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Abstract— Using robotic manipulators to remotely perform
real-world complex contact tasks is challenging whether tasks
are known (due to uncertainty) or unknown a priori (lack of
motion waypoints, force profiles, etc.). For known tasks we
can integrate and utilize Affordance Templates with a selec-
tive compliance jogger to remotely perform high dimensional
velocity/force tasks - such as turning valves, opening doors, etc.
Affordance Templates (ATs) contain virtual visual represen-
tations of task-relevant objects and waypoints for interacting
with visualized objects. Operators and/or developers align
pre-defined ATs with real-world objects to complete complex
tasks, potentially reducing the operator’s input dimension to
a single initiation command. In this work, we integrate a
compliant controller with existing ATs to reduce the operator’s
burden by 1) reducing the dimension of commanded inputs,
2) internally managing contact forces even for complex tasks,
and 3) providing situational awareness in the task frame.
Since not all tasks can be modeled for general teleoperation,
we also introduce Affordance Primitives which reduce the
command dimensionality of complex spatial tasks to as low as
1-dimensional input gestures as demonstrated for this effort. To
enable reduction of the command input’s dimension, the same
compliant jogger used to robustly handle uncertainty with ATs
is used with Affordance Primitives to autonomously maintain
force constraints associated with complex contact tasks. Both
Affordance Templates and Affordance Primitives - when used in
tandem with a compliant jogger - provide a safe, intuitive, and
efficient teleoperation system for general use including using
primitives to easily develop new Affordance Templates from
newly completed teleoperation tasks.

I. INTRODUCTION

Robots have been used to perform tasks in hazardous
or remote environments since the 1940s [1], [2]. Robotics
literature in the area of improving human-in-the-loop task
performance is abundant including [3–6]. Recent develop-
ment of Affordance Templates (ATs) by NASA and TRA-
CLabs provide a “task representation and execution frame-
work” [7] designed to help execute manipulation tasks with
operator help. Affordance templates define a set of End-
Effector (EEF) waypoints relative to a 3D model of relevant
task objects. ATs were featured in the DARPA Robotics
Challenge as a supervised autonomy control scheme to
perform tasks such as turning valves and manipulating power
tools. The templates were aligned with task objects by an
operator utilizing an interactive marker in RViz [8], but
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their current use has limitations. The waypoints generated
by an AT are left to the user to satisfy. Most affordance1

implementations use MoveIt! [10] for planning-execution of
the trajectories. However, MoveIt! is not inherently good at
performing the type of contact tasks ATs enable: planning
around collision objects that the operator only sometimes
wants to touch is tricky and requires back-end work for the
user, basic trajectory planning is guaranteed to pass through
all waypoints but may not maintain a smooth or contin-
uous trajectory, and MoveIt! execution relies on position
requirements that may be violated due to interaction with the
environment. Additionally, since ATs rely on sensor data for
the operator to align the template with the real-world object,
error in the data can make alignment difficult and introduces
positional uncertainty into the motion planner. ATs have
been implemented for humanoid robots such as Valkyrie
and Atlas [11] and overcome these problems with careful
alignment/planning from the user as well as mechanically
compliant hardware.

Implementing ATs for robots without built-in compliance
is more challenging since modelling errors in the template,
uncertainty in the sensor data, and errors in template align-
ment must all be addressed by the controller. Here we present
a robust control scheme for complex2 contact tasks that
can be used both during teleoperation and with Affordance
Templates to complete tasks in four operational scenarios.

1) Pure teleoperational control using the MoveIt!
planning-execution framework, EEF jogging3 [12], or
others

2) Compliant, motion-based teleoperated jogging that is
robust to uncertainties in both the environment and
with respect to user input

3) Compliant AT execution that is robust to uncertainty in
the environment including template alignment errors

4) Pure AT execution using a motion planner such as
MoveIt! to plan through a sequence of waypoints

The current state-of-the-art for AT use is scheme 4, and the
de facto standard for ROS control is scheme 1 with MoveIt!.

1The term “affordance” is derived from the term’s use in biology to refer
to what an environment provides or furnishes an animal. It summarizes how
a particular animal can interact with a particular environment [9].

2Complex implies the contact forces are neither constant or limited to a
single direction.

3Here ”jogging” is considered to be streaming EEF velocity commands
to the controller which calculates joint velocities, using an Inverse Jacobian
method in this work.
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Our efforts address schemes 2 and 3, which enable non-
expert users to more easily control the robot. This paper
presents work to better operate in scheme 2, and capture
the necessary motion parameters shared between schemes 2
and 3 as Affordance Primitives (APs), which then enable
affordance template generation directly from task execution.

The motivating project for this work uses a dual-armed
mobile manipulator shown in Fig. 1 to perform basic main-
tenance, inspection, and emergency tasks in a liquid natural
gas (LNG) facility. We evaluate the developed capabilities by
completing a double-block-&-bleed task that involves closing
3 rotary valves in a specified order. We use a compliant
jogger with various motion-controller input devices to turn
the valves quicker and with fewer faults. The remainder of
this paper focuses on the specific task described, but the
approach is applicable to a variety of other contact tasks,
manipulators, and user interface schemes. Examples of other
tasks include opening doors, aligning a manipulator’s tool
changer, plugging in electrical sockets and flipping switches
and pushing buttons designed for humans. After a review
of previous works with Affordance Templates and compliant
control, we discuss Affordance Primitive development and
controller implementation. We then present our test setup
and experimental results before our conclusions and future
work.

Fig. 1. Components utilized to evaluate complex task completion using
Affordance Primitives including a mobile manipulator with F/T sensor and
gripper, user input devices (motion capture controller, 3D mouse), and
double-block-&-bleed prop

II. BACKGROUND AND PRIOR WORK
A. Affordance Templates

The two main Affordance Template software packages,
Craftsman and UseIt!, were developed by TRACLabs and
NASA respectively to help automate task execution. Prede-
cessors to ATs included MIT’s Object Template Description
Format (OTDF) [13] and IHMC’s Coactive Design method
[14]. ATs built upon these methods enable a variety of
adjustments to the affordance object, increasing operator
interaction [7]. While NASA’s UseIt! is proprietary, a version

of TRACLabs’ Craftsman is open-source with several papers
detailing its AT structure [7], [15–18].

Each AT consists of a display object with an associated
sequence of EEF waypoints specified in the object coordinate
frame, shown in Fig. 2. Pure ATs do not allow for shared
control during the task execution; once the user makes their
initial adjustments to the AT waypoints and executes the plan,
they have no further control over the motion. Thus, if the
execution fails, the object must be reset and the task re-
attempted. The combination of a compliance jogger with ATs
increases the likelihood of completing the task.

Fig. 2. An example of an AT for grasping and turning a wheel [7].

Hart et al. identified force-based tasks as a vital area
of future development for ATs to be able to complete
“sophisticated manipulation tasks in real-world contexts” [7].
As of their current design, ATs are instantiated only with
spatial data, and do not contain the necessary information to
derive a task’s associated motion and compliance parameters.
The Affordance Primitives developed and reviewed in Section
III-C address this issue.

Other ongoing work with ATs includes the use of affor-
dance wayfields to quantify how well certain affordances
can be performed on an object [19] and the automatic
registration of affordances to manipulation objects [20].
Affordance wayfields remove the dependency on waypoints
to instead focus on EEF motions. Wayfields compensate for
AT limitations including excessive complexity for intricate
tasks, lack of robot pose control, and inability to control
movement between waypoints, account for reachability, or
handle obstacles between waypoints [19]. Automatically
registering ATs to the real-world objects would increase task
speed and reduce position error due to misaligned templates.
Recent research efforts show the desire to use ATs to simplify
the user interface, but also the need to improve execution for
increasingly complicated tasks.

B. Compliant Control

Most AT demonstrations utilized compliant hardware,
which limits their use for stiff manipulators that are often
simpler, cheaper, and more precise. These systems must
address compliance issues in the controller. Compliant (e.g.
force, impedance) control of manipulators has been an active
area of research since the 1980’s [21–23], especially in the
context of performing contact tasks, allowing them to better
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manage contact forces with the environment and improving
safety and performance during contact. In [24], Walker notes
that with error in the manipulator position, “the contact or
grasp may become essentially an impact or collision” and
that “it is desired that the manipulation be as gentle as
possible” to avoid damaging the robot or environment.

Hybrid control [25], [26] was also introduced in the
1980’s, as the concept of controlling unique dimensions
of the manipulator’s output space with different control
laws, mostly force or position control. Impedance control
[27] places a “virtual impedance” between the manipulator’s
actual position and desired position. Then the forces acting
on the manipulator are used to control the robot’s desired
position based on the impedance. In this work, we use an
impedance controller [12] with a hybrid-like ability to toggle
compliance in each output DoF.

III. IMPLEMENTATION

A. Compliant Cartesian Jogging

The teleoperation controller utilizes the well-known in-
verse Jacobian method [28]. The jogger presented in [12]
is currently available as a ROS package for teleoperated
velocity control4. The packaged jogger slows down as the
manipulator approaches a kinematic singularity and prevents
self collisions. It allows for redundant manipulators including
either n > 6 joints or reduced task space m < R6. The
input to the jogger is a Cartesian EEF velocity that can be
received from multiple interfaces including joysticks, motion
trackers, camera-captured gestures, voice commands, etc.
The jogger outputs joint velocities and (optionally) positions.
By default, we use the Singular Value Decomposition (SVD)
pseudoinverse [29] which allows for redundant manipulators
and is more stable near singularities than the Moore-Penrose
pseudoinverse. Formally:

q̇ = J†ẋ (1a)

J† = V ΣIUT (1b)

UΣV T = J (1c)

where q̇ ∈ Rn×1 are the joint velocities for an n jointed
manipulator. ẋ ∈ Rm×1 is the EEF velocity in an m
sized output space, J ∈ Rm×n is the Jacobian, and J† its
pseudoinverse found using the SVD shown in (1c) where U
and V are the unitary matrices, Σ is a diagonal matrix of
singular values, and ΣI its element-wise inverse.

During runtime, the jogger calculates the joint velocities
q̇jog for a desired EEF command using (1a). Simultaneously,
the compliant controller calculates the “impedance” joint
velocities q̇comp due EEF contact forces. The compliant
EEF velocity ẋcomp (ẋ in (1a)) is found using an impedance
control law

ẋcomp = K−1(ξ − ξapply)−B−1ξ̇ (2)

4See ros-planning.github.io/moveit_tutorials/doc/
arm_jogging/arm_jogging_tutorial.html

where ξ ∈ Rm×1 is the external wrench applied to the EEF,
ξapply ∈ Rm×1 is the wrench we desire the manipulator
apply to the environment, and K and B ∈ Rm×m are
diagonal matrices of the impedance stiffness and damping
relating the external forces/torques to EEF velocity. We
restrict K and B to be diagonal to reduce the number of
parameters. The jogging command and compliance feedback
are combined as

q̇total = J†diag(ν)ẋjog + J†diag(µ)ẋcomp (3)

where ẋjog is the user input and ẋcomp is the compliance
calculated with (2). The vectors ν and µ are m-sized Boolean
vectors where νi, µi ∈ {0, 1}. We use ν and µ to selectively
“turn off” jogging control or compliance along dimensions
of the manipulator output space, enabling non-precise con-
trol input in unimportant directions to be ignored. For the
duration of this paper, we discuss the user’s “input space” as
aligned with the task space, but reduced in dimensionality
by ν.

B. Motion-Controller Jogging

Prior work with the jogger used a SpaceMousePro 6-
DOF input device [12]. The SpaceMouse worked well to
demonstrate the jogger’s effectiveness, but was not intuitive
for new users. Room-scale virtual reality systems such as the
HTC Vive offer a new input method for teleoperated jogging
that track the pose of one or more handheld controllers using
an external infrared camera system and gyroscopes located
in each controller (Fig. 1). One of the greatest advantages of
using room-scale motion controllers for manipulator jogging
is that EEF displacement is proportional to controller dis-
placement. An operator performing complex tasks using the
motion controllers can simply trace the desired EEF path,
whereas a joystick operator must command the velocity at
every point required to follow the path. The difference in
input methods becomes more pronounced with complicated
paths that involve tracing curves and rotating the EEF
concurrently.

To obtain ẋ in (1a) from the motion controllers, we track
the change in controller pose as

ẋtrans = ktrans
∆Cpos

tpoll
(4a)

ẋrot = krot
∆Crot

tpoll
(4b)

where ẋ = [ẋtrans, ẋrot]
T . tpoll is the sampling period

and ∆Cpos and ∆Crot are the change in controller po-
sition and rotation. Scaling constants ktrans and krot can
dynamically adjust the jog velocity, providing the advantages
discussed in [30]. It is possible, but not necessary, to find
ktrans and krot such that the EEF follows the motions of
the operator 1 : 1.

Motion controllers enable one-handed operation allowing
a user to control multiple manipulators, and have a large set
of buttons that can be mapped to jogger settings such as
modifying the jogging frame, adjusting ktrans on the fly, or
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actuating a gripper. The disadvantages of motion controllers
include additional setup time and space, input signal noise.

C. Affordance Primitives

If a template does not exist to define the task affordances,
then primitives are used to identify operational parameters
for the compliant jogger and intuitively reduce the input
space (Ri) relative to the task space (Rm ≤ 6). Each
primitive is task dependent and tuning each to a new task is
non-trivial. To easily perform complex contact tasks either
with teleoperation or Affordance Templates, it is necessary
to quantify these parameters for a wide variety of tasks. In
this work we do not present a solution to intelligently pick
and test parameters, and instead focus on identifying and
formalizing which parameters to use to enable completing
tasks with teleoperation and thus identify parameters for
future ATs for similar tasks. We call this parameter set Af-
fordance Primitives, which define the allowable (or afforded)
behaviors of a manipulator performing a task while in contact
with the environment.

For a manipulator with n joints operating in m DoF output
space, we define an Affordance Primitive as a tuple where
all units are SI.

• k ∈ Rm: impedance “stiffness” relating applied wrench
to EEF velocity and forming the diagonal matrix K
from (2)

• β ∈ Rm: impedance “damping” relating the time deriva-
tive of applied wrench to EEF velocity and forming the
diagonal matrix B from (2)

• ξapply ∈ Rm: desired applied wrench in (2), given in
N and N ·m

• ξmax ∈ Rm: maximum allowable force/torque in each
direction in N and N ·m

• Fmax ∈ R1: maximum combined force in N
• τmax ∈ R1: maximum combined torque in N ·m
• ∆xmax ∈ Rm: maximum allowable displacement from

compliance
• ẋmax ∈ Rm: maximum allowable EEF velocity
• q̇max ∈ Rn: maximum allowable joint velocities in (3)
• ν ∈ Zm

2 : jogging control dimensions allowed in (3)
• µ ∈ Zm

2 : compliant dimensions in (3)

The result is a 8m + n + 2 tuple defining the compliance
controller’s interaction with an externally applied wrench.
Note that ν and µ reduce the input and compliance space
respectively, and serve to conceptually aid the user and
may be ignored in any generated ATs. Affordance Primitive
parameter values are most easily intuited from previously
defined ATs for the task space (i.e. a particular robot in a
particular environment interacting with similar objects), but
can also be defined by the operator, or be pulled from a set
of robot-specific default values. For the testing discussed in
Section IV, the AP parameters were chosen experimentally
since such data did not exist until the task was completed.
Automating the parameter selection would be an area for
future work.

IV. EXPERIMENTATION

The elements above are combined into the control scheme
shown in Fig. 3. The controller is implemented as a series of
independent ROS nodes running across multiple computers.

Fig. 3. Compliant jogger control overview

The “User Input” is from the motion capture device dis-
cussed in Section III-B. The jogger reviewed in Section III-
A determines the joint velocities which are provided by the
Impedance Controller using F/T sensor data. The summation
junction represents a ros control5 controller that enforces
position/velocity limits and other safety considerations. The
AP parameters dictating controller behavior for specific tasks
were discussed in Section III-C.

The task selected for user evaluation is a double-block-
&-bleed, where rotary ball valves are turned in a specific
sequence to block out a segment of pipe which is then bled
for inspection or repair. We evaluate the proposed method
by giving novice users a system overview and asking them
to remotely turn valves. The valve, gripper, and motion
controller are shown in Fig. 4 and 5.

First, we describe the task including the Affordance Prim-
itives used to reduce the operator’s burden. Each valve
manipulation is split into sub-tasks: 1) moving EEF into
position and grasping the valve, and 2) turning the valve 90◦

to close it. The AP parameters for the sub-tasks are shown
in Table I. For tasks where the same robot is interacting
with the same device, this is expected and simplifies their
development. Other AP parameters include a maximum force
Fmax of 88 N, and a maximum torque τmax of 50 Nm. The
velocity limits q̇max and ẋmax were set to the manipulator’s
limits, but for other tasks it may be desirable to use more
conservative values.

The grasp sub-task (Fig. 4) included additional parameters
shown in Table II, where the user’s input space dimension-
ality matches the full task space (R6

m) so they can align
the gripper with the valve. The compliance dimensions were
chosen to align the gripper as it closes, makes contact, and
grasps the handle. In this case, the compliance ensures the
grasp occurs no matter how the operator orients the valve
handle inside the gripper prior to closing. As long as the
valve handle is between the gripper’s fingers, compliance

5See https://wiki.ros.org/ros_control
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TABLE I
AP PARAMETERS SHARED WITH GRASP AND TURN

Parameter X Y Z Roll Pitch Yaw
k 8000 1000 1000 5 40 60
β 50000 10000 10000 300 600 600

ξapply 0 0 0 0 0 0
ξmax 80 80 80 60 60 60

∆xmax 0.15 0.15 0.05 π/2 π/16 π/16

will close the gripper while accommodating any offset or
orientation errors without creating undue force on the valve
handle. Thus for the actual grasping, the user input is a single
button press (R6 → {0, 1}), and they are relieved of the
burden of managing the grasp to avoid large forces between
the robot and handle.

Fig. 4. In (a), the user has located gripper around the valve with significant
offset and rotational errors. In (b), the gripper has started to close and
makes contact with the valve with one finger before (c) the affordance
compliance parameters assure the controller continues to grasp the handle
while compliantly correcting the operator’s positioning errors

TABLE II
AP PARAMETERS FOR VALVE GRASP

Parameter X Y Z Roll Pitch Yaw
ν 1 1 1 1 1 1
µ 1 1 0 1 0 0

Once grasped, the second sub-task, closing the valve (Fig.
5), is attempted. The ν and µ parameters are changed as
shown in Table III. Here, the user’s input space was reduced
to Y-axis translation and Roll about the X-axis (R6

i → R2
i ).

With compliance also enabled in the Roll direction, the
manipulator is able to move tangentially to the valve handle’s
arc in order to turn the valve while the Roll compliance
keeps the EEF’s Y-axis translation aligned with the tangent.
Relying on the compliance removes the need to know the
valve’s turn radius, and the X-axis translation compliance
overcomes misalignment between the valve’s axis of rotation
and the EEF Roll axis.

TABLE III
AP PARAMETERS FOR VALVE TURN

Parameter X Y Z Roll Pitch Yaw
ν 0 1 0 1 0 0
µ 1 0 0 1 0 0

Users were asked to perform the task three times: first

Fig. 5. Left, the user simply moves (a swipe gesture) the controller to
the left, while (middle, right) the developed controller utilizes compliance
to assure the gripper correctly tracks the rotation and elevation in the grasp
point as the valve is closed.

without compliance or reduced input space, then with com-
pliance parameters and directions µ from the tables but no
reduction in input space, and finally with full compliance
and the reduced input space described above. For each test,
we evaluate the task with the following criteria:
• Completion: Was the user able to fully perform the task?
• Time: How long did it take the user to complete or

abandon the task?
• Number of safety faults: The UR5 controller automati-

cally e-stops under high loads. Tracking the safety faults
let us track how often high loads were applied in a test.

• User opinion of difficulty: How difficult did the user
rate the task for each input method?

During each run, the user was allowed to use the Space-
Mouse, motion controllers, or both. In fact, some users
preferred one while others used both to good effect. The
results across the three runs are given in Fig. 6 and Table
IV.

Fig. 6. Users more quickly and reliably completed the double-block-&-
bleed task when utilizing Affordance Primitives to reduce their cognitive
burden (n=8).

TABLE IV
TESTING RESULT AVERAGES

Trial Time (s) Safety Faults Difficulty (1-5)
Trial 1 168.6 4.9 4
Trial 2 135.6 3.0 3.25
Trial 3 81.8 1.4 2.25

The time to complete a valve turn decreased as more
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compliant jogger features were included, and we saw a 2x
improvement when both compliance and input space re-
duction was utilized. Additionally, manipulator safety faults
were triggered significantly fewer times, and subjective opin-
ions of difficulty decreased with the full compliant jogger.
These results clearly show the potential to complete complex
contact tasks quicker, safer, and more easily.

V. CONCLUSIONS

In this work, we showed how to complete contact tasks
that typically require high precision if performed quickly,
easily, and without damage to the robot or environment. We
introduce a jogger and selectively reduce the user’s input
space to reduce their burden to manage task forces and
precision. When used in conjunction, these features reduced
both time and errors when completing the task. We defined
the necessary impedance and motion parameters for the
controller as Affordance Primitives, which can be intuited
from existing Affordance Templates to quickly complete
undefined tasks using teleoperation.

From this, we anticipate that new ATs can be generated
automatically “behind the scenes” from Affordance Primi-
tives used during successful teleoperation tasks. Furthermore,
we recognize that as the set of available templates for
a given ecosystem (particular robot in a particular envi-
ronment) grows, there will exist a training set available
to explore methods to identify Affordance Primitives for
new tasks using existing machine learning methodologies,
and potentially removing the developer from the effort of
determining affordances altogether. Finally, we note the
opportunity to extend and generalize affordances to perform
complex contact tasks even involving multiple manipulators.
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[30] R. Valner, K. Kruusamäe, and M. Pryor, “Temoto: Intuitive multi-
range telerobotic system with natural gestural and verbal instruction
interface,” Robotics, vol. 7, no. 1, 2018. [Online]. Available:
https://www.mdpi.com/2218-6581/7/1/9

11518


