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Fig. 1: Can we make cross-scene prediction via modeling the correlations of scene dynamics on unsynchronized history
observations?

Abstract— This work addresses on the following problem:
given a set of unsynchronized history observations of two scenes
that are correlative on their dynamic changes, the purpose is
to learn a cross-scene predictor, so that with the observation of
one scene, a robot can onlinely predict the dynamic state of the
other. A method is proposed to solve the problem via modeling
dynamic correlation using latent space shared auto-encoders.
Assuming that the inherent correlation of scene dynamics can
be represented by shared latent space, where a common latent
state is reached if the observations of both scenes are at an
approximate time. A learning model is developed by connecting
two auto-encoders through the latent space, and a prediction
model is built by concatenating the encoder of the input scene
with the decoder of the target one. Simulation datasets are
generated imitating the dynamic flows at two adjacent gates
of a campus, where the dynamic changes are triggered by
a common working and teaching schedule. Similar scenarios
can also be found at successive intersections on a single
road, gates of a subway station, etc. Accuracy of cross-scene
prediction is examined at various conditions of scene correlation
and pairwise observations. Potentials of the proposed method
are demonstrated by comparing with conventional end-to-end
methods and linear predictions.

I. INTRODUCTION

The ability to deal with dynamic change of environment is
important for robots to achieve lifelong and robust autonomy.
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Map-based localization approaches could fail if the map is far
different from the current environment, and planning can be
harder without the knowledge of the dynamic environment.

Some methods are proposed to model the dynamic change
of the environment in different aspects. The basic idea is
maintaining a database that saves all different observations
of the environment, and localization is performed in all past
maps [1]. However, this is only a kind of data collection
without the modeling process for the change of environment.
And with the increasing of the database, computation effi-
ciency and localization in real-time are rapidly influenced. In
some scenarios, the change of environment is periodic, which
inspires frequency map approach that models the dynamic
environment as the sum of some periodic functions [2]. This
is a signal level modeling and is able to predict the future
of the environment. In general, the dynamic change between
neighboring scenes are related, such as traffic flow changing
between intersections, and learning the relationships between
them is another kind of modeling. Nicholas [3] applies
mutual information based method to learn the temporal
observability relationships between them.

This work addresses on a new problem: can we make
inference by modeling the correlations of scene dynamics
on history observations? As illustrated in Fig. 1, two scenes
are adjacent, such as nearby gates of the campus, successive
intersections on a single road, gates of a subway station, etc.
Dynamic changes of the two scenes are correlated, which
are triggered by some common events, such as working
and teaching schedules of the campus, the period of the
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traffic signal, the train’s pit stop and so forth. There have
been history observations of both scenes, whereas they are
not synchronized as they could be measured by different
robots, i.e. the observations are not necessarily in pairs.
At a certain time, given the observation of one scene, we
want to predict the dynamic state of the other. This research
proposes a method of cross-scene prediction via modeling
dynamic correlation using latent space shared auto-encoders,
which is developed based on an assumption that the inherent
correlation of scene dynamics can be represented by shared
latent space, and a common latent state is reached if the
observations of both scenes are at an approximate time. A
learning model is thus developed by connecting two auto-
encoders through the latent space, and a prediction model is
built by concatenating the encoder of the input scene with the
decoder of the target one. Simulation datasets are generated,
where two scenes are designed imitating the dynamic flows
at two adjacent gates of Peking Univ., and a simulator is
developed to obtain scene maps for hours. Accuracy of cross-
scene prediction is examined, and the performance at various
conditions of scene correlation and pairwise observations are
elaborated. Potentials of the proposed method are demon-
strated by comparing with conventional end-to-end methods
and linear predictions.

This paper is organized as follows. The related works
are reviewed in SectionII. SectionIII explains the details of
our method. SectionIV and SectionV show implementation
details of model and simulation. Experimental results are in
SectionVI.

II. RELATED WORKS

There are some researches focus on how to model or
predict the dynamic change of the environment. Spectrum-
analysis based methods [4] [2] discretize environment into
binary voxels indicating they are occupied or not, and model
each voxel as the sum of a series of periodic signals by
the frequency spectra of observed data. Their ability to
predict environment improves localization accuracy [5] [6]
and efficiency of map updating [7] [8]. Some methods apply
long-term and short-term memory in dynamic scene map-
ping to remove nonexistent features and increase emerging
features [9] [10] [11]. The bag-of-word method is also used
to predict images between seasons [12]. Mutual information
based method [3] predicts images of neighboring scenes by
calculating the correlation of collected data, this work is sim-
ilar to ours but the essence is different because it only learns
the temporal relationship between data without considering
what makes data correlate or modeling the essence.

In this paper, the dynamic of a scene is caused by moving
objects like pedestrians, and there are lots of studies about
traffic behavior and scene modeling in the surveillance field.
There is a shift from detecting-and-tracking of vehicle state
and defining interested events towards machine learning-
based approaches to automatically extract meaningful pattern
[13]. Similar trajectories are clustered to model structure or
path of scene [14] [15]. Topic model based methods con-
vert conceptions of natural language processing into traffic

behavior, and LDA [16] [17]/HDA [18] [19] approaches
achieve good results in scene modeling without accurate
tracking. Scene modeling methods in the surveillance field
are mainly used for abnormal events detection or scene
semantic understanding [20], but there are few predictions for
the future of the full scene. Besides, they do not consider the
correlation between neighboring scenes. We can learn some
methods in this field, but our conception of scene modeling
is essentially different from theirs.

This work makes an attempt to model the dynamic corre-
lation between neighboring scenes on simulation datasets.
In order to quantify how the correlation influences our
algorithm, we generate datasets with different correlation
coefficient between scenes. Training data with different pair-
wise observations are randomly sampled to simulate robots
data acquisition situation in the true world.

III. METHODOLOGY

A. Problem definition

As illustrated in Fig.1, a and b are two neighbor scenes
such as adjacent gates of a campus or consecutive intersec-
tions on a single road, where the scene dynamics are strongly
correlated. Let Sa = {< Sa

1 , t
a
1 >, ..., < Sa

n, t
a
n >} and Sb =

{< Sb
1, t

b
1 >, ..., < Sb

m, t
b
m >} be the history observations of

the two scenes. Sk
i denotes the ith observation of scene k at

time tki , which can be a grid map that represents the dynamic
state of the scene. The observations of both scenes are not
necessarily pairwise in time, i.e. {ta1 , ..., tan} 6= {tb1, ..., tbm},
as they could be obtained independently by different robots.

The purpose of this work is to learn a predictor F on
Sa and Sb by addressing the correlation of scene dynamics,
where given the observation Sk of one scene at the current
time t, predict the dynamic state of the other, e.g.

Ŝb, t = F(Sa, t) (1)

Ŝa, t = F(Sb, t) (2)

The formulations can be easily extended to define the
problems involving three or more scenes.

B. Modeling dynamic correlation using latent space shared
auto-encoders

Assumes that there exists a latent space Z that records
the inherent correlation of scene dynamics at a and b, after
encoding the observations Sa and Sb individually to the
latent space Z,

Za
i = Ea(Sa

i ) (3)

Zb
j = Eb(S

b
j ) (4)

Sa
i and Sb

j may share a common state, i.e.

∆Z = ||Za
i − Zb

j ||22 → 0

if they are the observations of an approximate time, i.e.

∆t = dis(tai , t
b
j)→ 0

where dis is an operator of time difference by addressing
the periodic nature of scene dynamics.
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Fig. 2: Modeling dynamic correlation using latent space
shared auto-encoders.

As illustrated in Fig.2, the procedure is modeled by
combining the auto-encoder structures in this work. Given
a pair of history observations of both scenes Sa

i and Sb
j that

are measured at tai and tbj respectively, each scene map is
processed individually through the corresponding encoding-
decoding path of the scene.

Za
i = Ea(Sa

i ), Ŝa
i = Da(Za

i ) (5)
Zb
j = Eb(S

b
j ), Ŝb

j = Db(Z
b
j ) (6)

Two reconstruction losses La
recon and Lb

recon are defined
to evaluate the auto-encoder’s accuracy of each scene,

La
recon =

∥∥∥Sa
i − Ŝa

i

∥∥∥2

2
(7)

Lb
recon =

∥∥∥Sb
j − Ŝb

j

∥∥∥2

2
(8)

and a correlation loss is defined to constrain equivalent latent
states if the scene dynamics are observed at approximative
time points. c is a constant.

LZ = exp(−c ·∆t) ·
∥∥Za

i − Zb
j

∥∥2

2
(9)

∆t = dis(tai , t
b
j)

Therefore, model learning is conducted by optimizing the
following total loss

min
Ea,Eb,Da,Db

La
recon + Lb

recon + λLZ (10)

where λ is a hyperparameter that is assigned 0.1 in this
research.

The prediction model F is built by concatenating the
encoder of the input scene with the decoder of the target
one, as illustrated in Fig.3. For example, at the current time
t, given the observation Sa of scene a, the dynamic state of
scene b can be predicted by

Ŝb, t = Fab(S
a, t) (11)

Fab = EaoDb (12)

Fig. 3: Cross-scene prediction by concatenating the encoder
of the input scene with the decoder of the target one.

and vice versa

Ŝa, t = Fba(Sb, t) (13)
Fba = EboDa (14)

IV. IMPLEMENTATION DETAILS

A. Network design

As illustrated in Fig.4, the network contains two autoen-
coders that have the same structure. We use PyTorch frame-
work to realize the autoencoder [21], which is composed of
convolutional, fully connected and upsample layers.

There is no pooling layer in the encoder part, and input
size is reduced only by convolutional layers with stride=2.
For the decoder part, we use ×2 upsampling with same-
padding convolutional layers to extend the size of the input,
instead of deconvolutional layers. Such a structure can make
the network retain more information.

In encoders, the input size changes from 512 × 512 × 4
to 64 × 64 × 8 by 3 Conv2d layers, and then is reduced
to 2 dimensions(the latend variable Z) by 2 FC layers. In
decoders, the size is extented from 2 to 64×64×8 by 3 FC

Fig. 4: The network structure of autoencoders.
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Fig. 5: Simulation pipeline. (a)scene layout, (b)series of
control variables of the dynamic flows, (c) a simulation frame
of the dynamic objects(blue points), (d) a scene map on a
frame sequence during a short time window.

layers, and then restores to 512 × 512 × 4 by 3 Upsample
and Conv2d layers.

B. Scene map

A grid map is used to represent the dynamic state of
a scene, where each pixel is a four-dimensional vector,
recording the number of dynamic objects passing through the
location during a short time window τ on four discretized
directions. In this research, the map has a dimension of
512 × 512 and a pixel size of 0.2 meters, τ = 1 min, and
the four directions correspond to the East, West, South, and
North in the world coordinate system. In this paper, pixels
of scene map are visualized by the most dominant flow
crossing the pixels at the time, where red, blue, purple and
green represent the four discretized directions to the west,
east, south and north, respectively, the brighter the color, the
higher the dynamic flow.

V. SIMULATION DATASETS

A simulator is developed to generate simulation datasets
for experiments. The simulation pipeline is shown in Fig.5.
Without loss of generality, we assume that each scene has its
inherent structure of the dynamic flows that connect a set of
entrance and exit points of the scene, shown as red points in
Fig.5(a), whereas the volume of each flow may change with
time due to some underlying events. Therefore, time series
C of a set of control variables are designed as illustrated in
Fig.5(b) to guide the simulation of dynamic objects. In this
research, two control variables are designed, which are the
total people number PNt and the main flow direction FDt.
Two main flow directions are defined, where FDt is the
percentage of people entering the campus, leaving the rest

Fig. 6: Scene dynamic correlation is simulated by designing
correlative time series of control variables. Three patterns are
designed with different correlation coefficient ρ of the time
series on the control variable PNt.

1− FDt going out. At a time t, if the total people number
at the frame is less than PNt, new people are generated to
meet the insufficient number. Among the new people, FDt

are generated at the entrance point of the gate following a
randomly chosen flow entering the campus, while 1− FDt

are generated randomly at the start point of a flow going out
of the campus.

People flows are simulated by referring to Helbing’s
work [22]. Each scene map is estimated on a sequence of
simulation frames as

Si, ti = OGM(f1,...,n) (15)

In this research, simulation frames f1,...,n are generated at
10Hz. Each scene map represents the dynamic state during a
short time window of τ = 1 min, therefore nf = 600 frames
are used to estimate a Si at ti.

Two scenes are simulated by imitating the dynamic flows
at two adjacent gates of Peking Univ., which are triggered by
almost the same events, e.g. working and teaching schedules
of the campus. Similar scenarios can also be found at
adjacent intersections on a single road, subway stations, gates
of a stadium, etc. Therefore, correlated time series of control
variables at both scenes are designed as shown in Fig. 6.
Three kinds of patterns are designed with the correlation
coefficients ρ =1.0, 0.84 and 0.5 of PNt of two scenes,
representing the strong, middle and less correlative scenes.
Here people number PNt of two scenes are designed to
control the correlation of two scenes, and we keep the main
flow direction FDt of two scenes the same.

Following each pattern of time series in Fig.6, a simu-
lation is conducted from 8:00 to 20:00, where 720 scene
maps are generated every 1 minute for both scenes. Part
of scene maps are selected to simulate the different data
acquisition situation, which have α =0%,31%,72%,100% of
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Fig. 7: Datasets generation of various percentage of pairwise
scene maps, α =0%,31%,72%,100%.

pairwise observations as shown in Fig.7. Therefore, a total
of 12 datasets containing three correlation patterns and four
percentages of pairwise observations are generated, which
are used in the experiments. In each particular experiment,
although the proposed and baseline methods are trained and
test on the same dataset, the number of scene maps used
in training could be different due to the requirements on
pairwise observations of each method, which is detailed in
Tab. I.

TABLE I: The number of maps in training and testing of the
cross-scene prediction models

Datasets
Methods

Four FE2E FE2E∆t Flinear

Training

α = 0 72 0 72 -
α = 31% 72 22 72 -
α = 72% 72 51 72 -
α = 100% 72 72 72 -

Testing - 36 36 36 36

VI. EXPERIMENTAL RESULTS

A. Evaluation measures

1) Prediction error: Given two maps S1 and S2 of size
W × H × C, mean square error(MSE) is used to measure
the difference between them

Ds(S1, S2) =
1

W ×H × C
∑

W,H,C

(S1 − S2)2 (16)

Subsequently, for a predicted map Ŝ with a ground truth S,
the prediction error Es is defined as

Es(Ŝ) = Ds(Ŝ, S) (17)

2) Dataset variance: A scene map describes the dynamic
state of a scene, which is generated by taking statistics on the
data frames during a short time window around the time, i.e.
nf = 600 frames during τ = 1 min in this research. A scene
map has the nature of randomness due to uncontrollable
scene dynamics and the method of time windowing, the
variance of such randomness is an important reference to
prediction accuracy.

Given any series C of control variables, simulations are
conducted for n times. At each sampled time t corresponding

to frame number it, a time window [i0, i0 +nf ] is randomly
chosen for m times with i0 ∈ [it − nf , it], and a scene
map is subsequently generated on data frames fi0,...,i0+nf

.
Therefore, n ∗ m scene maps {S1, ...Sn∗m} are generated,
and inherent variance Vs(C, t) of scene map for C and t is
estimated below.

Vs(C, t) =
1

n ∗m

n∗m∑
i=1

Ds(Si, S) (18)

where, S = 1
n∗m

∑n∗m
i=1 Si is the mean map.

By repeating the above estimations at all sampled time
points t ∈ Ωt, variance at the level of datasets Vd(C) can
also be found.

Vd(C) =
1

|Ωt|
∑
t∈Ωt

Vs(C, t) (19)

Dataset variance Vd(C) is the lower bounder of prediction
error for any methods, and the closer the prediction error to
the dataset variance, the better the result.

B. Baseline methods

1) FE2E - Conventional end-to-end prediction: By using
only pairwise observations in training datasets, a pair of
conventional end-to-end predictors FE2E can be trained as
illustrated in Fig. 8 to predict a Ŝb of scene b on Sa of a,
and vice versa.

Ŝb, t = FE2E,ab(S
a, t) (20)

Ŝa, t = FE2E,ba(Sb, t) (21)

2) FE2E∆t - End-to-end prediction with compensation
of time difference: However, the observations are not nec-
essarily pairwise, which could be measured by a multi-
robot system. Therefore, the pairwise observations in training
datasets are limited when alpha =31%, and none when
alpha =0% for FE2E , as shown in TABLE I. A pair
of conventional end-to-end predictors with compensation of
time difference is

Fig. 8: The baseline methods. Top: conventional end-to-end
prediction trained by pairwise maps only. Down: end-to-end
prediction with compensation of time difference.
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Ŝb, t+ ∆t = FE2E∆t,ab(S
a, t,∆t) (22)

Ŝa, t+ ∆t = FE2E∆t,ba(Sb, t,∆t) (23)

3) Flinear - Linear interpolation: A scene map can also
be predicted by finding two history observations of the
nearest time by considering the periodic nature of scene
dynamics and conducting linear interpolation. Let S.(t1) and
S.(t2) be the two history observations of the scene at time t1
and t2 respectively, and a predicted one of time t is estimated
as below.

Ŝ., t =
S.(t2)− S.(t1)

t2 − t1
× (t− t2) + S.(t2) (24)

C. Prediction results

We evaluated our method’s performance at various con-
ditions of scene correlation(ρ) and pairwise observations(α)
comparing with baseline methods, and the quantitative results
are shown in TABLE.II. Besides, case study of prediction
results is illustrated in Fig.11. Given the input scene maps,
the ground truth maps of the other scene are compared with
our prediction results, and error maps of ours and baseline
methods are also shown on the right four columns. Finally,
the study about per map prediction error on the single dataset
is exhibited in Fig.12.

1) Prediction accuracy v.s. scene correlation: We explore
how the correlation ρ between scenes influences our algo-
rithm, which is taking datasets of the same α but different ρ
to experiment. We take datasets with α = 31% for example.

Quantitative analysis is shown in Fig. 9. When there is
high correlation(ρ = 1/0.84) between scenes, ours(blue) is
better than other methods. E2E and E2E∆t model have no
prior knowledge of scenes but only learn the data mapping of
two scenes, and that’s why they are worse than ours in high
correlation situation. The prediction error of ours increases
with the decrease of correlation ρ because the core idea of
our method is the latent space of two scenes is shared only
when the dynamic changes of scenes are correlated. When
the correlation between scenes decreases, the performance is
down. And that’s why when the scenes are less correlative
i.e. ρ = 0.5, the prediction error of ours is larger than
E2E/ E2E∆t methods. The linear prediction model is always
the worst. There are the same results for other α shown in
TABLE II.

Fig. 9: Average prediction error changes with scene correla-
tion level ρ, a result of α=31%.

Qualitative case study is illustrated in Fig.11(a). Error map
A1 is almost white which means our method achieves good
result in high correlation situation. From A1 to A3, with
the decrease of correlation ρ, the error maps become darker
and darker, meaning worse and worse prediction results, and
our result A3 is even worse than E2E∆t’s result C3 in less
correlation (ρ = 0.5) situation.

2) Prediction accuracy v.s. non-pairwise observation: We
discuss the influence of percentage α of pairwise data, that is
taking datasets of the same ρ but different α to experiment.
We take datasets with ρ = 0.84 for example.

Quantitative analysis is illustrated in Fig. 10. The predic-
tion error of our method is always the lowest in all percentage
α. Ours(blue) and E2E∆t(yellow) method are not sensitive
to if scene maps are pairwise, because the time difference
between scene maps is considered in them. The E2E method
only processes pairwise data in the training step, so the
decrease of pairwise data leads to the reduction of training
data, causing the prediction error to raise. And that’s also
the reason for the lack of results on 0% paired data of E2E
method. There are the same results for other correlation ρ in
TABLE II.

Qualitative case study is shown in Fig. 11(b). Percentage
α does not influence a lot on our method, and the slight
difference between prediction error leads to the similar error
maps of all methods.

3) Study on single dataset: There are similar results in
the study on per map prediction error on single dataset
shown in Fig. 12. Our prediction error is close to data
variance and always lower than baseline methods through
the day when the correlation is strong (ρ = 1), and the
percentage α of pairwise scene maps rarely influences the
performance of our method, shown in Fig. 12(a)&Fig. 12(b).
But when there is less correlation (ρ = 0.5) between scenes,
ours sometimes can be worse than baseline methods, shown
in Fig. 12(c)&Fig. 12(d). Finally, Fig. 12(e) & Fig. 12(f)
are the people number of one day, and the data variance
changes with it. This is because in our pedestrian simulator,
every pedestrian’s movement is influenced by its nearby
people, and when there are lots of people in the scene, the
randomness of pedestrians’ movement increases, leading to
the raising of data variance.

Fig. 10: Average prediction error changes with the percentage
of pairwise observations α, a result of ρ=0.84.
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Fig. 11: Case study of prediction results, comparison with baseline methods at various conditions of scene correlation (ρ)
and pairwise observations (α).

TABLE II: Average prediction error on each dataset corresponding to a pair of ρ and α

Methods
Datasets ρ 1.00 0.84 0.50

α 100% 72% 31% 0% 100% 72% 31% 0% 100% 72% 31% 0%
Ours 0.549 0.581 0.558 0.569 0.685 0.698 0.686 0.693 1.037 0.974 1.080 0.925
E2E 0.602 0.660 0.864 - 0.702 0.784 0.933 - 0.894 0.938 1.087 -

E2E∆t 0.716 0.731 0.745 0.700 0.810 0.819 0.820 0.743 0.897 0.876 0.905 0.897
Linear

prediction 2.180 2.162 1.777

Dataset
variance 0.305 0.296 0.248

VII. CONCLUSIONS

This paper is the first try to answer the question: can
we make inference by modeling the correlations of scene
dynamics on history observations? We formulate the problem
as given a set of unsynchronized history observations of two
scenes that are correlative on their dynamic changes, learn
a cross-scene predictor, where with the observation of one
scene, a robot can onlinely predict the dynamic state of the
other. The problem is solved by developing a method by
modeling the inherent correlation of scene dynamics using

latent space shared auto-encoders, where a learning model
is established by connecting two auto-encoders through the
latent space, and a prediction model is built by concatenating
the encoder of the input scene with the decoder of the target
one. The method is examined through simulation, where
the dynamic flows at two adjacent gates of campus are
imitated. The problem is adaptive to other scenarios such
as successive intersections on a single road, gates of subway
stations, etc., where the dynamic changes are triggered by
some common events. Cross-scene prediction accuracy is
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Fig. 12: Per map prediction error on each dataset corresponding to a pair of ρ and α.

examined at various conditions of scene correlation and
pairwise observations, and the results show that the proposed
method can better solve the problem than the conventional
end-to-end and linear predictions ones. Future work will be
addressed on real-data collection and processing, and the
inference on dynamic correlations of more adjacent scenes
will also be studied.
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