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Abstract— Depth estimation plays a crucial role in robotic
applications that require environment perception. With the
introduction of convolutional neural networks, monocular depth
estimation (MDE) methods have become viable alternatives
to LiDAR and stereo reconstruction-based solutions. Such
methods require less equipment, fewer resources and do not
need additional sensor alignment requirements. However, due
to the ill-posed formulation of MDE, such algorithms can only
rely on learning mechanisms, which makes them less reliable
and less robust.

In this work we propose a novel method to cope with the
lack of geometric constraints inherent to monocular depth
computation. Towards this goal, we initially mathematically
transform the feature vectors from the last layer inside a MDE
CNN such that a 3D stereo-like cost volume is generated.
We then adapt the semi-global stereo optimization to the
aforementioned volume, global consistency of the map being
ensured. Furthermore, we enhance the results by adding a sub-
pixel stereo post-processing be means of interpolation functions,
a larger range of depth values being obtained. Our method
can be applied to any classification-based MDE, experiments
showing an increase in accuracy with an additional time cost
of only 8 ms on a regular GPU, making the technique usable
for real-time applications.

I. INTRODUCTION

Depth estimation is one of the most important tasks in
environment perception for robotic applications. A depth
map containing information about the distance to each object
inside the scene has to be extremely accurate, robust, dense
and obtained with as few resources as possible.

The methods that are best suited for depth perception
in driving scenarios use LiDAR technologies [1] [2] [3]
due to their high accuracy in terms of measurements and
their robustness. However, LiDAR-based methods suffer in
terms of equipment cost and output density. Furthermore,
their results are given in a different coordinate system than
the image frame, the long acquisition period making the
synchronization with other sensors problematic. Camera-
based solutions based on stereo reconstruction [4] [5] [6]
do not have this association problem, but generally need lots
of resources (high resolution cameras, high computational
cost) for good results. Generally stereo algorithms have been
classified in two categories: local and global. Local methods
[7] [8] [6] are less accurate, evaluating the disparity on a
similarity criterion applied over small (generally maximum
5x5) support windows. On the other hand, global approaches
[5] [9] evaluate the disparity of all pixels in an image as a
whole by optimizing a global energy function.
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With the apparition of deep learning, monocular depth
estimation (MDE) has become a technique more and more
reliable for depth perception in robotic applications. MDE
algorithms [10] [11] [12] [13] rely on an image captured by
a single camera, which is then used for inferring the depth
map. Consequently, such methods have several advantages
over their counterparts: the solution is cheaper in terms of
both equipment cost and computational resources, there is
no need for extra temporal alignment and it produces results
with reasonable accuracy. However, since an infinity of 3D
depth scenes can be produced from a single 2D image,
there is a lack in geometric constraints for MDE algorithms,
making such algorithms less reliable for critical application.

In this work we plan to increase the reliability of depth
maps generated by MDE neural networks by augmenting
the learning-based solution with information extracted via
traditional stereo-like techniques. Using stereo knowledge
as supervision for MDE proved to be effective [14] [15]
[16] especially since real-life depth ground truths based on
LiDARs (eg. Kitti [17]) are not entirely dense. However,
since such approaches require stereo computation as well,
they do not entirely benefit from the aforementioned single-
image advantages.

Our work proposes an alternative way for MDEs to benefit
from stereo information: we initially let the CNN converge
towards a depth map in a supervised fashion, without in-
terfering with the learning process. We next extract viable
information from the weight vectors inside the convolutional
layers, which we mathematically transform to a stereo-like
3D matching cost volume. Geometric constraints are then
applied over the 3D volume be means of global optimization.
In order to limit the amount of computational resources
we modify the well-known semi-global optimization such
that it can work in relation with the aforementioned 3D
volume. Finally, we show that sub-pixel post-processing
techniques can also be applied, making the final output less
dependent on the depth space discretization. Thus, we find
an interpolation function that refines the output, providing
a more precise depth. We evaluate the proposed approach,
and we highlight that the depth map is improved, a better
accuracy being obtained with an additional computational
cost of only 8 ms. To sum up, our original contributions are:
• A mathematical transformation of the probability vol-

ume generated by the last layer in classification-based
MDE solutions such that it can be used for stereo-like
optimizations;

• A novel method for introducing stereo semi-global op-
timization into monocular depth estimation procedures;
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• An adaptation of sub-pixel post-processing to MDE
solutions; This increases the range of the resulting depth
map, making it independent on the space discretization
technique.

The article is structured as follows: We start with pre-
senting the state of the art in stereo and monocular depth
perception. In section 3 we initially introduce a mathematical
transformation of the 3D probability volume generated by
the MDE, and show how the semi-global optimization is the
applied. Section 4 discusses the results obtained by our new
procedure with respect to other depth perception algorithms.
Finally, we conclude the paper in section 5.

.

II. RELATED WORK

A. Stereo Reconstruction

Most of the recent stereo algorithms use deep learning
methods under the form of end-to-end procedures. Most of
top methods on Kitti benchmark use CNNs that formulate
the disparity selection using an differentiable argmin, mod-
eling the problem as a regression. The method that initially
proposed to use a soft fully differentiable argmin function
was GC-Net [18]. The method uses 3D convolutions to
incorporate both geometry and context and then regresses
towards the sub-pixel value of the disparity GT. Most of
the other methods that currently rank high in Kitti stereo
dataset fall into this category (eg. GA-Net [19], AMNet [20]).
However, none of them is capable of producing disparities
in real-time (most of them take around 1 second).

For real-time applications, the traditional pipeline (origi-
nally proposed by D. Scharstein and R. Szeliski [4]) provides
several solutions presenting a viable accuracy-sepeed trade-
off. By following the traditional approach, stereo recon-
struction is divided into four main phases: cost computa-
tion, aggregation, optimization, refinement. Each phase is
responsible for solving a particular sub-problem. The global
optimization is the key part from the four phases, an energy
function incorporating both a cost term and a smoothness
term (which adds geometrical constraints to the problem)
being defined on all the pixels of the image. Thus, local
ambiguities caused by photometric variations, reflections or
occlusions are alleviated.

Semi-global matching (SGM) [5] is one of the most robust
optimization algorithms, ensuring close-to global consistency
while consuming a reasonable amount of resources. The
algorithm behaves like a global algorithm, performing an en-
ergy minimization on several (generally 8) 1D paths crossing
each pixel and thus approximating the 2D image. There are
various implementations of SGM on different platforms CPU
[21], GPU [22] or FPGA [23], most of them obtaining real-
time performances. Other similar optimization methods like
Graph Cuts [24], Belief propagation [25], or Total Variation
[9] are very expensive in terms of resources.

B. Supervised Monocular Depth Estimation

Since an infinity of 2D depth maps can be generated from
a 3D scene, monocular depth estimation approaches try first

to understand locally the relations between objects and then
exploit these cues [10]. Learning the scene reprezentation
for this requires convolutional neural networks. Most of
the approaches in the MDE category use encoder-decoder
arcitectures, minimizing a mean squared error-type of loss
[12] [26]. The most representative ways to capture object
relation-representation is by either extracting features at
multiple scales (under the form of a pyarmid)[27], by using
dilated convolutions [28] or by using attentional gating [11]
(features from initial layers (coarse) being later plugged in
for a better filtering of relevant information).

Although most of the MDE algorithms directly regress the
(fractional) depth map, Xian et al. [29] proved that better
results are obtained when the MDE problem is seen as a
classification rather than a regression (Table 3 and 4 in
[29]). In the classification case the network converges faster
and it produces more robust results. However, classification
assumes a fixed number of depth classes, meaning that
the depth interval has to be discretized. A common way
to discretize the spatial depth interval is to use uniform
discretization [30] [31], which equally accounts for the near-
side classes and the far-side ones.

DORN [13] proposes an improved discretization tech-
nique, using the log-space (more classes in the near-space).
Such an approach is capable to more accurately predict
short-range and near-range depth values, which constitute
the vast majority of points inside the dataset (because of this
DORN ranked 1st for more than 1 year on Kitti). Another
important factor for the success of DORN is that its loss also
accounts for neighboring classes. Such a loss is based on
ordinal regression (or ordinal classification) and it provides
a higher accuracy and faster convergence. There are other
similar approaches (such as SORD [32]) that also perform
very well by understanding of the intraclass and interclass
ordinal relationships.

C. Stereo-based monocular depth estimation

Due to the lack of sufficient training data, supervised MDE
methods generally perform worse than stereo counterparts.
In order to alleviate this, semi-supervised [14] [15] and
unsupervised [16] learning-based MDE approaches have
emerged. These methods combine the depth prediction of
two supervised networks (for left and right) with their corre-
sponding stereo-based disparity information in a single loss,
capable to produce a better depth map. Other works such
as [33] [34] use self-supervising techniques by processing a
single image to obtain a second synthetic view (similar to
the right view in stereo). A CNN is then trained on the two
images for computing a disparity map.

Other MDE methods try to obtain higher accuracy not by
depth supervision, but by augmenting convolutional networks
with 3D constraints. Such methods either use conditional ran-
dom fields or surface normals [35] to capture and exploit the
geometry of the scene. The formulation of these approaches
is cumbersome (the geometrical constraints are included
in the loss function) and they also need a high amount
of computational resources, which makes them unfeasible
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for real-life applications. Instead, we prefer to augment
MDE methods with geometric constraints in a lightweight,
algorithmically-friendly way, which can also lead to real-time
implementations.

III. SEMI-GLOBAL OPTIMIZATION FOR MDE

We will initially show how to generate a stereo-like cost
volume from a MDE network. We will highlight the math-
ematical transformations required in order to transform the
probabilities given by the networks either in classification-
like CNNs and in ordinal regression-type CNNs. Next we
will present how we can adapt the semi-global optimization
to these 3D volumes. We will then show how sub-pixel
accurate values can be obtained, by a post-processing using
interpolation functions. The overall architecture of the system
is presented in Fig. 1.

A. From MDE probability volume to 3D stereo cost volume

In this part we will show how a 3D stereo-like cost volume
can be generated. The only constraint for this generation is
that the MDE problem is modeled as either as a classification,
or an ordinal regression, but not as a regular regression. This
is because simple regression networks generate a 2D map in
the last layer, not a 3D one. As previously mentioned, the
classification-type provides better results, but is more costly.

a) Case 1: Simple Classification MDE: For a simple
classification-based MDE network, the discretization of the
depth interval will guide the optimization process. A limited
number of depth values are inferred and each such depth
value might be considered as an optimal position. Thus, we
will focus on the last layer of the network, which generates a
width×height× depth classes probability volume, where
width and hiehgt are the image dimensions. The number
of classes depth classes will be directly dependent on
the depth interval discretization, and it can be chosen by
considering:

depth classes =
max depth

samp f
(1)

where max depth is the maximum depth allowed for mea-
surement (generally 80, for driving applications) and samp f
is the sampling factor for the discretization (how large is a
depth interval). For instance, if samp f = 1, then all the
integer metric distances are considered as possibilities.

For a faster convergence, the last layer in most of
the classification-based MDE approaches is generally a
softmax, assigning a probability for each position to belong
to a specific depth class. During the evaluation, the best depth
value is selected by finding the position of the maximum
probability.

depclasif (p) = argmaxd(Csoftmax(p, d)) (2)

where Csoftmax is the 3D probability volume and argmax
chooses the position of the largest probability for the pixel
positioned at (p).

Now, if we wan to change the perspective towards a
traditional stereo, we can then observe that the chosen

depth/disparity will be given by the argmax function (po-
sition of the maximum probability); Traditional stereo ap-
proaches use argmin function, for finding the minimum cost.
Thus, in order to apply the same depth/disparity selection
procedure, we will need to compute ”inverse probability”
(cost) volume. This will will be generated by:

Ci prob(p, d) = α× (1− Csoftmax(p, d)) (3)

where α is a parameter that normalizes the cost values such
that integer values are generated. In this case, α = 255. Now
a simple argmin selection will choose the optimal depth:

depi prob(p) = argmind(Ci prob(p, d)) (4)

b) Case 2: Ordinal Regression MDE: State of the
art benchmarks show that ordinal regression (also known
as ordinal classification) outperforms simple classification
counterparts, approaches such as DORN [13] or SORD [32]
being very accurate. Ordinal regression can be seen as a more
complex classification, in which values from neighboring
depths are accounted in the final loss. From our stereo-
cost generation perspective, the mathematical transforma-
tions required for building the cost volume will be more
complicated.

We will start from the softmax function (like in Case I)
from [13] (eq. (3) in their paper). During the evaluation, the
best depth value is now not selected by finding the position
of the maximum probability, but rather by finding the median
value of the distribution. According to eq (5) from [13], the
chosen depth is given by the position of the last value whose
probability is not smaller than 0.5:

depOR(p) = argd(Csf or(p, d) ≥ 0.5) (5)

This softmax probability function (Csf or(p, d)) (eq. 3
from [13]) looks similar to a cumulative distribution function:
the distribution for a given spatial location varies accord-
ing to the inverse logistic function (Fig. 2 up), where the
vertical line highlights the position of the chosen depth.
This logistic function is continuous and differentiable on
interval [0..depth classes]. Our goal is to transform this
distribution such that the same position is given, but its
form can be exploited by stereo-like optimizations (similar
to Fig. 2 down). Thus, in order to obtain a stereo cost-
like distribution, we will have to mathematically transform
Csf or(p,d) to a new curve distribution Ci prob(p, d), which
has the following properties:
• Ci prob(p, d) is differentiable on the interval

[0, depth classes]
• The minimum position for Ci prob(p, d) is dep,

i.e. Ci prob(p, dep)) ≤ Ci prob(p, d), ∀d. Ideally,
Ci prob(p, dep) ≈ 0.

.
By considering these two properties, we propose the

following inverse probability (cost) function for the ordinal
regression case:

Ci prob(p, d) = [Csf or(p, d)− Csf or(p, dep)]
2 (6)
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Fig. 1: Architecture of the MDE System

We can easily prove that our newly generated cost curve
Ci cost(p, d) follows the aforementioned properties. Firstly,
if d → dep =⇒ Ci prob(p, d) → 0. We are also interested
in the form of the new function. This can be seen if we
expand and then derive Ci cost(p, d) with respect to d:

Ci prob(p, d) = C2
sf or(p, d)− 2Csf or(p, d)Csf or(p, dep)

+ C2
sf or(p, dep) (7)

C ′i prob(p, d) = 2Csf or(p, d)C
′
sf or(p, d)

− 2C ′sf or(p, d)Csf or(p, dep)

= 2C ′sf or(p, d)[Csf or(p, d)− Csf or(p, dep)]
(8)

Approximating the derivative around dep gives that:

C ′i prob(p, dep) ≈ 2C ′2sf or(p, dep) (9)

As mentioned, the minimum point for Ci prob(p, d) will be
dep. A second observation that we can draw from the previ-
ous expression is that our newly generated distribution will
increase/decrease quadratically with respect to the original
distribution (a larger inter-class difference is introduced).

B. Semi-global Optimization for MDE

Once the stereo-like cost volume is generated, we can use
the SGM optimization technique. The most critical part in
SGM is the penalty selection: good values for P1 – penalty
for small disparity changes and P2 – penalty for large dis-
parity disruptions are necessary. While some methods train
particular penalties for each pixel (generated through deep
learning [36]), other adapt them to surface types [37]. In our
case, exhaustive tests show that penalty selection procedure
does not depend on the surface type but rather on the way in
which the softmax probability is distributed across the depth
space. There are situations in which two neighboring pixels
present two distributions parametrically different. Therefore,
a normalization factor has to be introduced into the SGM
formulation. This will be done only for the ordinal regression
case, since the classification case is straightforward (a regular
SGM formula can be used).

Fig. 2: Probability distributions for ordinal regression soft-
max Csf or(p) (up) and obtained cost distribution Ci prob(p)
(down); The the position of the minimal cost is highlighted

For the ordinal regression we observe two corner cases,
which determine the way in which the penalties have to be
adapted:

• Probabilities from Csf or(p, d) decrease linearly (simi-
larly to the ones in Fig. 2 up). As a consequence, the
distribution for Ci prob(p, d) is more flatten. In this case
neighboring probability values are close to the selected
one, so there should be a small value for penalty P1;

• Probabilities from Csf or(p, d) decrease abruptly (in a
step-like distribution). Consequently, Ci prob(p, d) has
a peak that overlooks the neighbors. In this case the
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penalties have to be larger, to compensate for the class
variation.

The formulation of the inverse probability cost can directly
provide an adaptation of the SGM formula such that both
of these marginal cases are covered. The derivative of the
function directly determines the amount by which the penalty
is emphasized. So, we can directly include this slope factor
into SGM:

Csgm(p, d) = Ci prob(p, d) +min(Csgm(p− r, dp),
Csgm(p− r, dp − 1) + βC ′i prob(p, d)× P1,

Csgm(p− r, dp + 1) + βC ′i prob(p, d)× P1,

mink∈DCsgm(p− r, k) + βC ′i prob(p, d)× P2) (10)

where D = [0..depth classes], β is a scaling factor, r is
the direction for optimization, and C ′i prob(p, d) gives the
direction and the amount by which penalty is modified.
Finally, the optimized cost is computed by:

Cfinal(p, d) =
∑
r

Csgm(p, dp) (11)

The winner takes all (WTA) selection technique is then
applied, the depth being generated as:

depafter sgm(p) = argmind(Csgm(p, d)) (12)

C. Sub-pixel refinement

As previously mentioned, selection will extract integer
values, on the positions of minimal costs. Since the range of
these values is limited by the maximum number of classes,
sub-pixel correction creates the opportunity to slightly mod-
ify the final value in the correct direction. This is also done
in traditional stereo approaches, which formulate the final
depth as:

dSubPx(p) = dInt(p) + f(cd−1, cd, cd+1) (13)

where DInt is the integer disparity and c values are matching
costs (taken from the cost volume generated in cost compu-
tation and optimization steps) neighboring the chosen integer
disparity and f is a function which should redirect the dis-
parity towards the correct fractional depth. These parameters
provide enough information for an accurate estimation with
sub-pixel precision.

The main problem becomes to infer the proper function,
based on values extracted from the cost volume. A function
that wrongly refines the initial map might lead to the so
called ”pixel-locking effect”: an overcrowding of disparities
towards integer values. Methods such as [38] [39] [40] use
function fitting mechanisms to learn the correct interpolation
function. We can also adapt the stereo mechanism to MDE
by expressing the final depth value as:

depfinal(i, j) = depafter sgm(p) + samp f × f(cd−1, cd, cd+1)
(14)

where cd is the SGM cost at the chosen depth, while cd−1
and cd+1 represent the neighboring costs and f is a function
which should redirect the depth towards the correct depth

class. This formulation is similar to stereo sub-pixel, with
the exception that MDE also includes the sampling factor. By
applying the same function fitting procedure as in [41], we
can obtain new functions: (eq. 15) for the classification case
(for uniform distribution) and (eq. 16) for ordinal regression
case (non-uniform distribution).

f(cd−1, cd, cd+1) = sin(arctan(
cd+1 − cd
cd − cd−1

× π/2)× π/2)

(15)

f(cd−1, cd, cd+1) = 1− cos(cd+1 − cd
cd − cd−1

× π/2) (16)

IV. EVALUATION

A. Datasets and Training

a) Datasets: Since we use supervised learning tech-
niques for optimization, a reliable dataset is required. Be-
cause the scope of our work is automated driving perception,
Kitti [42] is the best option for us. Thus, we use the Kitti
raw dataset images as inputs and depth prediction ground
truths for the validation of the CNNs.

b) Methods for comparison and Implementation de-
tails: We evaluate:
• A classification-based network – For this case we have

also implemented our own classification-based MDE
estimation; The method uses Darknet-53 feature extrac-
tor (from Yolo V3 [43]) and it uses cross-entropy as
loss for learning. 80 classes have been used for the last
layer; We chose this lightweight feature extractor due to
its real-time capabilities; For this case we use multiple
CNN implementations: we variate the sampling factor,
to obtain various depth intervals. We have trained this
method using the Darknet framework, using the C++
and CUDA languages.

• An ordinal regression-based network – For this case
we use DORN: the state of the art on Kitti, that uses
an ordinal regression loss; For this we use the code
provided by the authors. However, there is no code for
training, so we use the provided trained model. The
code is written in PyTorch. Predicting the depth using
DORN takes around 0.5 s.

We have implemented SGM variants for both these ap-
proaches. We used CUDA and C++ languages for the first
case, while for the second we used a Python implementation.
Both these implementations run directly on a regular GPU
(NVidia 1080 Ti), our goal being also to obtain a good
time performance. For post-processing, the algorithms use
the interpolation functions presented in (eq. 15-16).

B. Results

1) Accuracy Improvements:
a) SGM Optimization: We evaluate here the improve-

ments provided by the SGM optimization. Initially we show
the results our optimization method obtains for the entire
driving scene with respect to the baselines and to other MDE
methods. Thus, we evaluate the YoloV3-based depth classifi-
cation (close to real-time), with and without the optimization,
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for the case in which the sampling factor samp f = 2 and
DORN [13]. We also include a regular regression implemen-
tation for the Yolo-based network and an implementation for
the CNN proposed by Eigen et. al. [12]. Results obtained by
other methods can easily extracted from Kitti benchmark and
compared with this work. We evaluate the depth estimation
metrics from Kitti: the relative absolute error (absErrorRel),
the squared relative error (sqErrorRel), the inverse root mean
squared error (iRMSE) and the Scale Invariant Log (the
primary metric in Kitti for depth prediction)

In terms of precision, we observe that the overall ac-
curacy (for the entire image) is improved. The margin of
improvements with respect to DORN is smaller, since this
network is already very accurate, but still sufficiently large
to justify adding the optimization. The improvements over
the classical classification approach are more significant.
Numerical results are presented in Table I. The validity of
our method can also be visually observed in Figure 4, which
depicts the results obtained by our refinement method when
applied over DORN (because of space limits we restrict to
visually depict only this case). Although both depth maps (c)
and d)) seem quite similar, images containing the depth error
(e) and f)) clearly show the differences between the two. In
these images, pixels that are closer to GT are depicted in
blue, while erroneous pixels are depicted in red/orange. It
can also be visually seen that many more points are more
accurately computed, the depth map in the entire scene being
more reliable.

b) Long-range accuracy: We also examine the results
obtained by our method when focusing on the long-range
part of the scene because the sub-pixel post-processing part is
particularly interested in dealing with large distances. Thus,
we consider the points whose value is between 50 and 80.
We evaluate this according to the general depth estimation
metrics on Kitti.

We test two variants for both types of CNNs: one without
any correction, and one with an optimal correction (denoted
+PostProc). The Yolo-based classification problem uses a
sampling factor of 1 (80 classes) uniformly distributed, while
DORN uses 142 classes, unevenly distributed. Results show
that the refinement technique is beneficial for objects at large
distances for both MDE algorithms. The largest improvement
is obtained in the case of DORN. This is somehow expected,
since DORN overlooks objects in the far-side (due to the log
discretization). Numerical results can be seen in Table II.

2) Speed:
a) Sampling factor variation: We are interested in

seeing how our method behaves when we variate the number
of classes: this gives the way in which we discretize the depth
space. We test here multiple CNN models, which correspond
to the following number of depth classes/intervals: 80, 40,
20, 10 and 5. We have chosen these values because Kitti
max depth value is around 80 (depths are in range 0-80).
Thus, we use five possible sampling factors: 1, 2, 4, 8
and 16. We test three methods: without any optimization,
with SGM optimization and corrected using the proposed
interpolation function. The first important aspect we observe

is that runtime decreases almost exponantially with depth
class reduction, until the encoder part becomes the critical
part in time consumption. Error, on the other hand has a
much smaller increment. The results can be see in Fig. 3. It
can bee seen that if we use large sampling factors, the method
runs in real-time. However, decent performance is obtained
only for sampling factors smaller than 8 (more than 10 depth
classes are required). Another important observation is that
post-processing becomes more relevant when the sampling
factor is larger (its burden related to depth distribution
becomes more relevant). Optimization, on the other hand,
produces similar error reduction for any sampling factor
choice.

Fig. 3: Accuracy vs Speed variation for different sampling
factors

b) Overall time performance: In this part we are inter-
ested in evaluating the additional time required for each step
in our system: for the initial CNN, the mathematical transfor-
mation of the cost, SGM optimization and the interpolation
function. Numerical results can be seen in Table III. It can
be seen that the C++/CUDA implementation for the network
with a sampling factor of 8 is really fast, resulting in an
overall time of 46 ms. This proves that our method does not
need too many resources, the number of computations being
relatively small. Overall, for the C++/CUDA case, only an
additional time of 8 ms is required (1 for cost transformation
and for post-processing and 6 ms for SGM optimization). For
the Python case our algorithm is slower, taking an additional
75 ms. All in all, we can highlight that our method can run
in (close-to) real-time, while obtaining a decent accuracy.
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TABLE I: Performance of the MDE correction methods for all pixels in Kitti images

Method Platform SILog sqErrorRel absErrorRel iRMSE
Yolo-based classif; GPU (C++/CUDA) 16.37 5.12 % 12.24 % 17.28

Yolo-based classif; (+SGM) GPU (C++/CUDA) 13.98 4.11 % 10.14 % 14.93
DORN [13] GPU (Python) 12.01 3.53 % 7.55 % 11.98

DORN (+SGM) [13] GPU (Python) 10.68 2.93 % 6.39 % 10.06
Yolo-based regression GPU (C++/CUDA) 18.07 5.68 % 18.33 % 20.98

Eigen [12] GPU (Python) 20.22 6.02 % 19.17 % 22.92

TABLE II: Results obtained with our depth correction on long-range MDE Kitti images (Depth ∈ [50, 80])

Method SILog sqErrorRel absErrorRel iRMSE
Yolo-based classif 17.47 4.43 % 18.58 % 21.98

Yolo-based classif (+PostProc) 17.01 4.20 % 17.89 % 20.15
DORN [13] 17.55 4.53 % 18.78 % 22.89

DORN (+PostProc) [13] 15.22 3.68 % 16.33 % 20.14

TABLE III: Time performance for each step of the method for Kitti images

Method CNN + Volume Transf. + SGM + PostProc
Yolo-based samp f = 8 38 ms 39 ms 45 ms 46 ms

DORN [13] 501 ms 504 ms 572 ms 576 ms

(a) RGB Image (b) Depth GT

(c) DORN depth (d) DORN + SGM + PostProc depth

(e) DORN depth error (f) DORN + SGM + PostProc depth error

Fig. 4: Results obtained with our depth correction approach for Kitti images

V. CONCLUSIONS

We have presented here a method to improve the accuracy
of supervised monocular depth estimation algorithms by
inserting stereo-like geometric constraints into the MDE
algorithms. In order to do this, we initially show a method
to mathematically transform the 3D probability volume
generated by classification and ordinal regression-based ap-
proaches to a 3D stereo-like cost volume. We then insert
a global optimization based on semi-global matching over
the aforementioned volume. Finally, we find an interpolation
function that refines the output, providing a more precise
depth by increasing the range. The method proves that a

better accuracy is obtained, by also preserving the real-time
capabilities for the underlying algorithms (only an additional
time of 8 ms is required for the optimization).

We plan to continue our work with respect to depth
perception by adapting other stereo reconstruction techniques
to monocular counterparts. For instance, we plan to research
new ways to help MDE methods based on regular regression
benefit from scene geometry.
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