stack [6], [17].

The ability to safely navigate through a set of waypoint
poses (keyframes) using a reference trajectory composed
piece-wise of polynomials in time [13], [18], together with
the development of differential-geometric quadrotor con-
trollers [11], have enabled safe navigation and aggressive
maneuvering as long as constraints on vehicle dynamics
are respected. While platform-specific constraints on vehicle
dynamics can be identified by experimental testing, ensur-
ing safety during operation requires either complete prior
knowledge of the environment, or some way of completing
the missing information through acquisition by means of

Yadav and Tanner are with the Department of Mechanical Engineering
at the University of Delaware {indragt,btanner}@udel.edu

This work has been supported by DTRA under grant #HDTRA1-16-1-
0039. Special thanks to Kleio Baxevani for her help in experimental studies.

Fig. 1: The custom-built quadrotor MAV utilized for experimental studies,
featuring on-board control, estimation and motion planning capabilities.

onboard sensing; both options involve several nontrivial and
open research questions [1]. Early work on online obstacle
avoidance focused on building a new, or updating a prior
environment map. A continuous time trajectory optimization
using octomap [6] has been utilized [16], in which one
uses a local planner to re-generate a safe trajectory taking
collision costs from a computationally expensive Euclidean
signed distance field (ESDF) map.

In unknown environments, a navigation approach utilizing
online planning [4] constructs a point-cloud map of the
environment using a Velodyne 3D LiDAR to find safe (spher-
ical) corridors through which the MAV plans it motion. To
navigate to destinations outside the sensor range, a sequence
of predefined waypoints is needed. Another approach uses
knowledge of obstacle location and geometry, to locally
decompose the available free space into convex polyhedra
and generate the safe path for the vehicle [10]. Variants of
such approaches [12] consider the workspace represented as
3D grid map with uniform voxels, through which they create
a convex safe flight corridor (SFC).

All aforementioned approaches either require some type
of prior information and a global planner that generates a
sequence of waypoints, and/or rely on (payload-taxing) high-
range sensors. These methods are particularly effective for
static destinations; if, however, that goal location is time-
varying or if the generation of a prior map is not possible,
one cannot a priori guarantee the existence of feasible and
safe path through (predefined) waypoints or ensure that the
local destinations will always be within sensor range.

Recent Reactive motion planning algorithms include
lightweight Egospace-based algorithms extended to a quadro-
tor’s configuration dynamics [2] or reactively sampling safe
trajectories in the field of view of the quadrotor, decou-
pling local obstacle avoidance and global guidance using a
global planner [19]. An impressive receding horizon-based
approach to (local) planning involves only limited onboard
sensing and utilizes a local uniform resolution volumetric
occupancy grid map and a cost map to find and navigate to
safe frontier points (local goals that are closest to the global
goal) [20]. A more recent approach utilizes a CNN to generate
safe paths in the environment [9]. Comparative studies and

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7058



details can be found in Section IV.
This paper contributes to the literature on real-time obsta-

cle avoidance and navigation with a reactive motion planning
and control methodology that is applicable to cases involving
both static as well as moving destinations. The method does
not rely on grid-like environment representations, which are
known to scale poorly with workspace size and resolution.
This new methodology takes the form of a model predictive
control (MPC)-type motion planner that fully incorporates
the nonlinear vehicle dynamics (cf. [22]). With this planner,
the vehicle—in this case, an MAV—utilizes the point-cloud
generated by an onboard RGB-D camera to select a (prob-
abilistically optimal) safe path within the field of view and
fit a minimum jerk trajectory along it. The algorithm relies
on low-cost, low-range commercial off the shelf (COTS)
sensors and average computational capabilities to achieve
the speeds up to 3.5 m/s in cluttered indoor as well as
outdoor environments. In the experiments reported in this
paper, the local planner is solely responsible for enabling the
MAV to converge to static or dynamic destinations (validated
through simulations). In cases where the local information is
insufficient to construct a feasible trajectory to the goal, the
planner is designed to safely stop the vehicle.

II. OVERVIEW OF THE APPROACH

Figure 2 provides a block diagram that illustrates the
whole architecture of the motion planning and control sys-
tem. The arrows indicate the direction of information flow.
Point-cloud data from the RGB-D sensor are utilized to frame
the obstacle-free portion of the workspace and encode it as a
set of rays casted from the focal point of the RGB-D sensor
in its field of view (See representative Fig. 3).

The receding horizon planner then (i) selects an interme-
diate point that corresponds to the spatial point in the FOV
closest to the target, (ii) assigns a cost to each ray as a
weighted sum of the robot’s proximity to the obstacle and
the proximity to the intermediate point, (iii) selects the safest
path to the intermediate point, and finally (iv) constructs the
feasible minimum-jerk trajectory along this path. An initial
segment of that minimum-jerk reference trajectory is then fed
into a differential-geometric tracking controller, which starts
steering the quadrotor along its way to the intermediate (local
goal) point in the FOV. In a typical receding horizon fashion,
before the end of that initial segment is reached, the vehicle
uses updated point-cloud information to complete the gen-
eration of new trajectory, and transitions smoothly between
reference trajectory segments. The re-planning and trajectory
tracking process repeats until the final static destination is
reached and while the moving target is being tracked.

III. REACTIVE RECEDING HORIZON PLANNING

A. Problem Statement

Let V ∈ R3 be the visible space within the FOV of the
RGB-D sensor, P ⊂ V a set of isolated points identified by
the sensor’s point-cloud, and F ⊆ V be the representation of
the obstacle-free space in which the quadrotor can navigate.

RGB-D Sensor
Free Space

Representation as Set
of Rays

Receding Horizon
Motion Planning

ControllerState Estimator

PointCloud

Rays

xd, ẋd, ẍd,
...
xd

x,R

x,R

x,R

Global Goal

Fig. 2: Block diagram of the motion planning and control architecture.

The quadrotor itself is modeled as a rigid body whose
configuration is an element of SE(3). Denote m and J its
mass and moment of inertia, and x and v its position and
velocity in the inertial frame. Let R be the rotation matrix
from body-fixed frame to inertial frame, and Ω the MAV’s
angular velocity in the body-fixed frame. With the convention
that ·̂ is the skew symmetry operator, g = [0, 0, g]ᵀ is the
gravitational acceleration vector, and e3 = [0, 0, 1]ᵀ, the
(scalar) thrust f and moment (vector) M used as control
inputs to stabilize the quadrotor satisfy

ẋ = v, m v̇ = f R e3 −m g (1a)

Ṙ = R Ω̂, J Ω + Ω× J Ω = M (1b)

The dynamics (1) enjoys differential flatness proper-
ties [13], which ensure that all inputs and states can be
written as functions of four (flat) outputs associated with
the vehicle’s 3D position and yaw. These flat outputs can
be brought together in a vector x = [x, y, z, ψ]ᵀ. Since ψ is
a flat output which can be selected independently, consider
(smooth) reference trajectories on position coordinates at
planning cycles N and N + 1, represented as

XN (t, t+ δt) =
[
xᵀN ẋᵀN ẍᵀN

...
x ᵀ
N

]ᵀ
XN+1(t+δt, t+2δt) =

[
xᵀN+1 ẋᵀN+1 ẍᵀN+1

...
x ᵀ
N+1

]ᵀ
.

The objective is to generate trajectories XN and XN+1 that
always remain within F and satisfy the smoothness condition
XN (t + δt) = XN+1(t + δt), while being dynamically
feasible, i.e. fmin ≤ f ≤ fmax and ‖Ω‖ ≤ Ωmax.

B. Representing the Free Space

The key idea behind generating a locally reachable free
space is to present the FOV of the RGB-D sensor in the form
of a finite, discrete set of points with fixed resolution, from
which an open cover of the point-cloud measurements has
been removed along with all the occluded points. The FOV
of the RGB-D sensor V is assumed to take the shape of
a rectangular pyramid that has its apex at the base frame
attached to the sensor, its depth direction is aligned with the
x (heading) frame axis of the quadrotor, and the sides of the
pyramid are determined by the fixed sensor’s viewing angles
in y and z directions.

Let Rmax be the sensor range, Rmin be user specified
minimum range for planning, and denote the angles of the

7059



pyramid at its apex along the y and z directions φy and φz ,
respectively. A 3D FOV grid of resolution δx, δy , δz (in x, y
and z directions as desired by user) within V with apex at
coordinates (0, 0, 0) relative to the base frame of the sensor,
is generated by discretizing the x (depth) coordinate first:

X : {xi = i · δx : i ∈ N, Rmin ≤ xi ≤ Rmax} .

For each xi ∈ X , now define the fixed parameters
ymax
i = xi tan

(
φy

2

)
zmax
i = xi tan

(
φz

2

)
Calculating nyi =

⌈
2ymax

i

δy

⌉
and nzi =

⌈
2zmax

i

δz

⌉
, for a fixed

xi ∈ X range-to-sensor, the grid points on the y–z plane are
members of the sets

Yi ,
{
yi = −ymax

i + n · 2ymax
i

ny
i
, n ∈ [0, . . . , nyi ]

}
Zi ,

{
zi = −zmax

i + n · 2zmax
i

nz
i
, n ∈ [0, . . . , nzi ]

}
and the grid consists of points xi× (Yi×Zi) with xi taking
values on parallel planes in the sensor FOV depth direction.
Casting a ray from the sensor’s focal point to each of these
grid points gives a set of possible paths within the sensor’s
FOV that can be used to traverse if free from collision. Now
select a ball of fixed radius r around each point p ∈ P of
the point-cloud and remove the rays that intersect with any
of these balls. This is efficiently done using a KD-Tree data
structure. The obstacle pointcloud P is converted into a KD-
Tree and each ray is discretized and represented in the form
of a finite set of n interior points (green points in Fig. 3)
on it. All these finite sets constitute another KD-Tree that
now represents all ray discretizations. These two pointclouds
are then queried for nearest neighbour pairs, i.e. find nearest
obstacle for each interior point on the ray within radius r–
colliding rays (with an obstacle within r) are removed.

The size of the ball with radius r is chosen so that it can
fully enclose the quadrotor, with a suitable—based on how
conservative with respect to the practical risk collision due to
uncertainty or disturbances—safety margin. An illustration of
the process is found in Fig. 3; the associated computational
requirements are discussed in Section IV. Henceforth it is
assumed that the sensor focal point (and FOV apex) is aligned
to the center of gravity (COG) of the vehicle, for which the
motion planner generates the reference trajectory. Using the
(constant) transformation between COG and sensor frame (at
the FOV apex), the coordinates of all the points and rays can
be expressed relative to body-fixed COG frame of the vehicle.

C. Local Goal and Collision Costs

The optimal path among all possible free (non-colliding)
rays should strike an acceptable balance between safety
against collisions and speed of convergence to the goal point.
There is no global planner here to sketch a complete path
from initial to final configuration; in lieu of that, our local
planner sets an intermediate point, where the straight line
between the quadrotor and its final goal intersects with the
edge of its FOV, then assigns a cost to each ray, in the form
of a linear weighted sum of two cost components: the first is
the distance of each ray end-point (black points in Fig. 4(a))

Fig. 3: Checking for collisions. Triads on the plot mark the COG, local goal,
global goal and the initial vehicle configuration frames, respectively. Rays
colliding with obstacles (depicted by red points) are similarly colored red,
while green indicates that the rays are collision free. Black dots represents
the sampled points. Interior points used in nearest neighbour search are
shown as green dots on only one ray.

to the intermediate point, normalized over the maximum
distance; the second is normalized collision cost for the ray.

Denote p the total number of collision-free rays, and di the
Euclidean distance between the end point of the ith ray and
the intermediate point. Set dmax , maxi di, and let r̂ ≥ r be
an additional safety margin (on the radius around detected
obstacles). Letting ρi be the minimum distance to the nearest
obstacle out of all interior points on ray i, the collision cost
for ray i is constructed as

ccolli =

 1+r̂4

r̂4 ·
[(ρi−r)2−r̂2]2

1+[(ρi−r)2−r̂2]2 if ρi − r ≤ r̂

0 otherwise .

Then for the positive scalar weights k1 ∈ (0, 1) 3 k2, the
total cost associated with ray i is expressed for i ∈ [0, . . . , p]
as (Fig. 4(c))

ci = k1
di
dmax

+ k2 ccolli .

Once again, a KD-Tree over the obstacle point cloud is
utilized to query the distance to nearest neighbour of each
interior point of a non-colliding ray (green points in Fig. 3),
and compute their minimum to get ρi for ith ray. The
collision cost function then normalizes the cost of each ray
into the [0, 1] interval. Thus any ray that touches the ball
around its nearest obstacle is assigned a collision cost of 1,
while any ray that lies at least r̂-away from every obstacle
incurs zero cost [21]. All other rays are assigned costs within
the (0, 1) interval. The end point of the ray with the lowest
total cost becomes the local goal (i.e., within the FOV) for
the planner. The procedure is illustrated in Fig. 4.

D. Receding Horizon Trajectory Generation

With the definition of a local goal within the FOV, the
problem now reduces to generating a dynamically feasible
optimal reference trajectory from the quadrotor’s current
location to that local goal that traces the ray that was selected.
Since this trajectory will be updated periodically in the spirit
of receding horizon control, care must be taken to ensure
the continuity of these reference trajectories between update
cycles. The reference trajectory segment from the starting
location to the local goal is the planning horizon.

7060



(a) (b) (c)

Fig. 4: Assigning Costs to Non-colliding rays. (a) Cost of distance of ray end points to the intermediate point, the rays ending father away from the
intermediate point incur higher cost, shown as darker lines. (b) Collision cost, the rays closer to the obstacles have high cost (dark) while white rays have
zero cost. (c) Total Cost, minimum cost ray and local goal for replanning. The green ray incur minimum cost and ensures safety as well as convergence.

The ray with the least cost that is selected is now divided
into np equal segments, the endpoints of which now define
waypoints for the reference trajectory to be generated. The
reference trajectory is produced as a solution of the following
minimum jerk optimization problem over the planning hori-
zon, that involves the first three flat outputs of the quadrotor
dynamics, namely its Cartesian position coordinate vector
x = [x, y, z]ᵀ.

With ∆tj denoting the time interval between two suc-
cessive waypoints, (xj−1, yj−1, zj−1)ᵀ, (xj , yj , zj)

ᵀ, on the
reference trajectory, and T ,

∑np

i=1 ∆ti the time duration
of the whole reference trajectory (the planning horizon),
the minimum jerk trajectory ON between starting waypoint
x0 =

[
xᵀ0 , ẋ

ᵀ
0 , ẍ

ᵀ
0 ,

...
x ᵀ

0

]ᵀ
and end point (local goal) xT =[

xᵀT , ẋ
ᵀ
T , ẍ

ᵀ
T ,

...
x ᵀ
T

]ᵀ
can be obtained [13], [18] as the solution

of the optimization problem

arg minxi

∑np

i=0

∫∆ti
0

∥∥∥d3xidt3

∥∥∥2

dt

subject to
dkxi
dtk
|∆ti = dkxi+1

dtk
|0 k = 0, . . . , 3

x(0) = x0, x(T ) = xT

(2)

Problem (2) is converted to a quadratic program (QP) and
efficiently solved using standard solvers (see [7], [18]).

The quadrotor utilizes an in-house customized version of
an onboard differential-geometric motion controller (cf. [11])
to track an initial portion of this flat output reference trajec-
tory for a time interval we refer to as the control horizon,
and is a fraction of the planning horizon T . The length
of the control horizon is dependent on the vehicle’s speed,
its sensor update rate, and its computational capabilities.
Specifically, the control horizon should be longer than the
sensor update horizon (the period between sensor updates)
plus some safety margin. Thus, upon receiving new sensor
data, the quadrotor generates a new trajectory and appends
the newly computed reference trajectory segment to the end
of the trajectory segment it is currently implementing. When
the quadrotor reaches the end of the control horizon of the
reference trajectory segment currently being implemented,
it smoothly switches to the next trajectory. The process
between sensor updates constitutes a replanning cycle. An

illustrative example of this method for the relatively simple
test scenario of Fig. 3, is presented in Fig. 5.

Fig. 5: Trajectory Generation. Dashed green lines shows generated trajec-
tories wile solid green is concatenated trajectory.

The selection of segment time intervals ∆ti (temporal
waypoint separation) affects the performance of the trajec-
tory generation algorithm (2). Here, two sigmoid functions
involving time and distance are used to define a velocity
profile that regulates time-allocation for the entire trajectory
from start to goal. Denoting t the time elapsed since the start
of the whole planned maneuver, d the vehicle’s remaining
distance to its goal, and vav the desired average MAV speed,
the reference velocity used for time stamping of reference
trajectory waypoints during any replanning cycle is generated
by the expression

v = erf (kt · t) · erf (kd · d) · vav , (3)

where kt and kd, are positive tuning parameters.
Compared to alternative trapezoid velocity profiles [13],

the difference here is that the velocity profile of (3) produced
for the entire remaining quadrotor trajectory is effective also
in scenarios involving moving target interception, in which
the vehicle needs to adjust its speed to match that of its target
while at the vicinity of the latter.

This work utilizes checks on thrust and angular veloci-
ties proposed in [15] to ensure dynamic feasibility of the
reference trajectory. Any failed trajectory is regenerated at
reduced v. Smoothness in the yaw angle ψ, on the other
hand, is ensured by fitting a third order time polynomial on

7061



yaw angles for the planned trajectory of the form ψ(t) =
a1 + a2t + a3t

2 + a4t
3 with ψ(0) = ψ0, ψ̇(0) = ψ̇0,

ψ(T ) = ψT , and ψ̇(T ) = ψ̇T . Angular rate ψ̇(T ) is always
kept zero, ψT is set so that the quadrotor’s camera faces the
local goal at time T , while ψ0 and ψ̇(0) are simply set by the
preceding replanning cycle. A number of waypoints np along
the trajectory keeps the vehicle close to its generating ray,
and together with safety margins (Section III-C) and short
control horizon, ensures that the final trajectory would be
collision free.

On board state estimation is implemented through a
visual-inertial MSCKF navigation stack (Open-VINS [5]). The
complete implementation for planning, control and state
estimation is open-source.1

IV. RESULTS
A. Numerical Testing

The reactive planning and control framework was tested in
Poisson forest like environment with obstacle densities of 18
and 36 obstacles within a 100 m2 area, using the ROTORS
simulation package [3]. Figure 6 shows the probability
of success of the mission without hitting any obstacle at
different obstacle densities and MAV velocities, indicating
an increased likelihood of collision at higher vehicle speeds
(cf. [8]). The MAV is more likely to collide with the obstacles
at higher velocities or in obstacle-rich environments.

Fig. 6: Mission success probability in Poisson forest environment as a
function of obstacle density and MAV velocity. Adjusted to quadrotor size,
these densities represents dense obstacle environment, see attached video
submission.

B. Experimental Testing

The quadrotor used for experimental testing (Fig. 1) is
a custom-build platform, based on a DJI Flamewheel F450
frame. The computational infrastructure includes an onboard
Intel NUC Core i7-8650U CPU@1.9GHz×8 and a Pixhawk
flight controller. The obstacle point cloud is provided by an
Intel Realsense-D435 depth RGB-D camera (640×480 pixel,
30 Hz) while the Realsense-T265 VI-sensor (2 848×800 pixel
30 Hz cameras with a 62 Hz IMU) is used for state estimation.
This package provides reliable depth information for up to
3 meters. A voxel filter reduces the density of the generated
pointcloud to a uniform size of 0.1 m, which is considered
sufficient for typical obstacle avoidance purposes.

On this hardware setup the reactive receding horizon
planner and controller can achieve a robust speed of 15 Hz,
while Open-VINS runs at 30 Hz, state estimated are fast-
propagated and sent to the Pixhawk flight controller at 62Hz.

1https://github.com/indsy123/Quadrotor-Navigation-using-Receding-
Horizon-planning

Over five different runs each of overall trajectory length of 25
m in both indoor and outdoor environments (Fig. 7) the 75%
quartile is shown to be well below 0.033 seconds; however,
to take into account extreme cases and robustify the planning
and control loop, sensor update frequency is adjusted at 15Hz
(with control horizon of 75ms).

Fig. 7: Replanning execution time. Median is marked in red. 196 rays each
having 10 interior points were used during the experiments.

In this configuration, the MAV flew safely among mod-
erately dense obstacles at 3-3.5 m/s in both indoor as
well as outdoor environments. In one experiment (see
https://youtu.be/CZqLhNsOGHU or the attached video) the
MAV flew along a 25 m trajectory around two trees between
its starting and the final positions, and demonstrated collision
avoidance (with the second tree) at 3.2 m/s. Indoor experi-
ments demonstrated avoidance of collisions with randomly
placed chairs and tables at a speed of 2.5 m/s. These speeds
surpass those reported in recent literature [2], [4], [20] owing
to faster replanning rate.

C. Discussion

Recent literature reports experimental quadrotor naviga-
tion results at impressively high speeds [12], [14], [19]; yet
most of the systems either employed high-end and expensive
sensors with extended range—e.g., Velodyne VLP-16 or
Hokuyo UST-20LX LiIDAR mounted on a gimbal to provide
270◦ FOV [12], [14], compared to a 69.4◦× 42.5◦ FOV cone
in this work—or involved a global planner [19]. In addition,
the top speeds reported in [19] were achieved at free areas
while the average flight speed was reported at 2.4 m/s. In the
absence if a global planner, however, a planner with myopic
vision cannot arbitrarily increase the speed in anticipation
of an unseen obstacle. In contrast to deep learning based
approaches (see [9]), the method reported here does not rely
on training data and achieves better performance without
depending on the training environment. A unique feature of
the reported approach is its ability to coordinate MAV motion
in pursuit of a moving target (see video supplement). In this
case, instead of generating the final trajectory and stopping
at the static navigation goal, the MAV intercepts the given
target as before but then continue replanning with the target
in the FOV as the local goal.

In general, the MAV’s speed will ultimately be limited
primarily by the computational capabilities, the replanning
frequency, and the safety distance (margin) required for the
vehicle to stop when the planning fails and the algorithm
has to abort—a possibility which cannot be eliminated in
purely reactive and local planning methods. Failure may

7062



occur, for example, if the MAV encounters a long wall or
long concave type obstacle. Then, since the free space grid
points are generated lines in different planes, unavailability
of grid points on the farthest plane indicates that a wall
like obstacle is ahead and the planner resorts to a stopping
behavior to safely halt the MAV. The necessity of always
being able to trigger an emergency behavior in case of such
contingencies also poses a limit on the maximum allowable
quadrotor speed, depending on the maximum deceleration it
can achieve in order to come to a halt. Specifically, given
a sensor range R, and a safety margin r set equal to the
radius of a virtual sphere fully but tightly enclosing the
MAV, the vehicle should be able to stop within a distance
of R − 2r; assuming a maximum achievable deceleration
amax, the maximum safe speed for the vehicle should thus
be set at or below

√
2amax(R− 2r).

Since purely reactive approaches are supposed to rely ex-
clusively on local information, convergence to the navigation
goal cannot be guaranteed for all possible scenarios. The
work reported here extends the envelope of what can be
achieved with purely reactive but deliberate quadrotor navi-
gation in cluttered environments, particularly at the low-end
of the technology and sensor sophistication spectrum. This
investigation naturally exposes the limits of purely reactive
motion planning approaches. It is expected that knowledge
of those limits, can guide the development of hybrid (local
and global [23]) MAV motion planning methodologies des-
tined for deployment in environments where uncertainty is
reasonably well characterized, in order to complement each
other and operate robustly in real-world scenarios.

V. CONCLUSIONS

The challenges that a completely autonomous MAV faces
when tasked to navigate in a completely unknown and
cluttered environment are drastically exacerbated when the
vehicle’s sensors are very short-ranged, and thus, the motion
planner that aims at operating the robot within a reasonable
safety envelop has to strike a balance between safety and
aggressive maneuvering. In this context, adaptive motion
planning and control strategies within the spirit of reced-
ing horizon control appear to be appropriate and effective,
and this paper reports on one such method with improved
and novel characteristics. The development of this method
demonstrates that it is possible to realize end-to-end (incor-
porating perception, real-time motion planning, and platform
control) purely reactive quadrotor navigation strategies, that
can be surprisingly effective in a wide range of application
scenarios—even if the absence of global information pre-
cludes formal completeness guarantees. A testament to the
generality of application of this methodology is its usage in
dynamic target interception and tracking problems, among
the first reported in literature utilizing a purely reactive
motion planning approach.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, Dec 2016.

[2] Anthony T. Fragoso, Cevahir Cigla, Roland Brockers, and Larry H.
Matthies. Dynamically feasible motion planning for micro air vehicles
using an egocylinder. In Marco Hutter and Roland Siegwart, editors,
Field and Service Robotics, pages 433–447, Cham, 2018. Springer
International Publishing.

[3] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.
Robot Operating System (ROS): The Complete Reference (Volume
1), chapter RotorS—A Modular Gazebo MAV Simulator Framework,
pages 595–625. Springer International Publishing, Cham, 2016.

[4] F. Gao and S. Shen. Online quadrotor trajectory generation and
autonomous navigation on point clouds. In 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pages
139–146, Oct 2016.

[5] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and
Guoquan Huang. Openvins: A research platform for visual-inertial
estimation. In Proc. of the IEEE International Conference on Robotics
and Automation, Paris, France, 2020.

[6] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. Octomap: an efficient probabilistic 3d mapping
framework based on octrees. Autonomous Robots, 34(3):189–206, Apr
2013.

[7] Gurobi Optimization Inc. Gurobi Optimizer Reference Manual, 2014.
http://www.gurobi.com.

[8] Sertac Karaman and Emilio Frazzoli. High-speed flight in an ergodic
forest. CoRR, abs/1202.0253, 2012.

[9] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Dosovitskiy,
Vladlen Koltun, and Davide Scaramuzza. Deep drone racing: Learning
agile flight in dynamic environments, 2018.

[10] B. Landry, R. Deits, P. R. Florence, and R. Tedrake. Aggressive
quadrotor flight through cluttered environments using mixed integer
programming. In proceedings of IEEE International Conference on
Robotics and Automation (ICRA), pages 1469–1475, May 2016.

[11] T. Lee, M. Leoky, and N. H. McClamroch. Geometric tracking control
of a quadrotor uav on se(3). In Proceedings of 49th IEEE Conference
on Decision and Control, pages 5420–5425, 2010.

[12] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar. Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments.
IEEE Robotics and Automation Letters, 2(3):1688–1695, July 2017.

[13] D. Mellinger and V. Kumar. Minimum snap trajectory generation
and control for quadrotors. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 2520–2525, 2011.

[14] Kartik Mohta et al. Fast, autonomous flight in gps-denied and cluttered
environments. Journal of Field Robotics, 35(1):101–120, 2018.

[15] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally
efficient motion primitive for quadrocopter trajectory generation. IEEE
Transactions on Robotics, 31(6):1294–1310, Dec 2015.

[16] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and
E. Galceran. Continuous-time trajectory optimization for online uav
replanning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5332–5339, Oct 2016.

[17] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1366–1373, Sep. 2017.

[18] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory
Planning for Aggressive Quadrotor Flight in Dense Indoor Environ-
ments, pages 649–666. Robotics Research: The 16th International
Symposium ISRR. Springer International Publishing, Cham, 2016.

[19] M. Ryll, J. Ware, J. Carter, and N. Roy. Efficient trajectory planning
for high speed flight in unknown environments. In 2019 International
Conference on Robotics and Automation, pages 732–738, May 2019.

[20] Sikang Liu, M. Watterson, S. Tang, and V. Kumar. High speed
navigation for quadrotors with limited onboard sensing. In proceedings
of IEEE International Conference on Robotics and Automation (ICRA),
pages 1484–1491, May 2016.

[21] H. G. Tanner and A. Kumar. Towards decentralization of multi-robot
navigation functions. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 4132–4137, April
2005.

[22] Herbert G. Tanner and J. L. Piovesan. Randomized receding horizon
navigation. IEEE Transactions on Automatic Control, 55(11):2640–
2644, 2010.

[23] I. Yadav and H. G. Tanner. Mobile radiation source interception by
aerial robot swarms. In 2019 International Symposium on Multi-Robot
and Multi-Agent Systems, pages 63–69, Aug 2019.

7063


