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Abstract— We present an unsupervised learning pipeline
for dense depth, optical flow and egomotion estimation for
autonomous driving applications, using the event-based output
of the Dynamic Vision Sensor (DVS) as input. The backbone of
our pipeline is a bioinspired encoder-decoder neural network
architecture - ECN. To train the pipeline, we introduce a
covariance normalization technique which resembles the lateral
inhibition mechanism found in animal neural systems.

Our work is the first monocular pipeline that generates dense
depth and optical flow from sparse event data only, and is able
to transfer from day to night scenes without any additional
training. The network works in self-supervised mode and has
just 150k parameters. We evaluate our pipeline on the MVSEC
self driving dataset and present results for depth, optical flow
and and egomotion estimation. Thanks to the efficient design,
we are able to achieve inference rates of 300 FPS on a single
Nvidia 1080Ti GPU. Our experiments demonstrate significant
improvements upon works that used deep learning on event
data, as well as the ability to perform well during both day
and night.

Keywords – event-based learning, neuromorphic sensors, DVS,
autonomous driving, low-parameter neural networks, structure
form motion, unsupervised learning, lateral inhibition

SUPPLEMENTARY MATERIAL

The supplementary video, appendix and other materials
will be made available at http://prg.cs.umd.edu/
ECN.html.

I. INTRODUCTION

With recent advances in the field of autonomous driving,
autonomous platforms are no longer restricted to research
laboratories and testing facilities - they are designed to
operate in an open world, where reliability and safety are
key factors. As a consequence, modern self-driving cars
are often fitted with a sophisticated sensor rig, featuring
a number of LiDARs, cameras and radars, but even those
undoubtedly expensive setups are prone to misperform in
difficult conditions - snow, fog, rain or at night.

A. Event-Based Vision

Recently, there has been much progress in imaging sensor
technology, offering alternative solutions to scene perception.
A neuromorphic imaging device, called Dynamic Vision
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Fig. 1: Optical flow and depth inference on sparse event data
in night scene: event camera output (left), ground truth (middle
column), network output (right) (top row - flow, bottom row - depth).
The event data is overlaid on the ground truth and inference images
in blue. Note, how network is able to ‘fill in’ the sparse regions and
reconstruct the car on the right.

Sensor (DVS) [14], inspired by the transient pathway of
mammalian vision, can offer exciting alternatives for visual
motion perception. The DVS does not record image frames,
but instead - the changes of lighting occurring independently
at every camera pixel. Each of these changes is transmitted
asynchronously and is called an event.

By its design, this sensor accommodates a large dynamic
range, provides high temporal resolution and low latency
– ideal properties for applications where high quality mo-
tion estimation and tolerance towards challenging lighting
conditions are desirable. The DVS offers new opportunities
for robust visual perception so much needed in autonomous
driving, but challenges associated with the sensor output,
such as high noise rates, low spatial resolution and data
sparsity ask for different visual processing approaches.

B. Bioinspired Learning

Modern advancements in deep learning make it even
more tempting to move away from the traditional feature-
based scene reconstruction frameworks. Neural network
(NN) based learning approaches [23] have shown promising
results on frame-based data in solving video reconstruction
problems. However, the design of neural network architec-
tures for event-based sensors is complicated by the chal-
lenges associated with representing an asynchronous event
data in a form of an image-like input required by most
modern networks. Another challenge for learning in networks
originates from the spatial sparsity of the event stream,
and the resulting difficulty of dense depth or optical flow
computation.

In this work we introduce a bioinspired, lightweight
encoding-decoding neural network architecture - the Evenly-
Cascaded convolutional Network (ECN) to recover dense

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 5831



Fig. 2: A three-channel DVS data representation. The first channel
represents the time image [17]. The second and third channels
represent the per-pixel positive and negative event counts.

depth, optical flow and estimate egomotion from sparse event
data in a autonomous driving setting. Despite having just
150k parameters, our network is able to generalize well to
different types of sequences.

More importantly, the pipeline provides generalization
from day to night scenes. Fig. 1 shows an example featuring
night driving, where the network was trained on a day scene
only. To facilitate reliable night performance, we combine
multiple robust time-image representations [17] in a single
input, to preserve the 3D structure of the event cloud.

C. Covariance Normalization

As demonstrated later in the text, most existing methods
for the training can be suboptimal even for simple linear
regression problems. To effectively train neural networks,
we introduce a novel, bioinspired covariance normalization
similar to the lateral inhibition mechanism found in animal
neural cells [2], [10], [11], [22] to remove the correlation
in the features and improve the effectiveness of gradient
descent training. Our proposed covariance normalization is
simple and makes the test-time performance faster compared
to traditional normalization approaches. This allows the
pipeline to run at more than 300 inferences per second using
a single NVIDIA 1080 Ti GPU. We perform ablation studies
using the SfMlearner architecture [23] as a baseline and
evaluate different normalization techniques (including our
novel covariance normalization) to show that our model is
well suited for event data.

II. RELATED WORK

A. Event-based Depth and Structure from Motion

The majority of event-based depth estimation methods
use two or more event cameras [26], [24], [28]. As our
proposed approach uses only one event camera, we focus
our discussion on monocular depth estimation methods.
The first works on event-based monocular depth estimation
were presented in [8] and [13]. Rebecq et al. [8] used a
space-sweep voting mechanism and maximization strategy
to estimate semi-dense depth maps where the trajectory is
known. Kim et al. [13] used probabilistic filters to jointly
estimate the motion of the event camera, a 3D map of the
scene, and the intensity image. More recently, Gallego et
al. [6] proposed a unified framework for joint estimation of
depth, motion and optical flow. So far there has been no deep
learning framework to predict depth from a monocular event
camera.

B. Event-based Optical Flow

Previous approaches to image motion estimation used
local information in event-space. The different methods often
adapt principles known from frame-based vision, namely
correlation [4], [16], gradient [3] and local frequency es-
timation [19]. As discussed in [1], local event information is
inherently ambiguous. To resolve the ambiguity the authors
proposed to collect events over a longer time intervals and
compute the motion from the trace of events at contours.

Recently, neural network approaches have shown promis-
ing results in various estimation problems without explicit
feature engineering. Most recently, Zhu et al. [27] released
the MVSEC dataset [25] and proposed self-supervised learn-
ing algorithm to estimate optical flow. Unlike [27], which
uses grayscale information as a supervision signal, our
proposed framework uses only events and thus can work in
challenging lighting conditions.

III. OVERVIEW OF METHODS

A. Ego-motion Model

We assume that the camera is moving with rigid motion
with translational velocity v = (vx,vy,vz)

T and rotational
velocity ω = (ωx,ωy,ωz), and that the camera intrinsic
parameters are provided. Let X = (X ,Y,Z)T be the world
coordinates of a point, and x = (x,y)T be the correspond-
ing pixel coordinates in the calibrated camera. Under the
assumption of rigid motion, the image velocity u = (u,v)T

at (x,y)T is given as:
(

u
v

)
= 1

Z

(
−1 0 x
0 −1 y

)vx
vy
vz

+

(
xy −1− x2 y

1+ y2 −xy −x

)ωx
ωy
ωz

 = Ap (1)

As such, given the inverse depth and the ego-motion ve-
locities v,ω , we can calculate the optical flow at a point
using a matrix multiplication (Equation 1) Here p is used
to denote the pose vector (v,ω)T , and A is a 2× 6 matrix.
Due to scaling ambiguity in this formulation, depth Z and
translation (vx,vy,vz) are computed up to a scaling factor.

B. Event-Based Input

The raw data from the DVS sensor is a stream of events,
which we treat as data of 3 dimensions. Each event encodes
the pixel coordinate (x,y) and the timestamp t. In addition,
it also carries information about its polarity - a binary
value that disambiguates events generated on rising light
intensity (positive polarity) and events generated on falling
light intensity (negative polarity).

The 3D (x,y, t) event cloud (within a small time slice),
called event slice, is projected onto a plane and converted to
a 3-channel image. An example of such image can be seen
in Fig. 2. Two of the channels are the per-pixel counts of
positive and negative events. The third channel is the time
image as described in [17] - each pixel consists of the average
timestamp of the events generated on this pixel, because
the averaging of timestamps provides better noise tolerance.
More complicated event binning schemes have been used
in prior work [28], but we find our slice images faster to
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Fig. 3: The depth network (top) with an encoder-decoder architecture is used to estimate scene depth. The pose network (bottom) takes
consecutive frames to estimate the translational velocity and rotational velocity with respect to the middle frame. Given the poses of
neighboring frames and the depth of the middle frame, we calculate the optical flow. The neighboring frames are inversely warped to
the middle frame and the warping difference provides the supervision loss. In the networks lighter/darker colors represents lower/higher
level features.

compute with the same performance. The neural network
input consists of up to 5 such consecutive slice images to
better preserve the timestamp information of the event cloud.

C. The Pipeline

Our pipeline is similar to the one proposed in [23]. It
consists of a depth prediction component and a parallel pose
prediction component, which both feed into a optical flow
component to warp successive event slices. The loss from
the warping error is backpropagated to train flow, inverse
depth, and pose.

The network components are based on the efficient ECN
network structure. An (ECN based) encoding-decoding ar-
chitecture is used to estimate scaled inverse depth 1

Z from
a single slice of events. To address the data sparsity, we
use bilinear interpolation, which propagates local information
and fills in the gaps between events. A second network,
which takes consecutive slices of signals, is used to derive
v and ω . Then, using the rigid motion and inverse depth to
predict the optical flow, neighboring slices at neighboring
time instances T + 1,T + 2 and T − 1,T − 2 are warped to
the slice at T (Fig. 3). The l1 loss is used to measure the
difference between the warped events and the middle slice
as

Losswarp = ∑
T−2≤n≤T+2,n6=T

|Iwarpped
n − IT | (2)

It is worth pointing out that the outputs of our networks are
multi-scale. The loss functions are weighted by the number
of pixels to calculate the total loss.

D. Evenly Cascaded Network Architecture

Our transform of features takes biological inspiration
from multi-stage information distillation, and incorporates
feedback [21]. In our architecture, the encoding layers split
the (layer) input into two streams of features (Fig. 4): one

encodes the features from the previous layer at lower resolu-
tion (shown with the same color); the other directly generates
a set of higher level features, as in CNN architectures. At
the end of the encoding stage, the network has a multi-scale
feature representation. This representation is used in our pose
prediction.

In this work we added to the encoder [21] a decoder, which
works as follows: In each decoding layer, we use the higher
level features from the previous layer as a feedback signal
to improve the lower level features, and combine them with
the features from the corresponding encoding layer as in the
U-Net [18] architecture.

Our design facilitates training because residual learning is
conducted throughout the network for each level of features,
while in comparison, the original ResNet [7] does that
only in design blocks. In the encoder, we generate higher
level features similar to DenseNet [9], but we use residual
learning.

To tackle the challenges raised by sparse event data and
evenly resize the features, we use bilinear interpolation. In
the encoding layers, our network downscales the feature
maps by a scaling factor of (s < 1) to get increasingly
coarse features. In the decoding layers, the feature maps are
upscaled by a factor of 1/s. Bilinear interpolation propagates
the sparse data spatially, facilitating dense prediction of depth
and optical flow.

E. Depth Predictions

Initially, both high and low-level coarse features are used
to predict a backbone depth map. The depth map is then
up-sampled with bilinear interpolation for refinement. Then
the enhanced lower level features are used to estimate
the prediction residue, which are added to the backbone
estimation to refine it.

Our pipeline is monocular and predicts depth up to a scale.
In real world driving scenes, the mean depth value stays
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Fig. 4: The encoder-decoder structure. Only the generation and
merging of features are shown.

relatively stable. Taking advantage of this observation, we
use batch normalization before making the depth prediction
so the predicted depths have similar range.

To further address the sparsity in data, we utilize a sparsity
constraint that promotes edge-preserving information propa-
gation:

Losssmooth(I) = ∑
i

∑
j∈N(i)

|I j − Ii|p,0 < p ≤ 1 (3)

Here the loss is applied on the first-order derivatives of
the depth estimation in a neighborhood N(i). The complete
loss of our pipeline is hence defined as:

Loss = Losswarp +λLosssmooth (4)

F. Covariance Normalization

1) Mathematical Justification: Using gradient descent to
solve optimization problems can be challenging for real
world data, since the features can be badly scaled and
correlated. Even though various normalization strategies have
been proposed to train neural networks [12], [20], [15], it is
important to point out, scaling the data does not guarantee
good conditioning. The covariance matrix of the normalized
data matrix X usually remains ill-conditioned, slowing down
the gradient descent algorithms.

Proposition 1: Assume we are given a linear regression
problem with L2 loss: y = Xw, Loss = 1

2‖y− ŷ‖2= 1
2‖Xw−

ŷ‖2. One step of gradient descent leads to the optimal
transformation if the features are uncorrelated.

Proof: For an explicit solution we have ∂Loss
∂w =

X t(Xw− ŷ) = 0,
w = (X tX)−1X t ŷ. (5)

If the input is uncorrelated, we have w = X t ŷ. On the other
hand, to conduct one iteration of gradient descent: we have
wnew = wold − step len× (X tXwold −X t ŷ). If X tX = I then
step len = 1 is optimal and with one iteration we have
wnew = X t ŷ.

This above result suggests that correlated data slows
down the gradient descent training even in the simplest
L2 optimization problem. Standard normalization methods
cannot account for the correlation in the data, and therefore
are suboptimal for the gradient descent training. Here we
propose the covariance normalization technique to make the
gradient descent process more effective, not only reduces the
training time but leads to better solutions.

Given the covariance matrix Cov = (X − µ)t(X − µ) be-
tween the features, we use Denman-Beavers iteration [5],
a coupled Newton-Schulz iteration to calculate the inverse
square root. Denman-Beavers iterations start with initial
values Y0 =Cov, Z0 = I. The iteration is defined as:

Yk+1 =
1
2

Yk(3I−ZkYk)

Zk+1 =
1
2
(3I−ZkYk)Zk

Yk −→Cov
1
2 , Zk −→C−

1
2

(6)

A few iterations( 5) lead to significantly faster convergence
and better results.

Following this spirit, we insert the covariance normaliza-
tion operation before the linear/convolution layers to remove
the correlation effects between feature channels. In each
layer, the transform is:

yi = ReLU ◦Wi ◦Di ◦ xi, (7)

here xi is the input to the i− th layer, Di = Cov−0.5 is the
covariance normalization. It is important to note that this
procedure does not change the learning problem, as the
standard network training is solving for Wi ◦Di. Another
important property is that according to the associate rule of
matrix multiplication, Wi ◦Di ◦ xi = (Wi ◦Di)◦ xi. Therefore,
the normalization matrix Di can be calculated and merged
with the weights in the current layer. In the testing time,
we use a running average estimate of Di and transform
Wi to (Wi ◦Di). As a result, no normalization is needed in
testing time. This makes the system faster compared to other
normalization techniques.

2) Neurophysiology Analogy: Removing the correlative
factors with lateral cells is analogous to the lateral in-
hibition mechanism [2] found in animal neural systems.
The technique can be further generalized to remove the
correlation between neighboring pixels [22]. The resulting
‘deconvolution’ filter has been shown to resemble the center-
surround structure [10], [11] in animal visual systems and
has recently provided significant improvements to multiple
learning tasks such as image classification and semantic
segmentation.
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Fig. 5: Qualitative results from our evaluation. The table entries from left to right: DVS input, ground truth optical flow, network output
for flow, ground truth for depth, network output for depth. The event counts are overlaid in blue for better visualization. Examples were
collected from sequences of the MVSEC [25] dataset: (top to bottom) outdoor day 1, outdoor day 1, outdoor night 1, outdoor night 2,
outdoor night 3. Note that on the ‘night’ sequences the ground truth is occasionally missing due to Lidar limitations (like in the lowest
image) but the pipeline outputs the correct result.

TABLE I: Evaluation of the optical flow pipeline on MVSEC autonomous driving dataset
outdoor day 1 outdoor night 1 outdoor night 2 outdoor night 3
AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

ECN 0.35 0.04 0.49 0.82 0.43 0.79 0.48 0.80
ECNmasked 0.30 0.02 0.53 1.1 0.49 0.98 0.49 1.1
Zhu18 [28] 0.32 0.0 - - - - - -
EV -FlowNetbest [27] 0.49 0.20 - - - - - -
S f Mlearner 0.58 0.89 0.59 1.01 0.78 1.32 0.59 1.38
ECNerate 0.28 0.02 0.46 0.67 0.40 0.53 0.43 0.67

IV. EXPERIMENTS

Our our self-supervised learning framework can infer
dense optical flow, depth and egomotion from event data. We
evaluate our work on the MVSEC [25] event camera dataset
which, given a ground truth frequency of 20 Hz, contains
over 40000 ground truth images.

The MVSEC dataset, inspired by the KITTI dataset,
features 5 sequences of a car on the street (2 during the day
and 3 during the night). MVSEC was shot in a variety of
lighting conditions and features low-light and high dynamic
range frames which are often challenging for an analysis
with classical cameras.

A. Implementation Details

Our network architecture has scaling rates of 0.5 and 2.0
respectively for the encoding and decoding layers, which

results in 5 encoding/decoding layers. The depth network
has 8 initial hidden channels and expands with a growth rate
of 8. We halve these settings to 4 for our pose network. The
pose network takes 5 consecutive event slices and predicts
6d pose (velocity) vectors.

With 3×3 convolutions, the combined network has 150k
parameters. We train the network with a batch size of 32
and use the Adam optimizer with a learning rate of 0.01.
Compared to the standard architecture of the SfMlearner,
our architecture allows for higher learning rates, allowing
us to train the pipeline faster. The learning rate is annealed
using cosine scheduling, and we let the training run for 30
epochs. Our training takes 7-minutes for each epoch using
a single Nvidia GTX 1080Ti GPU. We set the smoothness
loss weight λ = 0.1. The version of the network wich uses
batch normalization can run at 250 FPS, and the one using
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covariance normalization runs at 300 FPS.

B. Dataset Preparation

We trained the network using only the outdoor day 2
sequence with the hood of the car cropped. Our experiments
demonstrate that our training generalizes well to the notably
different outdoor day 1 sequence, as well as to the night
sequences. We would like to note that the outdoor night
sequences have occasional errors in the ground truth (see
for example Fig. 5 last three rows, or Fig. 9). All incorrect
frames have been manually removed for the evaluation.

C. Ablation Studies

1) Testing on the SfMlearner: As baseline we use the
state-of-the-art SfMlearner [23] on our data (event images).
SfMlearner has a fixed structure of 7 encoding and 7 decod-
ing layers. It has 32 initial hidden channels and expands to
512 channels. Overall, SfMlearner contains 33M parameters
- much larger than 150k within ECN. SfMlearner is trained
using Adam optimizer with a learning rate of 2e−4 and a
batch size of 4. We replace the inputs with event slices, and
we include the evaluation results for flow and egomotion in
tables I and III.

2) Normalization Methods: We compare two classical
normalization methods and our covariance normalization
method on the validation set portion of the outdoor day
2 sequence. We apply 5 Denman-Beavers iterations in the
normalization procedure. Compared with other normalization
methods, covariance normalization leads to more thorough
data whitening, and we have noticed this layer-wise whiten-
ing lead to faster convergence (Fig. 6). Subsequent experi-
ments shown that on the popular CIFAR-10/100 datasets and
a variety of networks, covariance normalization has reduced
the required training epochs by ∼ 5× to achieve the same
accuracy(Fig. 6(b)).

3) The Impact of Data Sparsity: Since the event data
is inherently sparse, we investigate the performance of the
pipeline in relation to the data sparsity.

We measure the data sparsity as a percentage of the
pixels on the input images with at least one event. Fig. 7
demonstrates how the data sparsity is inversely proportional
to the average endpoint error for the optical flow (we have

(a) (b)

Fig. 6: (a)Comparison of Abs Rel Errors using different nor-
malization methods on outdoor day 1 sequence (less is better).
(b) Comparison of different normalization methods on the CIFAR-
10 image classification dataset(higher is better, in 20 epochs,
ResNet-18 achieves 94% accuracy when trained with covariance
normalization).

Fig. 7: The Average Endpoint Error (blue) and the number of
pixels with at least one event (red) for the first 1500 frames of
‘outdoor˙day1’ sequence of the MVSEC [25] dataset. Both plots
are normalized so that the mean value is 0.5 for easier comparison.

observed similar behavior for depth and egomotion). The
outdoor day 1 sequence is used to minimize the influence of
the noise.

We find the inverse correlation between sparsity and infer-
ence quality to be a useful observation, as this property could
be efficiently used in sensor fusion in a robotic system. We
provide an additional row to the Table I: ECNerate, and report
our error metrics once again only for the frames with higher
than average number of event pixels across the datasets.

D. Qualitative Results

In addition to the quantitative evaluation, we present a
number of samples for qualitative analysis in Fig. 5 - all
unseen during the training. The last three rows of the table
show the night sequences, when the pipeline has to tackle
issues of high noise and low light.

E. Optical Flow Evaluation

The optical flow results are reported in terms of Average
Endpoint Error (AEE = 1

n ∑‖~y−~y∗‖2 with y∗ and y the
estimated and ground truth value, and n the number of
pixels for which flow was estimated). We compare our results
against two state-of-the-art optical flow methods for event-
based cameras: EV − FlowNet [27] and a recent stereo
method [28] (in the tables - Zhu18).

Because our network produces flow and depth values for
every image pixel, our evaluation is not constrained by pixels
which did not trigger a DVS event. Still, to be consistent
with previous works, we report both numbers for each of
our experiments (for example, ECN and ECNmasked , where
the latter has errors computed only on the pixels with at least
one event). Similar to KITTI and EV-FlowNet, we report the
percentage of outliers - values with error more than 3 pixels
or 5% of the flow vector magnitude.

To compare against [27] and [28], we account for the
difference in the frame rates (for example, EV-FlowNet uses
the frame rate of the DAVIS classical frames) by scaling our
optical flow. Our main results are presented in the Table I.

We show that our optical flow performs well during both
day and night, all on unseen sequences. The results are
typically better for the experiments with event masks except
for the outdoor night. A possible explanation is that this
sequence is much noisier with events being generated not
only on the edges, which leads to suboptimal masking.

F. Depth Evaluation

Since there are currently no monocular event-based meth-
ods for the depth estimation based on unsupervised learning,
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TABLE II: Evaluation of the depth estimation pipeline. Results on
masked, sparse depth are separated by ”/”, followed by the results
on SfMLearner in braces.

outdoor day 1 outdoor night (combined)

Abs Rel 0.29 / 0.33 (0.55) 0.34 / 0.39 (0.53)

RMSE log 0.29 / 0.33 (0.54) 0.38 / 0.42 (0.51)

SILog 0.12 / 0.14 (0.28) 0.15 / 0.18 (0.32)

δ < 1.25 0.80 / 0.97 (0.65) 0.67 / 0.95 (0.56)

δ < 1.252 0.91 / 0.98 (0.78) 0.85 / 0.98 (0.75)

δ < 1.253 0.96 / 0.99 (0.89) 0.93 / 0.99 (0.87)

we provide the classical scale-invariant depth metrics, used
in many works such as [23]:

Accuracy : %o f yi s.t. max(
yi

y∗i
,

y∗i
yi
) = δ < th (8)

SILog :
1
n ∑d2

i −
1
n2 (∑di)

2,di = logyi− logy∗i (9)

AbsoluteRelativeDi f f erence :
1
n ∑
|y− y∗|

y∗
(10)

LogarithmicRMSE :

√
1
n ∑‖logy− logy∗‖2 (11)

Our results are presented in Table II for both event count-
masked depth values and full, dense depth. Since the night
driving scenes have similar depth geometries, we aggregate
all 3 sequences in a single table entry. We notice that
applying an event mask during the evaluation increases
accuracy for all scenes - this is expected, as predicting depth
information on pixels without any events is inherently more
challenging.

G. Egomotion Estimation

Our pipeline is capable of inferring egomotion on both
day and night sequences, and transfers well from outdoor
day 2 onto outdoor day 1 and outdoor night 1,2,3. Since our
pipeline is monocular, we predict the translational component
of the velocity up to a scaling factor.

For the driving scenarios we make an important observa-
tion - the mean distance of the road in respect to the camera
is often a constant. We crop the lower middle part of the
inferred depth image and apply a scaling factor such that
the mean depth value (corresponding to the road location)
is constant. In our experiments, we report egomotion with
translational scales taken both from ground truth (AEEgt

tr )
and using the depth constancy constraint (AEEdepth

tr ), with a
global scale taken from ground truth. The qualitative results
are presented in Fig. 8.

Unlike [28], we train SfMlearner on the event images,
and not on the classical frames to allow for evaluation on
the night sequences. We provide comparison to the work in
[28], although it uses a stereo setup and reports results only
on the outdoor day 1 sequence.

To be consistent with [28], we report our trajectory esti-
mation relative pose and relative rotation errors as RPE =
arccos( tpred ·tgt

‖tpred‖2·‖tgt‖2
) and RRE = ‖logm(RT

predRgt)‖2. Here
logm is matrix logarithm and R are Euler rotation matrices.
To account for translational scale errors, we report classical

Fig. 8: Estimated trajectories on ‘outdoor day 1’ (top) and ‘outdoor
night 2’ (bottom) sequences, acquired by integrating the egomotion
predictions. The network was trained only on ‘outdoor day 2’.
Black: ground truth. Red: network prediction with translational
scale applied from ground truth. Cyan: result by assuming the mean
depth is fixed throughout the sequence (sec. IV-G) and by applying
a single global scaling to the translational pose.

Endpoint Errors - computed as a magnitude of the differences
in translational component of the velocities. Our quantitative
results are presented in Table III.

TABLE III: Egomotion estimation results on driving sequences -
‘outdoor day 1’ and ‘outdoor night 1,2,3’. The ARPE and ARRE
are reported in degrees and radians respectively [28], AEE is
in m/s. AEEgt

tr - translational endpoint error with ground truth
normalization. AEEdepth

tr - normalized using depth prediction and
a global scaling factor (see sec. IV-G).

ARPE ARRE AEEgt
tr AEEdepth

tr

ECN

ou
td

oo
r

da
y

1 3.98 0.00267 0.70 1.29
Zhu18 [28] 7.74 0.00867 - -
S f Mlearner 16.99 0.00916 1.59 2.39

ECN

ou
td

oo
r

ni
gh

t 1
3.90 0.00139 0.42 1.26

S f Mlearner 9.95 0.00433 1.04 2.47
ECN

2
3.44 0.00202 0.80 1.34

S f Mlearner 13.51 0.00499 1.66 3.15
ECN

3
3.28 0.00202 0.49 1.03

S f Mlearner 1.053 0.00482 1.42 2.74

H. Discussion

A monocular pipeline tends infer more information from
the shape of the contours on depth estimation and hence
would transfer poorly on completely different scenarios.
Nevertheless, we were able to achieve good generalization
on night sequences.

We observe a relatively small angular drift on trajectory
estimation (Fig. 8). Despite our model predicting a full 6
degree of freedom motion we admit that in the car scenario
only 2 motion parameters play a meaningful role and the
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network may tend to overfit - yet practically, the results are
directly applicable for autonomous driving and ground-based
robotics in general.

A common limitation of event-based sensors in the lack
of data when the relative motion is not present. Fig. 9 shows
such an example. This issue can be solved by fusing data
from other visual sensors or by introducing jitter to the event-
based sensor. Still, for the driving environment the contours
of obstacles, people and cars are clearly visible, as can be
seen in Fig. 5.

Fig. 9: A dataset artifact: A non-moving car is not visible on
the DAVIS camera (left image) which prevents ECN from inferring
optical flow or depth correctly (right image is the inference inverse
depth image). The moving car on the left side of the road is clearly
visible in the event space and its depth inference is correct, but
due to the Lidar limitations the depth ground truth is missing. This
frame is taken from the ‘outdoor night 1’ MVSEC sequence.

V. CONCLUSION

We have presented a lightweight pipeline for generating
dense optical flow, depth and egomotion from bioinspired
sparse event camera data. We have shown experimentally
that our bioinspired neural network architecture using multi-
level features improves upon existing work. We introduce a
covariance normalization method that resembles the lateral
inhibition mechanism in animal neural systems not only to
train the network better but make the inference faster.
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