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Abstract— Visual robot perception has been challenging to successful
robot manipulation in noisy, cluttered and dynamic environments.
While some perception systems fail to provide an adequate semantics
of the scene, others fail to present appropriate learning models
and training data. Another major issue encountered in some robot
perception systems is their inability to promptly respond to robot
control programs whose realtimeness is crucial.

This paper proposes an architecture to robot vision for manipulation
tasks that addresses the three issues mentioned above. The architecture
encompasses a generator of training datasets and a learnable scene
describer, coined as RobotVQA for Robot Visual Question Answering.
The architecture leverages the power of deep learning to predict
and photo-realistic virtual worlds to train. RobotVQA takes as input
a robot scene’s RGB or RGBD image, detects all relevant objects
in it, then describes in realtime each object in terms of category,
color, material, shape, openability, 6D-pose and segmentation mask.
Moreover, RobotVQA computes the qualitative spatial relations among
those objects. We refer to such a scene description in this paper as
scene graph or semantic graph of the scene. In RobotVQA, prediction
and training take place in a unified manner. Finally, we demonstrate
how RobotVQA is suitable for robot control systems that interpret
perception as a question answering process.

I. INTRODUCTION

Imagine a manipulation robot (PR2) within a human-centered
kitchen, standing up in front of a table, ready to serve a cup of
coffee and a piece of cake to a human guest. On the table, there
is a thermos full of warm coffee, a plastic cup, a ceramic cup
and a plate containing a coffee spoon. To successfully perform
this task, we identify at least three issues that our robot should
be able to address. The first problem consists in defining an
appropriate scene ontology for tracking the visually established
semantics of the robot’s scene. Our robot should not only be
able to detect a cup but also estimate the material and chooses
the ceramic cup. Moreover, our robot should know that before
putting a piece of cake into the plate, it should take the spoon
out of the plate. This problem is also referred to as the what it
means for a manipulation robot to visually understand the scene-
question [4]. We devised two criteria for evaluating this ontology’s
quality namely the ontology completeness, which is closely related
to the amount of information supported by the ontology and then
the criterium of structuredness which refers to how structured the
ontology’s formalism is, so that it can be accessed by primitive
computational mechanisms such as robot control programs. The
second issue is the uncertainty problem. More than being ill-posed
and ill-defined, computer vision tasks require high adaptability from
vision systems. That is, now that our robot knows what it should
know, it should actually know it with good accuracy no matter
the amount of intrinsic lack of information the robot has about
the scene (i.e. noise, occlusion, depth loss, new scenes). Though
deep learning techniques have been shown promising in addressing
this issue, getting the appropriate training data has been the crisis:
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Fig. 1: Building a robot vision system (RobotVQA) for manipula-
tion tasks with focus on continuous and effective learning (Virtual
Reality), rich scene semantics (scene graph) and realtimeness (fast
robot control).

most available datasets are diesembodied and unsituated, therefore
not suitable for a particular robot. Realtimeness is the third issue
encountered by computer vision systems and refers to the ability of
a vision system to react as fast as possible to meet its environment’s
dynamics. Imagine that while pouring some coffee into the cup, the
latter spills, then the vision system followed by the robot control
should immediately be aware of it. Assuming that our vision system
is realtime, then the robot control program will be too: that is, the
scene semantics presented above allows the control program to only
access the necessary information by querying the vision system for
it. Realtimeness is relevant for vision systems supporting living
applications such as manipulation robots.

Summarisingly, successful robot manipulation needs an
environment-adaptable vision system that can provide in realtime a
sufficiently complete and structured description of the scene with
good accuracy so that a running robot control program can just
query it to quickly get any information about the scene, which is
actually necessary to pursue the manipulation task.

In the next section, we show that actual computer vision systems
fail to properly address these issues, then expose an architecture
to address these issues and finally provide empirical evidences
about the practicability of the scheme. According to the architecture
(figure 1), the robot environment is virtualized, then the robot
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is continuously trained in the virtual world to perceive its scene
for manipulation and the knowledge acquired by the robot are
transferred to the real world. In doing this, this paper achieves the
following manifold contribution:

• Design and implementation of a kitchen-activity-related dataset
synthesizer. It defines a scene representation, noted in this paper
as Scene Graph, for autonomous manipulation robots. Then, it
generates robot scene images and annotates them with respect to
this representation.

• Synthesis of a big set of kitchen-activity-related RGBD-
images, annotated with corresponding scene graphs and aug-
mented with real images.

• Design and implementation of a unified deep learning model,
coined as RobotVQA, that takes a scene RGB(D) image as input
and outputs the corresponding scene graph. RobotVQA stands
for Visual Question Answering for Robots. We demonstrate
transferability of RobotVQA’s knowledge from virtual to real
worlds and suitability to robot control programs.

II. RELATED WORKS

Careful investigation of the literature on computer and robot
vision systems revealed two major insights regarding the three
issues just cited above in the introduction.

On the one hand, deep-learning-based approaches, mainly re-
lying on supervised Convolution Neural Networks (CNNs) and
supervised Recurrent Neural Networks (RNNs), demonstrate ability
to handle uncertainty: the technique allows end-to-end learning
for self-construction of models (i.e. low biasedness), transfer and
multi-task learning for fast adaptation in evolutive (i.e. dynamic)
environments and data-scalability for generalization [11]. However,
this technique is not exploited enough in robotics due foremost
to the lack of rich annotated data required for training: this issue
is commonly referred to as the big data’s crisis. One could argue
for training deep-learning-based robot vision systems with publicly
online available datasets, unfortunately this would lead to the two
well-known problems of disembodiedness (the robot body’s actual
architecture is not considered) and unsituatedness (the robot’s
actual operating environment is not considered). Secondly, it has
been noticed that most of these approaches are not real-time on
standard computers such as most robot computers and usually only
output ambiguous information (i.e. unstructured scene description)
which are only difficultly accessible to primitive agents such as
robots (i.e. translation of image to natural language text). Another
common flaw in today’s visual perception systems is their focus
on solving only a single elementary task such as recognition,
segmentation, detection or pose estimation of scene objects. Though
they tend to successfully accomplish these tasks, it only results
in a poor scene description, limiting therefore the robot’s ability
to physically interact with its environment. As pointed by [4],
a cognitive vision system should go beyond just focusing on a
single task and deal with all these atomic perceptual operations
as well as considering relational aspects among scene entities such
as introduced in [2]. Unfortunately, while most of these systems are
not suitable for robot manipulation (i.e. inappropriate concepts), few
of them appropriate to it such as [3], even when deeply relying on
huge abstract ontologies of manipulation robots’ worlds, present
weak grounders of symbols in sensor data: these grounders are
based on traditional computer vision techniques.

On the other hand, it has been noticed that more than providing
limited scene semantics to robots, traditional computer vision sys-
tems such as [9] based on technologies such as traditional Artificial

Neural Networks (ANNs), K-Nearest Neighboor Classifiers (KNNs)
and Decision Trees (DTs) are inherently limited in modelling the
environment relaxation (e.g. noise, cluttter) and unable to scale
with the expansion of the robot’s operating domain (i.e. weak
generalization). These approaches usually rely on naive assumptions
(e.g shape- and color-based segmentation, color-histogram-based
color estimation, CAD models) that completely break down when
slightly complex domains (e.g. multi-color and irregularly shaped
objects, visual constancy) are considered.

III. ARCHITECTURE

The figure 2 depicts the architecture proposed in this paper
to build robot vision systems for manipulation tasks. (1) The
process starts with the dataset generator which is currently a semi-
automatic module. In the dataset generator, a submodule called the
scene generator defines a scene ontology to represent the robot
scene’s semantics: we refers to such representation in this paper as
scene graph. (2) Then, it prepares virtual reality assets (3D-CAD
models, textures, materials) in order to virtualize the robot world;
these vr assets are stored in a knowledge base. The virtual reality
engine is depicted in the figure as a combination of an interface
(vr scene) for interactions with the scene generator and a hidden
part called vr semantics which is stored in the knowledge base.
The vr semantics is a model of all possible knowledge that one
can get from the vr world such as object poses, masks, geometry
and physics. Before starting a simulation, the scene generator
initializes the scene using configuration files from the knowledge
base. These configuration files hold information about the virtual
robot’s trajectory, which objects are parts of the scene, how they are
spatially configured and how the scene should be updated. (3) As
the scene generator starts the simulation and updates the scene over
time, the second submodule data collector collects the scene images
and annotates them with scene graphs. (4) The collected dataset is
then passed to our second module scene describer (RobotVQA) for
deep learning and the knowledge acquired are transferred to the real
world. To reinforce knowledge transferability, the dataset collector
augments vr data with some real data in order to incorporate
background noise. (5) During real robot manipulation, RobotVQA
keeps outputting the scene semantics as scene graphs so that a robot
control program can just query it for the specific information needed
to pursue the manipulation. (6) Notice that the process can go back
to (1) for a lifelong learning. Our implementations can be found
online at [7].

IV. DATASET GENERATOR

The novel approach proposed in this paper to address the problem
of visual scene understanding for manipulation robots starts with a
careful definition of the scene’s semantics. This semantics does not
only inform about the outcomes of the perception system but also
about which data are needed to train it.

A. Scene Graph: Towards Complete & Structured Scene Semantics

The concept of scene graph as representation of visual inter-
pretations of scenes is not new. However, the term has been only
informally defined so far [6]. In this paper, a scene graph is
essentially a directed graph in which each node is a relevant scene
object’s formal description and each directed edge is a formal
relationship between two objects. Each relevant object is defined by
its affordance, shape, color, material, openability, 6D-pose, instance
mask and timestamp, allowing the robot to effectively manipulate
the object. As far as relations among objects are concerned, we
essentially focus on spatial relations in this paper, which mainly
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Fig. 2: Our Architecture. Continuous self-learning of the robot vision system (RobotVQA) in virtual worlds (vr) with appropriate training
data. Getting background noise (e.g. chairs, cables, pictures) from real worlds and injecting them into the learning process. Transferring
knowledge acquired from virtual to real world. RobotVQA provides a sufficiently complete and structured semantics of the scene (scene
graph). Robot control program accesses necessary information about the scene through real-time query of RobotVQA.

provide the robot with insights into how scene objects do and can
interact with each other.

Fig. 3: On top is a T-Box of the ontology of the manipulation
robot’s scene. At the bottom is a corresponding A-Box. Notice that
the numbers besides the rules are merely truth probabilities

For instance, by knowing that there is a spoon inside the bowl,

the robot will first take the spoon out of the bowl before using the
latter. To represent scene graphs, the formal probabilistic decidable
general description logic with concrete domains P-ALCNHR+(D)
is adopted [8]. In this logic, knowledge representation consists of T-
Boxes and A-Boxes. The T-Box a.k.a. terminological box is the set
of general facts or rules about the world. It contains definitions of
concepts as well as definitions of relations among concepts. Each
concept is then linked to a well-defined set of concrete values.
Given that the logic is probabilistic, each rule or fact is assigned a
truth probability. In contrast to T-Boxes, the A-Box a.k.a. assertional
box holds specific facts about the world or facts about specific
worlds, where each assertion is also assigned a truth probability. In
this paper, the general semantics of the robot’s scene a.k.a abstract
scene graph is represented as a T-Box and specific facts about the
robot’s scene a.k.a. concrete scene graph are represented as an A-
Box. The figure 3 illustrates the probabilistic terminological box
(i.e. T-BOX) of our scene ontology (i.e. abstract scene graph) and
a corresponding assertional box (i.e. concrete scene graph). At the
beginning of the robot’s exploration, the A-Box is empty and gets
populated over time. This incremental population of the A-Box is
due on the one hand to the fact that the robot has only a partial view
of the scene at a given time. On the other hand, the robot’scene is
dynamic.

B. Robot World Virtualization

Virtualization basically allows to build realistic computer models
of real worlds where external real agents usually drive virtual agents
through I/O-mechanisms such as joysticks. Virtualization’s main
advantage is the fact that it allows to carry out experiments at
very low cost compared to reality. In this paper, we present the
virtualization of the EASE CRC’s kitchen (see acknowledgement)
and robots: major outputs of this step are virtual textures, materials
and 3D-models. Then, we simulate the virtual kitchen, use external
control programs to move the virtual robots in the virtual kitchen
and make them performing manipulation tasks. Finally, we progres-
sively collect the virtual kitchen’s images and the associated ground
truths for learning. This work relies particularly on Unreal Engine
4 (UE4) and UnrealCV as frameworks respectively for the world
virtualization and for enabling interactions between external control
programs and virtual entities. Figure 4 demonstrates an overview
of the virtualization process.
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Fig. 4: An Overview of the robot world virtualization

C. Spatial Relation Compression

The robot world virtualization is followed by the simulation and
then the dataset collection. Notice however that spatial relations
among objects, in contrast to any other information found in the
scene ontology (e.g. color, 6D-pose), are observer- and context-
relative information that need to be explicitly tracked as a whole.

Fig. 5: Spatial relation compression (rules a-i), allowing to record
only 4 and 3 spatial relations (arrows) in the above scenes rather
than 25 and 16. Red=front, green=left, pink=in, blue=on.

For 8 different spatial relation types namely {on, in, le f t,
right, above, below, f ront, behind} and N scene objects there are
expectedly O(8×N2) spatial relations among these scene objects.

Notice that the complexity of the set of spatial relations grows
quadratically with the number of scene objects. This complexity
becomes rapidly burdensome for the whole processing pipeline
namely from the annotation and tracking during the simulation till
the training and inference in RobotVQA. To address this issue,
a quasi-lossless compression scheme CS was devised to lower
the complexity of the set of spatial relations to a linear function
of N (i.e. ≈ as many relations as objects). Quasi-lossless due to
rule g which is necessary to guarantee a linear complexity while
remaining reasonable: the idea here is that the manipulator does
not care anymore whether an object O1 is left another object O2
as long as O1 is front O2 since O2 is usually unreachable due
to occlusion. Notice moreover that the compressed set is unique.
The above figure 5 graphically illustrates the entire (rules a-i)
compression scheme CS just mentioned. This compression step is
already automatically performed in the data collector below.

D. Data Collection

To collect our training dataset containing aroung 71,000 scene
images + graphs, we ran 35 simulations each of them enabling the
collection of around 2000 RGBD-images of size 640× 480 and
containing around 0∼ 20 relevant objects.

Fig. 6: Overview of the synthetic dataset

At the beginning of each simulation, the scene background (e.g.
chair, table) as well as the scene foreground (e.g. robot, food items,
utensils) are set. Then, the external control program moves the
robot and for each robot pose, the scene’s RGBD image as well
as the corresponding scene graph is saved on the disk and the
scene foreground is randomly and completely reconfigured (i.e.
assignment of random pose, material, color, shape to foreground
objects). This scene variation scheme was inspired by [1] and only
emulates robot manipulation. Emulated manipulation means that
objects are moved directly by adequately updating their properties
rather than using robot arms. Controlling the arm joints of the
virtual robot in figure 4 for a real manipulation is therefore not in
the scope of this paper. An overview of the dataset is presented by
figure 6. Notice that the collected dataset is situated and embodied:
the data are generated by the robot (at least camera’s intrinsic
and extrinsic properties) itself while performing the intended task
within its intended operating domain.

E. Data Augmentation

Background noise are usually objects which are quite often parts
of the robot environment but not parts of the robot manipulation
tasks going on in that environment. Pictures are for instance quite
often hanging on kitchen walls or radios on kitchen tables though
they are actually not related to the cooking activities. Since vir-
tualization quite often ignores these details and that discriminative
learners just model the boundaries amoung classes, a learning model
which was supervisedly and discriminatively trained on solely clean
synthetic images would show a high false positive rate when tested
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on real images. For this reason, we augment our big synthetic
dataset with some real images incorporating background noise:
this improves the discriminative power of the learner. We collected
around 500 real images from the EASE CRC’s kitchen and 111 real
images from the internet, then annotated them with the free software
LabelMe and a self-developed software known as relationAnnotator
[7]. Figure 7 illustrates the augmentation of our synthetic dataset
with real images for the sake of incorporating background noise.

Fig. 7: Augmentation of synthetic dataset with background noise

V. SCENE DESCRIBER: ROBOTVQA

This section describes a deep-learning-based vision model,
coined as RobotVQA, proposed in this paper to learn from the
collected synthetic dataset in the previous section how to infer in
real-time a scene graph from the scene image. Figure 8 illustrates
the architecture of RobotVQA.

Fig. 8: An overview of RobotVQA’s architecture. Contributions to
MaskRCNN are highlighted in bold.

A. RobotVQA’s Key Features

RobotVQA presents the following key features:
Transfer Learning: RobotVQA extends MaskRCNN [5], which

is actually by far the state of the art on instance detection and
segmentation, running at almost 5 f ps on larger images (1024×
1024) containing hundreds of objects. A faster reaction is therefore
expected from RobotVQA since it only operates on smaller images
(i.e. 640×480) containing fewer scene objects (i.e. 0∼ 20).

Multimodal Inputs: RobotVQA can work either on RGB or
RGBD images, making it therefore usable in many contexts.

Multitask Learning: RobotVQA is heavily multitasking, in
the sense that it solves several subproblems in a unified manner.
The advantages of multitask learning are manifold. Foremost, it

regularizes the learning and prevents the system to overfit the
training set on a single task. Secondly, it enables joint learning
and therefore implicit reasoning about all the subtasks at once
(inductive transfer learning): a spoon would difficultly be of circular
shape for instance. Thirdly, multitasking learning encourages the
specialization of sub-solvers, in the sense that a subtask can be
solved very differently as from how the others are. On the other
hand, explicit multitasking eases the extension and reduction of
the model: for a new subtask, a solver would simply be appended
to the model’s head. Another positive aspect of multitasking is
the reinforcement of parallelism, which in turn plays in favor of
realtimeness. Finally, explicit multitask learning can operate on
heterogenous datasets: the model can train on multiple datasets from
multiple domains and for multiple goals.

B. RobotVQA’s Machinery and Implementation

RobotVQA’s Input: a (W,H,7)-image tensor combining a
(W,H,3)-RGB scene image, a (W,H,1)-scene depth map and a
(W,H,3)-scene normal map. This normal map acts as cues for
object shape and is more camera-insensitive than the depth map.
Note however that RobotVQA can disable these depth-related maps
and only work with the (W,H,3)-RGB map.

RobotVQA’s Basenet: RobotVQA leverages Mask-RCNN’s fea-
ture extractor, based on ResNet101 for a safe deeper computation
and FPN to allow invariance to input scale and conservation of
information distribution in the feature maps.

RobotVQA’s Detector: The Region Proposal Network (RPN)
of Mask-RCNN is exploited to explicitly localize interesting scene
objects. RPN outputs a list of bounding boxes enclosing the detected
objects.

RobotVQA’s Object Features: Based on the image’s feature
maps and the list of bounding boxes, RobotVQA makes use of
Mask-RCNN’s ROIAlign function to extract each object’s feature
maps. Since each object’s feature maps solely contain local infor-
mation, each object’s bounding box is additionally appended to its
feature maps to enable spatial reasoning.

RobotVQA’s Output Nodes (Head): It consists of an object
describer and a spatial reasoner. The object describer is made up
of classifiers and regressors (sub-solvers). Each classifier predicts
one of the object’s properties affordance, color, material, shape,
openability and segmentation mask. Each regressor estimates either
the object’s 6D-pose or bounding-box. The list of objects is se-
quentially processed, where each object is simultaneously passed
to each sub-solver: this makes the computation invariant to the
length and order of the list, then enables weight sharing as well.
Except the instance segmentation which is based on a convolution-
deconvolution block (MaskRCNN), all other sub-solvers are multi-
layer perceptrons (MLPs) with linear/relu activations. The 6D-
pose estimator is however a multi-layer perceptron (MLPs) with
leaky-relu activations and residual connections (deep non-linear
regression). The working of the spatial reasoner is a bit tricky. (1)
First, we compute the background B of the scene image which aims
at capturing global information such as the scene’s orientation. (2)
Then, we compute the spatial relation between each pair Oi⊕O j⊕B
of objects Oi and O j. B is an additional input to this computation.
(3) Thirdly, we iteratively compress the obtained set of relations
G0 according to the scheme CS. To perform compression, each
relation r in G0 is either classified as useless or useful given the
whole relational context G0. (4) The useful relations out of G0
are stored into a new more compressed relation set G1 and the
process is iterated from (3). Note that the number of iterations n
is a hyperparameter and is set to 1 for the results presented in this
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paper. This mechanism was inspired by [10, 12]. The algorithm 1
formally clarifies the above steps, where GAP stands for Global
Average Pooling and h, g, f are leaky relu, relu and relu MLPs.

Algorithm 1 Spatial Reasoning with Compression Scheme CS
Require: {O1, ..,Om}, where object Oi = local f eature+2D Bounding Box

FM, feature maps from basenet
n, number of compression steps

Ensure: Gn = {r(n)1 , ..,r(n)l }, set of spatial relations among above objects compressed
with respect to CS

1: B← h◦GAP(FM), scene background (e.g. global orientation)
2: G0← /0, initialization of the relation set without compression
3: for i← 1 : m, j← 1 : m do
4: r ← f (Oi ⊕O j ⊕ B), context-free relation between Oi and O j (i.e without

compression or no consideration of neighboorhood relations)
5: G0[(i−1)∗m+ j]← r, ⊕ stands for concatenation
6: end for
7: for p← 0 : n−1 do

8: Sp←
∑

m2
k=1 Gp [k]

m2 , context as average sum of actual spatial relations
9: Gp+1← /0, initialization of next relation set (compressed)
10: for i← 1 : m, j← 1 : m do
11: r← g(Gp[(i− 1) ∗m+ j]⊕ Sp), context-sensitive relation between Oi and

O j (i.e with compression or consideration of neighboorhood relations)
12: Gp+1[(i−1)∗m+ j]← r
13: end for
14: end for

Loss & Implementation: RobotVQA was written in Python and
trained with the frameworks Tensorflow and Keras, well-known
for the services they offer while developing deep-learning-based
applications, from the dataset preparation to the visualization of
the results. During training, a muti-loss L is used and defined as
a weighted sum of individual losses. While classifiers are trained
with the ”average” cross-entropy loss, the regressors rely on the
”average” smooth L1-loss. The word ”average” emphasizes the fact
that the mean rather than the sum of losses over all object or relation
instances on the image is considered. Such a multi-loss L acts as a
learning regularizer and further handles the problem of imbalanced
classes. The equations 1 further explain RobotVQA’s loss.

L= L1 +L2

L1 = α1Lclass +α2Lcol +α3Lmat +α4Lshp

L2 = α5Lopn +α6Lmask +α7Lpose +α8Lbbox +α9Lrel

Lrel = β1L
(1)
rel +β2L

(2)
rel

(1)

Notice that the loss of the spatial reasoner in 1 has been splitted
into two losses namely L(1)

rel and L(2)
rel . For N scene objects, we count

O(8× N2) spatial relations. However, as mentioned earlier, the
spatial reasoner is expected to output a compressed set of relations
of size O(N). That is, within a graph of 10 objects, only 10 out
of 800 possible edges are sufficient to understand how the objects
are spatially configured in the scene: we qualify those 10 edges as
foreground edges and the 790 others as background edges. Since
background edges are considerably dominant in size, a naive spatial
reasoner tends to outputs empty sets of relations. On the other hand,
ignoring the background edges causes the spatial reasoner to show
a high false positive rate. To solve this issue, we consider the loss
of the spatial reasoner without background edges (L(1)

rel ) and its
loss with background edges (L(2)

rel ), then we set the final loss as a
weighted average of both losses. In our implementation, we observe
better results while fixing αi = 1, β1 = 0.999 and β2 = 0.001.

VI. ROBOTVQA & ROBOT CONTROL
A. Visual Question Answering for Robots: RobotVQA

Robot control programs are crucial in the sense that they are
top implementations of living robots as task algorithms. Allowing

these programs to get information about the world through queries
has at least three benefits. Firstly, it allows to turn the task’s
algorithm directly into program. Secondly, it allows the control
program to only focus on the specific information needed and
therefore run faster. Finally, it reinforces the generalization of
the control program with respect to the perception system. In
the vision community, a general trend to address the problem of
visual question anwering has been to supervisedly train systems
with images and questions. Unfortunately, this solution suffers
from two problems with respect to robotics. On the one hand, the
language of queries and answers is informal (e.g. natural), and on
the other hand the learning is ineffective: that is, there are infinitely
many questions for a single image. To address those two issues,
we proposed a formal language for describing scene so that any
formal language of queries can be used to extract information.
Then, to make our solution independent of the type and number of
queries, the proposed scene representation tries to cover as much
fundamental information about the scene as possible so that any
query can be reduced to a lookup problem of those information.
Notice that the ability of answering questions (i.e. VQA) is reduced
to the ability of generating accurate scene graphs. In order to
demonstrate that the proposed scene representation covers a good
amount of fundamental information, the table I illustrates how the
representation is exploited to address vision-specific topics during
manipulation.

Topics Crucial information
Detection List of objects, relations
Localization 6D-pose
Affordance Object category
Grasping 6D-pose, Segmentation mask
Object Kinematics 6D-pose
Spatial interaction Spatial relations, Shape, Segmentation mask
Tracking Color, Category, Shape, 6D-Pose, Material
Physical contact Material
Access mode Openability
Counting Satisfying detection

TABLE I: Leveraging scene graphs to address vision-specific topics
on manipulation tasks.

B. Robosherlock’s Formal Query Language

In developing the robot perception system Robosherlock [3], the
authors argued on interpreting robot perception as a controlled
process that takes place through visual question answering to
selectively and incrementally access the world. To achieve this,
the authors proposed a query language, a query interpreter and a
pervasive vision system whose goal is to deliver elementary infor-
mation about the scene such as shapes, color, object hypotheses. To
retrieve an information from the scene, the robot control program
sends a query to the query interpreter. The query interpreter outputs
a procedure that requests the desired information from the pervasive
system and sends the information back to the robot control program.
Robosherlock’s query language offers three general queries:
• (”detect”, {prop1 : val1, prop2 : val2,..., propn : valn}): this

query returns the unique identifiers and 6D-poses of all scene
objects whose each property propi takes the values vali. For in-
stance, (”detect”,{”type” : ”spoon”, ”color” : ”red”, ”material” :
”plastic”}) localizes and uniquely identifies all red plastic
spoons.

• (”examine”, object id, {prop1, prop2,..., propn}): this query
returns the values of each property propi of the scene
object with identifier object id. For instance, (”examine”,
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Fig. 9: RobotVQA’s Evaluation. Notice that only appearance-based properties are considered on real images: reasonable and no
burdensome annotation. The first chart depicts the performance of RobotVQA’s classifiers: Accuracy is the average rate of correct
detections per property; S. Relation = Accuracy on spatial reasoning with compression; S.Relation WB = Accuracy on spatial reasoning
without background edges. The second chart informs about the performance of RobotVQA’s regressors: Normalized L1-Loss; 4D-Pose=
Depth + 3D-Orientation. The third chart informs about RobotVQA’s inference time; Max Xtime, Min Xtime and Xtime are respectively
the approximative max, min and average speed of conscious human vision and Xtime+DL=RobotVQA’s speed. The last chart depicts
RobotVQA’s space complexity; Space= RobotVQA’s space complexity and Std Space= memory size on very standard computer.

”spoon 1”,{”color”, ”material”}) returns the color and material
of the object with identifier spoon 1.

• (”track”, object 1, object 2): this query checks whether the
scene objects with identifiers object 1, object 2 are same. It
is a query for tracking scene objects and can be achieved by
comparing the visual and spatial properties of both objects.
Note that Robosherlock is the core perception framework at IAI

LAB and EASE CRC.

C. Robosherlock Vs RobotVQA

To demonstrate the suitability of RobotVQA to robotics, we
have successfully substituted the pervasive vision system of Ro-
bosherlock by RobotVQA. Moreover, RobotVQA provides spa-
tial relationships among scene objects, object material and ob-
ject openability that Robosherlock actually does not. RobotVQA
also demonstrates stronger learning ability than actual Robosher-
lock’s pervasive vision system which relies to a great extends on
shallow machine learning techniques such as segmentation based
on the object-on-plane-based assumption, color-based clustering
for segmentation and color histogram for color estimation. With
RobotVQA, Robosherlock could detect flat and small objects such
as plates, spoons that could only be detected with difficulties before
due to the object-on-plane-based assumption: that is, any scene
object lies on a plane. RobotVQA also allows Robosherlock to
detect objects in any spatial configuration in the scene such as
objects on top of or in others: this was also difficult before due to
object-on-plane-based assumption. Evidences to assertions provided
in this section are shown in the figure 10 and in the attached
demonstration video.

VII. EXPERIMENTATION

We evaluate RobotVQA in four different ways. Firstly, we test the
ability of RobotVQA to infer scene graphs from scene RGB-images
and then from scene RGBD-images. This second test would also
exhibit the contribution of the scene depth. Secondly, we evaluate
the ability of RobotVQA to transfer knowledge from the virtual to
the real world in both modes namely RGB and then RGBD.

A. Experimental Settings

The overall dataset was randomly splitted into three sets: A
training set of 50790 synthetic RGB(D)-images and 111 real RGB-
images, a validation set of 10105 synthetic RGB(D)-images and
a test set of 10105 synthetic RGB(D)-images and 500 real RGB-
images. We then trained RobotVQA with the Stochastic Gradient
Descent (SGD) over 3 weeks for 230 epochs with a batch size
of 1 and a learning rate of 0.01 ∼ 10−6 on a supercomputer with
32CPUs@(4Ghz Intel, 120GB) for parallel data loading and a single
GPU@(NVIDIA, GeForce GTX 1080 Ti with 44GB) for training
and inference. Notice that we do not test our system on online
benchmark datasets. This is due on the one hand to the fact that
the main goal of the paper was to propose a novel architecture
to robot vision for manipulation tasks rather than proposing the
improvement of an existing algorithm on some datasets. On the
other hand, to the best of our knowledge, no online benchmark
dataset presents images of objects and annotated with scene graphs
such as described in this paper.

B. Results

Remarks on the results above, depicted by figure 9, are manifold.
Foremost, RobotVQA demonstrates a good ability to infer, with
reasonable computational resources (≈ 5.5GB @ 5 f ps ), scene
graphs from scene images in both RGB as well as in RGBD mode.
Secondly, this performance is also observed during the transfer
of knowledge from the virtual world to the real world, however
performing better in RGB mode than in RGBD mode. This is due
to incomplete transfer learning: that is, first layers of Mask-RCNN
radically changed in RGBD mode on the one hand and RobotVQA
suffers from external depth-related covariate shift in RGBD mode
on the other hand (high-resolution depth on training Vs low-
resolution depth on testing). Finally, though RobotVQA appears
to perform well on the depth and 4D-bounding box estimation, the
learning of 3D-orientation of objects converges only very slowly.
This is mainly due to self-symmetry of scene objects and only
considering the object’s Rodrigues axis would solve the problem.
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Moreover, conflicts at the network head (e.g. Orientation is rotation-
variant while spatial relation is not) might also lead to this issue and
readjusting the setup of the multi-tasking learning in RobotVQA
would prevent the issue. As actual workable solution to the problem
of object orientation estimation, we make use of the object’s mask
returned by RobotVQA to crop the object’s point cloud from the
depth image. Then, we apply the principal component analysis
(PCA) on this point cloud to determine the three main axes of
the object. These axes have demonstrated, as shown by figure 10,
to deliver enough information about the object’s orientation. Figure
11 demonstrates RobotVQA in real robot scenes.

Fig. 10: Approximating object’s orientation with pca’s main axes.

Fig. 11: Semantic graph of a real robot scene. The set of spatial
relation is compressed.

For more evidences, we attached a high-resolution demonstration
video to this paper.

VIII. CONCLUSION& RECOMMENTATIONS

In this paper, we showed by construction that Deep-Learning
and Virtual Reality can be leveraged to build computer vision
systems that effectively and efficiently support autonomous robots
in the accomplishment of complex manipulation activities in very
unconstrained environments while providing the robots with nearly
complete structured and probabilistic description of their scene.
However, there are still to improve in future works. First, deep
grounding of symbols in very unstructured, noisy and dynamic per-
ceptual data still requires fully autonomous acquisition of training
data (e.g. automation of virtualization) as well as significantly faster
adaptation to new domains (e.g. hierarchical learning). Furthermore,
the notion of scene graph, such as presented in this paper, should
be extended (e.g. not just spatial relation but deep aggregation).
Robot vision is temporally continuous. Therefore, consideration
of video rather than image analysis would further reinforce em-
bodiedness. Finally, virtualization should be further advanced in

order to integrate significant background noise, providing then more
realisticness and enabling efficient knowledge transfer.
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