
Squash-Box Feasibility Driven Differential Dynamic Programming
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Abstract— Recently, Differential Dynamic Programming
(DDP) and other similar algorithms have become the solvers of
choice when performing non-linear Model Predictive Control
(nMPC) with modern robotic devices. The reason is that they
have a lower computational cost per iteration when compared
with off-the-shelf Non-Linear Programming (NLP) solvers,
which enables its online operation. However, they cannot handle
constraints, and are known to have poor convergence capabil-
ities. In this paper, we propose a method to solve the optimal
control problem with control bounds through a squashing
function (i.e., a sigmoid, which is bounded by construction).
It has been shown that a naive use of squashing functions
damage the convergence rate. To tackle this, we first propose to
add a quadratic barrier that avoids the difficulty of the plateau
produced by the sigmoid. Second, we add an outer loop that
adapts both the sigmoid and the barrier; it makes the optimal
control problem with the squashing function converge to the
original control-bounded problem. To validate our method,
we present simulation results for different types of platforms
including a multi-rotor, a biped, a quadruped and a humanoid
robot.

I. INTRODUCTION

A. Motivation and related work

Nonlinear Model Predictive Control (nMPC) is a powerful
technique that is used in robotics to generate trajectories.
It finds the control commands (over a period of time) by
optimizing a user-defined task, i.e., a cost function. Most
of the approaches solve, numerically, a static optimization
for each MPC step, i.e., by following the so-called first
discretize, then optimize approach. The static optimization
is typically formulated using a direct approach [1], in which
a general-purpose nonlinear program is used to retrieve the
solution, e.g. SNOPT [2], KNITRO [3], and IPOPT [4].

Applying nMPC to robotic systems with high dynamics,
e.g. aerial vehicles [5], quadrupeds [6] and humanoids [7],
requires fast solvers to obtain optimal control commands at
sensor sampling rates. With current computer capabilities,
this is hard to achieve using the general-purpose solvers cited
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Fig. 1: A complex maneuver computed with the proposed method
SquashBox-FDDP. The goal of the UAV is to pass through two
defined configuration points while generating limited thrust com-
mands. We draw both configuration points as frames with the blue
axis indicating the vertical direction of the UAV.

above because they require big matrix factorizations. Thus,
the nMPC is usually addressed by resorting to Differential
Dynamic Programming (DDP) techniques [8] —or any vari-
ant of it such as the iterative Linear Quadratic Regulator
(iLQR) [9]. The key idea behind DDP is to break the whole
problem into a sequence of smaller sub-problems, thanks
to the Bellman’s principle of optimality. However, these
methods, in their original form, have a poor globalization
capability and lack the ability to handle constraints beyond
the ones imposed by the dynamics.

Recent works have tackled some of the mentioned lim-
itations. In [10], Giffhaler et al. present a lifted version
of the Riccati equations that enables to warm-start the
solver and to avoid an initial, and commonly unstable,
rollout. Later, Mastalli et al. [11] propose modifications
of both backward/forward passes to emulate the numeri-
cal behavior of a direct multiple-shooting formulation with
equality constraints. This latter method is called Feasibility-
driven Differential Dynamic Programming (FDDP), and it
has shown greater globalization strategy needed for highly-
dynamic maneuvers in legged robots.

In parallel to the research for improving the globalization
capability, other works have focused on including arbitrary
constraints. In [12], Tassa et al. propose a method to add
bounds to the control actions (Box-DDP). To do so, they
propose to handle the box constraints inside the Quadratic
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Programming (QP) problem that minimizes the Hamiltonian
(i.e., the Q function). Following a similar approach, Xie et
al. [13] extend the method for arbitrary nonlinear constraints
on the states and the controls. Independently, Lantoine and
Russell [14] take a similar approach to handle hard con-
straints. Besides, they propose to use an Augmented La-
grangian method. Another Augmented Lagrangian extension
called ALTRO [15] has been proposed recently.

B. Contribution and outline

In this paper we propose a method to solve the optimal
control problem with control bounds. We do so by means
of a squashing function (SF), i.e., a sigmoid function that is
bounded by construction. It maps the unbounded variable s
to the bounded output u, i.e., u = g(s). When using a SF,
we substitute the control variable u by the SF input s. With
this modification, the optimal control problem constrained
on the control u becomes an unconstrained problem on s,
and the control bounds are guaranteed by the SF.

As stated in [12], only considering this variable substitu-
tion constitutes a naive approach that leads to poor practical
performance. Mainly, this happens because the shape of the
sigmoid cannot be captured by the quadratic approximation
considered in DDP algorithms. In order to tackle this, we
modify the naive solution and propose a penalty method that
adds a quadratic barrier on the squashing variable s, together
with the consideration of an outer loop.

The outer loop is responsible to jointly control the sharp-
ness of the squashing function and the steepness of the
barrier, while the inner loop calls the FDDP solver, presented
in [11], to solve a penalized problem. Our approach starts
with a smooth penalization and makes it sharper as outer
iterations pass. Eventually, this modified problem converges
to the initial bounded problem. The performance of our
algorithm is shown in simulations of several challenging
tasks involving one aerial, one humanoid, and one quadruped
robot.

The rest of this paper is organized as follows. In Section II
we present an overview of the original DDP algorithm as
well as its feasibility-driven version (FDDP). In Section III
we describe our proposed algorithm called squash-box FDDP
(sb-FDDP). In Section IV we compare our method with the
naive SF as well as with the Box-DDP of [12]. The paper
finishes with conclusions and discussion in Section V.

II. BACKGROUND

The control inputs are commonly limited by the real
system characteristics. Therefore, when solving the optimal
control problem, we should account for the following bounds
on the control inputs u,

min
X,U

lN (xN ) +

N−1∑
k=0

lk(xk,uk)

s.t. xk+1 = f(xk,uk), (dynamics)
x0 = x(0), (initial condition)
u ≤ uk ≤ ū, (control bounds)

(1)

where N defines the number of nodes along the discretized
trajectory (X,U), defined as X = [x0, . . . ,xN ] and U =
[u0, . . . ,uN−1], xk ∈ Rnx and uk ∈ Rnu are the state
and control at the k-th node, respectively, lk(xk,uk) :
Rnx×nu → R is its associated cost, f(xk,uk) : Rnx×nu →
Rnx describes its system evolution, and [u,u] is the control
interval (lower and upper bounds, respectively).

In the following section we introduce the algorithms
of DDP and FDDP. The classical DDP does not include
the state trajectory X as a decision variable. This is the
reason why it is considered an indirect method (Section II-
A). On the contrary, FDDP does consider X as decision
variables, fact that improves the globalization capability of
the algorithm (Section II-B). FDDP is the solver used in the
inner loops of our proposed method, presented in Section III.

A. Differential dynamic programming (DDP)

DDP splits the whole problem into a sequence of N
smaller problems. Each sub-problem only considers the
controls uk as decision variables. DDP is known to have
a low memory footprint and a high solving speed [8]. It
comprises the following three main stages: (1) derivatives
computation at each node, (2) backward pass and (3) forward
pass. Below we briefly describe the backward and forward
passes.

1) Backward pass: This pass owes its name to the back-
ward recursion that gives, as a result, an optimal policy at
every node. It starts from the final node and ends at the first
one. The cost associated to the tail of the trajectory from the
node i onward can be expressed as the cost-to-go, i.e.,

Ji(xi,Ui) =

N−1∑
k=i

lk(xk,uk) + lN (xN ) (2)

where the tail of trajectory Ui is considered to be from the
node i until the end. Thanks to the Bellman principle, we
can recursively solve this problem as

Vi(xi) , min
Ui

Ji(x,Ui) =

= min
ui

[li(xi,ui) + Vi+1(f(xi,ui))]
(3)

where Vi(xi) ∈ R is the optimal cost-to-go. Then, DDP finds
the local optimum of the following expression

Qi(δxi, δui) = li(xi + δxi,ui + δui)

+ Vi+1(f(xi + δxi,ui + δui)) .
(4)

From now on subindices i will be omitted and the optimal
cost to go at the next time step will be indicated with a prime,
i.e., V ′(f(x,u)) , Vi+1(f(xi,ui)). The optimum of (4) is
found iteratively by writing the quadratic approximation,

Q(δx, δu) ≈ 1

2

 1
δx
δu

>  0 Q>x Q>u
Qx Qxx Qxu

Qu Q>xu Quu

 1
δx
δu

 , (5)
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and then optimizing with respect to δu. The partial deriva-
tives of (4) are the following:

Qx = lx + f>x V′x , (6a)

Qu = lu + f>u V′x , (6b)

Qxx = lxx + f>x V′xxfx + V′x · fxx , (6c)

Qux = lux + f>u V′xxfx + V′x · fux , (6d)

Quu = luu + f>u V′xxfu + V′x · fuu , (6e)

where V′x, (lx, lu), (fx, fu) and V′xx, (lxx, lux, luu),
(fxx, fux, fuu) describe the Jacobians and Hessians of the
Value, cost and dynamics functions, respectively. Note that
the last terms of (6c)-(6e) denote the product of a vector by
a tensor.

The minimization of (5) with respect to δu leads to the
following optimal policy:

δu∗(δx) = k + Kδx , (7)

with k , −Q−1uuQu and K , −Q−1uuQux. If we plug this
optimal policy into the quadratic expansion in (5), we obtain
a quadratic approximation of the optimal cost to go as a
function of δx, i.e.,

V (δx) = ∆V + V>x δx + δx>Vxxδx , (8)

where

∆V = −1

2
k>Quuk , (9a)

Vx = Qx −K>Quuk , (9b)

Vxx = Qxx −K>QuuK . (9c)

The set of equations (6) and (9) constitute the backward pass.
These equations are used to update recursively the optimal
policy for each node.

2) Forward pass: Considering a current guess (X,U), the
forward pass applies appropriate modifications to the current
guess trajectories as follows:

x̂0 = x0 , (10a)
ûk = u0 + αkk + Kk(x̂k − xk) , (10b)

x̂k+1 , f(x̂k, ûk) , (10c)

where the x̂ and û are the updated values for the states and
controls, respectively. The assignment in (10c) implies the
integration of the dynamics to update the next state. This
procedure is also known as nonlinear rollout. The parameter
α ∈ (0, 1] indicates the length of the step taken by the current
iteration. A value of α = 1 results in the application of a
full step.

B. Feasibility-driven DDP (FDDP)

For the sake of completeness, we briefly explain the FDDP
algorithm. To gain insight into this method, we refer the
reader to [11].

The major modification introduced in FDDP is the addition
of the state trajectory X as an artificial decision variables.

As a multiple shooting technique, FDDP allows for infeasible
trajectories during the solving process, i.e.,

xk+1 = f(xk,uk) + fk+1 , (11)

where fk+1 ∈ Rnx indicates the gap between the nonlinear
rollout and the next state. Keeping these gaps opened during
the first iterations of the solver is what gives the solver a
better globalization capability [11], [10]. Once these gaps are
closed for all the nodes, i.e., fk+1 = 0 for k = 0 . . . N −
1, the FDDP algorithm becomes the DDP explained in the
previous section.

1) Derivatives and backward pass: Because we allow the
existence of gaps during the solving process, we have to
modify the three steps of the DDP algorithm accordingly.
First, we will compute the derivatives of the optimal cost-
to-go at xk+1, i.e., Vxk+1

. However, in the backward pass
we need them at f(xk,uk). Making use of the Hessian and
the gap at step k + 1, we can modify the derivative as

V+
xk+1

= Vxk+1
+ Vxxk+1

fk+1 , (12)

where the Hessian remains constant since V is assumed to
be a quadratic function. Having this in mind, the backward
pass in (6) should be modified accordingly.

2) Forward pass: In DDP, U and X are updated sequen-
tially. That is, α determines how U is updated (10b) and then,
by performing a nonlinear rollout we compute the trajectory
X (10c). Due to the introduction of the gaps, in the FDDP
technique both trajectories are updated simultaneously. Thus,
(10c) has to be modified so that it captures also the evolution
of the gaps, i.e.,

x̂k+1 = f(x̂k, ûk)− (1− α)fk+1 , (13)

where the new value of the gap is given by f̂k+1 = (1 −
α)fk+1. Again, the α parameter indicates the length of the
step taken at every iteration. It also affects to the manner
in which the gaps are closed throughout the solving process
(see [11]). A full step (α = 1) closes the gaps.

III. SQUASH-BOX FDDP
In this section we describe our novel method called

squash-box FDDP (sb-FDDP). We start by presenting the SF
used in this work (Section III-A). In Section III-B, we briefly
introduce a naive approach based on squashing functions.
This method introduces nonlinearities that produce a poor
sublinear convergence when compared to [12]. To tackle
this, we propose a penalty method that consists of two loops
(Section III-C).

A. Squashing function

A squashing function is basically a sigmoid with the
following properties

g(s) : R→ (g, g) , (14)

g′(s) ≥ 0 (15)

with

g = lim
s→−∞

g(s) and g = lim
s→∞

g(s) . (16)
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Fig. 2: Squashing functions (top) and their first derivatives (bottom)
for different smoothness values b ∈ {0.2, 0.1, 0.01}. The areas
beyond the bounds where the SF becomes flat are known as the
plateaus. Notice that the control interval is u − u = 10, giving
widths of the smoothed corners a ∈ {2.0, 1.0, 0.1}.

By constructing a proper SF so that g = u and g = u,
the control bounds are now guaranteed by construction.
Notice that, without loss of generality, we expressed the
function g for a single control input. In order to consider
the whole u, we just need to apply it component-wise to
u. We write u = g(s) for simplicity. Likewise, we will note
S = [s0, · · · , sN−1] the trajectory of the squashing variables,
having then U = g(S).

Now, the aim is to find an expression for g that is bounded
(14), monotonic (15) and, importantly for the convergence of
FDDP, continuously differentiable. For the rest of this paper,
our sigmoid function has the form (see Fig. 2),

g(s) =
1

2
(u+

√
a2 + (s− u)2) +

1

2
(u−

√
a2 + (s− u)2) ,

(17)
where the parameter a, which has the units of u, defines
the sharpness or smoothness of the function around the
saturation points, and corresponds roughly to the width of
the smoothed corners connecting the central linear segment
with the saturated plateau. Note that when a approaches 0,
g(s) becomes the saturation function, i.e.,

lim
a→0

g(s) =


u s < u ,

s u ≤ s ≤ u ,
u u < s .

(18)

To easily cope with different control saturation intervals
[u, u], we rather define a through a ratio b ∈ (0, 1] of the
interval, i.e.

a = b(u− u) . (19)

This way, b corresponds (see Fig. 2) to the normalized size
of the smoothed corner relative to the control interval.

B. Squashed FDDP problem

By including the SF (17) U = g(S) in the problem (1),
the optimal control problem becomes unbounded1:

min
S,X

∑N−1
k=0 lk(xk,g(sk)) + lN (xN ) ,

s.t. xk+1 = f(xk,g(sk)) ,
x0 = x(0) ,

(20)

where we now focus on finding the input sequence S, whose
entries can take any value in R. Using the chain rule, the
Riccati equations are expressed in terms of X and S as

Qs = ls + g>s Qu = ls + g>s (lu + f>u V+
x ) , (21a)

Qsx = g>s Qux (21b)

= g>s (lux + f>u V′xxfx) , (21c)

Qss = lss + Qu · gss + g>s Quugs

= lss + (lu + f>u V+
x ) · gss+

+ g>s (luu + f>u V′xxfu)gs ,

(21d)

where gs is the diagonal Jacobian matrix of the SF, and
gss is a sparse cubic tensor with its non-zero values placed
at the diagonal of the cube2. The barrier gradient and
Hessian matrix with respect to the squashing variables S
are represented by ls and lss, respectively. Note that we use
the Gauss-Newton approximation in (21), and therefore the
second partial derivatives of the dynamics have been omitted.

C. Quadratic penalization method

We could solve the unbounded optimal control in (20)
by using the FDDP algorithm. The smoothness b should be
high to ensure convergence, and some kind of regularization
should be imposed on s to prevent it from departing to infin-
ity upon saturation. In such cases, the vanishing derivatives
of the SF on the plateaus (see Fig. 2) negatively impact the
convergence rate of the solver. We propose a penalty method
with an outer loop and a quadratic barrier to greatly improve
this naive solution.

1) Quadratic barrier: To improve the convergence speed,
we add a quadratic barrier that attracts the squashing variable
towards the smoothed corner of the SF, i.e., away from the
plateau. Since the size of this smoothed region is a, given
by (19) and controlled by the parameter b, we use the same
a to control the width of the quadratic barrier, i.e.,

lbarr(s) =

nu∑
i=1


wi(

si−ui

a )2 si < ui ,

0 ui ≤ si ≤ ui ,
wi(

si−ui

a )2 ui < si ,

(22)

where the subindex i represents the element-wise compo-
nents of s, u and u, and w = [wi] are the weights given
to the respective quadratic functions. Fig. 3 shows how the
width of the barrier follows the degree of smoothness of the
SF corner.

1Without loss of generality, our discourse assumes a FDDP solver,
although the same is applicable to a DDP solver; however and as said,
FDDP presents better globalization capabilities than DDP [11].

2Note that this tensor product is equivalent to a matrix product due to its
diagonal structue
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Fig. 3: SF and its associated quadratic barrier for b = 0.2 and
b = 0.05. The barrier attraction towards the smoothed corner of
the SF is adapted to the width of the smoothed area.

2) Penalization method: We have the barrier that keeps
s away from the plateau, i.e., inside the smoothed corner,
improving convergence rates. However, for very smooth SFs
(high b value), all u = g(s) with s in the smooth corner
will not saturate the controls and, therefore, the solver will
not exploit the full range of control commands. Since we
require both good solver convergence and good control
saturation, we propose a method inspired by the penalty
methods [16, Ch. 17]. Our approach involves two nested
loops (Algorithm 1). The inner loop runs an FDDP solver
with a SF and a quadratic barrier. The outer loop is in charge
of modifying b, hence the smoothness of the SF and the
width of the barrier. The basic idea is to start with a large b
and progressively decrease it. That is, the solver starts with
a smooth SF and a wide quadratic barrier (high b value),
and each outer loop imposes a sharper SF with a steeper
barrier. Eventually, as b gets smaller the problem converges
to a true saturated problem (see (16)). Contrary to common
penalty methods, where this convergence is required to reach
very tight values to ensure the constraints, our method can
exit much earlier, i.e., with a last b not extremely small.
This is due to the fact that it satisfies the control bounds by
construction of the SF. Moreover, during the initial outer
loops it does not require very precise solutions, so our
algorithm starts with a loose exit criterion τ (Section III-C.4)
and reduces it progressively as outer iterations advance.

3) Trajectory warm start and gap contraction: We warm
start the FDDP solver at each outer iteration with the solution
of the previous iteration (lines 5-6). At the end of each outer
iteration, the SF becomes sharper due to the decrease of b.
This might make some variables sk fall onto the plateau area
of the new SF. In such cases the new steeper quadratic barrier
will rapidly take these variables back to the smoothed corner.
A-priori better alternatives such as Sini ← g(S), which
brings the variables on the plateau back to the smoothed
area, does not show a significant improvement.

In practice, when the resulting trajectory from the inner
loop [Sj ,Xj ] is feasible (Section II-B), this assignment often
results in an infeasible trajectory. Thus, the gaps are usually
opened at the beginning of every outer iteration. The next
inner loop will close them again.

Algorithm 1: squash-box FDDP

Data:
Initial guess: (Xini,0,Sini,0)
Initial barrier weight: ω
Squashing values: {b0, . . . , bM}, with bj > bj+1

Converging thresholds: {τ0, . . . , τM} with τj > τj+1

Gap threshold: f th
1 for j = 0 to M do
2 µj ← update barrier weight from (bj , w)
3 warm start FDDP with (Xini,j ,Sini,j , µj)

4 run FDDP with stopping criteria (τj , f th)
5 Xini,j+1 ← Xj

6 Sini,j+1 ← Sj

7 if [SM ,XM ] not feasible then
8 warm start DDP: (XM ,SM , µM )
9 run DDP with tolerance convergence τM

4) Stopping criteria: One common stopping criteria in
DDP is to check whether a change in the controls can still
produce a considerable change in the cost, i.e.:

N−1∑
k=0

||Qu,k||2 < τj , (23)

and, when using the SF, the criterion in (23) considers Qs

instead of Qu. Note that, using (21a), this criterion becomes

N−1∑
k=0

||ls,k + g>s,kQu,k||2 < τj . (24)

However, this is problematic at the nodes where the sk is
outside the bounds, i.e. ls,k 6= 0. The reason is that the
two gradients ls,k and g>s,kQu,k are pointing at opposite
directions, i.e. the first term is trying to keep the sk variable
inside the quasi-linear region while the second tries to
decrease the original problem cost by moving sk away.
Intuitively, with (24), we are asking the solver to find an
input sk that makes these two large terms equal up to a
tiny threshold τj . This results in very small steps with no
actual improvement in the cost, producing a high number of
iterations without significant performance gain.

To overcome this situation, we follow the stopping crite-
rion proposed in [10]. This criterion considers the relative
cost improvement in every iteration as well as the sum of
the gaps over the entire trajectory. Thus, the new stopping
criterion for the FDDP solver is,

|Jj(x0,Sj)− Jj−1(x0,Sj−1)|
Jj(x0,Sj)

< τj (25)

and
N−1∑
k=0

||fk,j || < f th . (26)

It is worth noticing that, with this criterion and since f th
is not exactly zero, it is possible that the algorithm exits
the outer loop with an infeasible trajectory [Sj ,Xj ]. In such

7641



case, we consider an extra run of a DDP solver, which closes
the gaps at the first iteration (lines 7-9).

IV. RESULTS

We first compare our proposed sb-FDDP algorithm with
two existing methods. Concretely, we consider 1) a naive
DDP approach based on only a squashing function, and 2) the
Box-DDP algorithm proposed in [12]. Our results show the
effect of using the SF and the quadratic barrier, and the
importance of the outer loop. We test all solvers with a wide
range of examples developed in the optimal control library
CROCODDYL [11]. We report the generated motions in the
accompanying video. For more details about the examples
check the GITHUB repository3.

A. Case studies

1) Quadcopter: We use the Iris quadcopter to perform
two tasks: 1) cross a wall through a vertical narrow passage,
2) cross the wall and come back passing on top of the wall.
These motions are achieved by specifying different way-
points, which are reached at different instants throughout
the trajectory (see the way-points represented as frames in
Fig. 1). Each of them considers a pose in SE(3) and an
associated target velocity in the tangent space. In order to
impose the pose and the motion (expressed by the way-point)
at a given node, we add a cost that penalizes the error of the
quadcopter state with respect to the way-point. The control
inputs of the system are the thrusts produced by each motor-
propeller set. We configured the controls to move within a
range of 0.1 to 10.3 N. For all the cases, we do not warm-
start the solvers.

2) Biped walk: We use the Talos legs with its dynamics
properties (see Fig. 4). We formulate the optimal control
problem for one single walking cycle, i.e., we consider two
steps, with a double support phase. To better benchmark
our approach, we reduce the joint torque limits by half and
use the default posture and quasi-static torques to warm-start
the solvers. For details about the used contact and impulse
dynamics, we refer the reader to the existing literature,
e.g. [17], [11].

3) Quadruped: We use the ANYmal robot for which we
generate a jumping motion (see Fig. 5). Again, we reduce the
torque and the joint velocity limits to 32 N m and 7.5 rad/s,
respectively. The latter is imposed through soft constraints
as quadratic penalizations in the cost function. Like in the
previous example we have warm-started the solver with the
quasi-static solution.

4) Humanoid: We perform a whole body experiment with
the Talos robot (see Fig. 6). It consists of first reaching a
goal with the hand, and then standing on one foot while
balancing the whole body. As in the previous case, we limit
the maximum torque to 40% of the full torque capacity, and
warm-start the solver with the quasi-static solution.

3https://github.com/loco-3d/crocoddyl.

Fig. 4: Talos legs performing several steps. Image order: column-
wise, from top to bottom and left to right.

Fig. 5: ANYmal quadruped performing a jump. Image order:
column-wise, from top to bottom and left to right.

Fig. 6: Talos humanoid performing the balancing operation. From
left to right: place the left hand at the goal and, without moving
the hand, lift the left leg and finally perform a balancing maneuver.

B. Performance of the squash-box FDDP

We report the solvers behavior in Fig. 7. For the sb-FDDP,
we consider two outer loops with b = {0.1, 0.05} and τ =
{1× 10−2, 1× 10−3} across all the different problems. We
use different values of w and f th because they are problem
dependent. For the naive squash approach, we set b = 0.05
and τ = 1× 10−3. We use the same initial guess for all the
solvers. In all the cases, sb-FDDP outperforms the other two
solvers, not only in how fast they converge but also when we
look at the cost of the solution. As in other penalty methods,
the solving speed is determined by the inner solver and how
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Fig. 7: Cost progression for the different studied problems. Our sb-
FDDP algorithm converges to a better solution with fewer iterations
than the other two methods. The jump problem cannot be solved by
the others solvers. The Box-DDP stops prematurely in the humanoid
balancing problem
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Fig. 8: Cost progression for the quadcopter narrow passage solved
with the sb-DDP (blue) and the sb-FDDP solvers. The use of
the FDDP as the inner solver considerably improves the results
(orange). The addition of the barrier further improves the method
performance (green). The first cost reported for each solver is the
value after the first iteration.

it is implemented. Thus, we refer the reader to [11] for more
details about it.

There are some cases where the naive squash DDP and the
Box-DDP do not converge to the solution (e.g. quadrupedal
jump). This is due to the poor globalization capability of
the DDP-like algorithms. The fact that they do not allow
infeasible iterations makes them very sensitive to poor initial
guesses. Instead, our algorithm converges faster to a better
solution partly thanks to the proposed FDDP step in the inner
loop.

1) FDDP choice and quadratic barrier: To understand
the benefits of the FDDP step, we substitute it with a DDP
step (named sb-DDP). In Fig. 8, we can see the difference
between the sb-FDDP and the sb-DDP algorithms. We also
include a comparison with a sb-FDDP solver without the
inclusion of the proposed barrier method. Clearly, the sb-
FDDP outperforms both approaches.
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Fig. 9: Final section of the thrust trajectory obtained for a single
motor of a quadcopter for the experiment in Fig. 1. We compare
trajectories for one single outer iteration with a convergence thresh-
old of τ = 1 · 10−4. In green it is reached the same final values
for b and τ but following the progression b = {0.2, 0.1, 0.05} and
τ = {1× 10−2, 1× 10−3, 1× 10−4}. Notice the tight saturation
values of the sb-FDDP solution (green). Performance indicators are
reported in Table I.

TABLE I: Comparison metrics for a single outer loop with τ =
1× 10−4 for various b values. The sb-FDDP considers b =
{0.2, 0.1, 0.05} and τ = {1× 10−2, 1× 10−3, 1× 10−4}. The
number of iterations reported for the sb-FDDP case is the addition
of all inner iterations.

Quadcopter Quadruped

b Iter. Cost Iter. Cost

0.2 60 1.2131 32 6.28× 103

0.1 55 1.2430 46 6.08× 103

0.05 209 1.6748 44 5.97× 103

sb-FDDP 98 1.1679 40 5.98× 103

2) Outer loop: In Fig. 9 we see that the optimized
controls resulting from smaller b are significantly closer
to the saturation. As the last outer loop of the sb-FDDP
considers the smallest b, we can also see that it almost
saturates the controls.

In Table I, we report relevant metrics related to the
experiments shown in Fig. 9, and an analogous experiment
with the quadruped jump case. For the same final b = 0.05
value and same convergence τ = 1× 10−4, we observe
that our algorithm achieves a faster solution by performing
several outer iterations when it is approaching the final b
value. The costs are very similar in the case of the quadruped
and significantly better in the case of the quadcopter.

The early outer iterations are useful since they provide
a good warm-start for the following ones. Additionally,
reducing b opens the gaps. With the gaps opened, the inner
FDDP often has better exploration capabilities. Fig. 10 shows
the gap evolution for the different case studies. It is of special
interest the case of the humanoid. Practically, the first outer
iteration has the gaps fully closed. Therefore, the cost can
barely be reduced (see Fig. 7). At iteration 32 the first outer
loop finishes and b is updated accordingly. As a result, the
gaps open and after approximately an exploration phase of
20 iterations, the gaps begin to close and the cost decreases
rapidly.

Finally, Fig. 11 supports the decision of choosing only
two outer loops —this is a trade-off decision as discussed
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Fig. 11: Cost reduction produced at every outer-loop iteration.
The numbers over the bars indicate the iterations that the inner
solver has to perform in order to converge. Sequence of squashing
values and convergence are b = {0.1, 0.05, 0.025, 0.0125} and
τ = {1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5}. Note that the
main cost reduction occurs in the first outer iteration. The other
ones help to get the controls closer to the saturation values.

in Section V. We evaluate four outer loops and show that
the actual cost reduction happens to be at the first outer loop
(with the exception perhaps of the humanoid problem) but
we still need the second outer loop to allow the controls to
approach saturation. Further iterations have less impact on
the final trajectory.

V. CONCLUSION

We proposed a method that modifies the control-limited
optimal control problem in such a way that we could
treat it using unconstrained solvers (e.g. FDDP). The solver
modification uses, primarily, the computation of the controls
through a squashing function (SF). In this manner, the solu-
tion to the optimization problem is found using the SF input
as the decision variable. To improve the poor convergence
speed as reported in [12], we proposed to include a quadratic
barrier so that the decision variables do not fall far from the
quasi-linear region. Additionally, our approach considers an
outer loop that is in charge of modifying the problem that
FDDP solves in the inner loop. As the outer loop progresses,
the modified problem converges to the original one. This
approach has proven to effectively solve a variety of optimal
control-bounded problems, even those where other solvers
failed.

The number of outer loops is a trade-off between math-
ematical perfection and pragmatism. The SF modifies the
original problem and, therefore, the obtained solution is sub-
optimal. With multiple outer iterations and as b gets smaller,
both problems eventually converge and so does the solution
to an optimum. We have shown that after only a very small
number of outer iterations, and even if the controls did not
reach the bounds accurately, the change in the final trajectory
can seldom be noticed, concluding in practice that a couple
of outer loops suffice to reach the optimal trajectory with
sufficiently saturated controls.
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