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Abstract— This work presents a practical method of obtain-
ing a dynamic system model for small omnidirectional aquatic
vehicles. The models produced can be used to improve vehicle
localisation, aid in the design or tuning of control systems
and facilitate the development of simulated environments.
The use of a dynamic model for onboard real-time velocity
prediction is of particular importance for aquatic vehicles
because, unlike ground vehicles, fast and direct measurement of
velocity using encoders is not possible. Previous work on model
identification of aquatic vehicles has focused on large vessels
that are typically underactuated and have low controllability
in the sway direction. In this paper it is demonstrated that
the procedure for identifying the model coefficients can be
performed quickly, without specialist equipment and using only
onboard sensors. This is of key importance because the dynamic
model coefficients will change with the payload. Two different
thrust allocation schemes are tested, one of which is a known
method and another is proposed here. Validation tests are
performed and the models are shown to be suitable for their
intended applications. Significant reduction in model error is
demonstrated using the novel thrust allocation method that is
designed to avoid deadbands in the thruster responses.

I. INTRODUCTION
A. Motivation

Although the field of autonomous surface vehicles (ASVs)
is relatively well developed, the majority of the work to
date has focused on large vehicles designed for operation
in natural environments, such as seas or lakes.

Work on smaller ASVs that can be accurately controlled in
confined environments is scarce, but there are very promising
applications, including inspection and monitoring of nuclear
storage pools or large industrial tanks. Due to the relative
scale of a typical confined environment compared to a marine
environment, localisation and control accuracy must be much
higher; for example £1 m accuracy is usually considered to
be sufficiently high in marine vehicles, while accuracy within
+1cm is often required in confined environments [1].

From a navigation perspective, the accuracy of localisation
and control has a direct impact on the robot’s ability to
traverse narrow gaps and tight spaces whilst avoiding obsta-
cles. This is of particular importance in nuclear applications
where collisions may cause the robot and subsequently the
surrounding area to become contaminated. Accurate control
and localisation is also important with respect to the sensor
package that is being deployed. For instance, radiation de-
tectors are typically very sensitive to the distance from the
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object being measured and must be held still for a period of
time while the measurement is taken.

This paper presents a mathematical model of a small
overactuated ASV, MallARD (sMall Autonomous Robotic
Duck) [2], and provides a method of determining model co-
efficients that is both fast and practical. The model developed
has three principal uses:

1) To facilitate development in simulation. Specifically,
the model is used onboard the EI-MallARD hardware
simulation [3], an omni-directional ground vehicle
that, given a dynamic model, can mimic the physical
behaviour of other robots, including aquatic platforms.

2) To improve the trajectory tracking control system by
implementing a model-based tuning procedure (e.g
internal model control) for the current PD controller or
facilitating the development of more advanced model-
based controllers, such as robust control or model
predictive control.

3) To improve the robustness and precision of the loca-
tion estimate by providing the SLAM algorithm with
odometry information that is typically unavailable for
small aquatic vehicles.

To expand upon the third point, the SLAM algorithm used
presently is not fed odometry information and occasionally
produces an incorrect match between scan data and the map,
especially under aggressive manoeuvring. This causes the
map to become corrupted and therefore invalidates the pose
estimate. Because fast and direct measurement of velocity
is infeasible for small vehicles in confined aquatic environ-
ments [5], the availability of a dynamic model that can give
reliable velocity estimation is of marked importance.

However, one of the main practical challenges that ham-
pers wide usage of system models is the unavailability of
time-efficient identification of model parameters. This is
particularly true in cases of vehicles that are designed to
transport a variety of payloads, for which any change to
the payload will change the hydrodynamic behaviour and
therefore model coefficients. Hence, development of a simple
method of identifying and updating model coefficients that
does not require special facilities or equipment is particularly
relevant in this area of application.

In preliminary work, the authors found that an obvious
source of error in the model’s prediction was the presence
of deadbands in the thruster’s responses during the transition
between positive and negative thrust. Accordingly, a new
thrust allocation, inspired by quadrotors, was developed and
is tested thoroughly alongside the previous thrust allocation.
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B. Previous work

Dynamic models of aquatic vehicles have been identified
for both surface [7], [8], [9], [10] and underwater vehi-
cles [11], [6], [12]. However, the majority of the work on
model identification of surface vehicles has been concerned
with large marine ships (e.g., [13]). Smaller vehicles have
been successfully modelled in [7], [8], which performed
model identification on modified, rigid-hull, inflatable boats
that were 4.5 m and 8.45 m long respectively. Also, the model
of a smaller USV that was 1.5m long is provided in [9].
Although these vehicles are relatively small, they are all
underactuated and therefore have limited controllability in
the sway direction.

In [7], Sonnenburg and Woolsey provide a review of the
system identification techniques that have been implemented
on surface vehicles, ranging from black box neural network
approaches to model-based approaches in both time and
frequency domain. Some of the proposed approaches rely on
open-loop experiments in order to obtain data used for model
identification, whilst others collect data from closed-loop
operation. In the work reported in this paper, all experiments
were performed in open-loop to avoid the risk of control
parameters having influence on model coefficients and a least
squares method was used to derive the model coefficients.

C. Contribution

The main contributions of this paper are summarised as
follows:

1) The development of a dynamic model structure that is
suited to small omnidirectional surface vehicles;

2) A methodology for identifying model parameters that
can be rapidly implemented without specialist equip-
ment or facilities;

3) An alternate thrust allocation scheme that improves
the accuracy of the dynamic model by avoiding the
deadband in the thruster response.

II. THE MALLARD PLATFORM

The MallARD (Figure 1) is a holonomic aquatic surface
vehicle that is designed for low-speed (0-1m/s) inspection
and monitoring tasks in confined environments. MallARD’s
mechanical design is comprised of two pontoons, two chassis
plates and four thrusters with an overall footprint of 44 x 50
cm. Propulsion is provided by the thrusters, each of which
is located at one of the four corners and angled at 45
degrees with respect to the forward direction. This layout
ensures thrust and drag symmetry while allowing vectoring
in the XY}, plane and rotation about the Z; axis. On-board
electronics comprise of a single-board computer, a micro-
controller and four electronic speed controllers (ESCs) that
receive PWM signals from the microcontroller and drive the
thrusters. The on-board computer processes data from the
SICK TIM 571 LiDAR and uses a SLAM algorithm (Hector
mapping [14]) to calculate the vehicle’s pose. MallARD can
be operated with varying levels of autonomy, from joypad
operation to autonomous waypoint navigation with a closed

loop trajectory tracking controller. A full description of the
design is provided in [2].

Fig. 1. MallARD ASV operating in the test pool at the University of
Manchester’s robotics for extreme environments lab (REEL).

ITII. THREE-DOF DYNAMIC MODEL AND THRUST
ALLOCATION
MallARD is stable in roll and pitch and in a confined
environment significant waves that would generate heave are
not expected. Therefore, the full 6 degree of freedom (DOF)
model can be simplified to a 3 DOF model to describe planar
motion in terms of surge, sway and yaw [16].

A. Reference frames and kinematics

Fig. 2. Schematic diagram showing the earth-fixed and body-fixed reference
frames in relation to MallARD.

Figure 2 shows the two reference frames that are con-
sidered: the earth-fixed or inertial frame O.X,.Y, and the
moving body-fixed frame Oy X;Y;. Coordinate systems fol-
low the conventions of [17] and the standard nomenclature
of [15] and [10] is used throughout. The relationship be-
tween velocity in the earth-fixed frame and velocity in the
body-fixed frame can be expressed as:

n= R{)v ¢y

where 7 = [z,y,%]T, r and y are Cartesian positions
in X, and Y., ¢ is the yaw angle in the earth-fixed
frame, n = x}y,ﬂ T are the associated velocities in the
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earth-fixed frame, v = [u,v,7] T, u is the surge velocity, v is
the sway velocity and r is the yaw rate in the body-fixed
frame. The rotation matrix is given by:

cosy —siny 0
R(y)=| siny cosyp O )
0 0 1
B. Dynamics

Following the methods of [10], [15], [6], [11], [9] and
according to Newton’s second law, the dynamic model of
the MallARD in the body-fixed frame may be expressed by
the following equations:

Mv+C()v+D@w)v=r1 3)
m 0 0]
M = 0 m 0 ()
-my, 0 I,
0 0 —mv
Cwv)=|10 0 mu (5)
0 0 0
D(v)=D+ Dy (v) (6)
X, 0 0 ]
D=-| 0 Y, O (7
0 0 N, |
DN (l/) = 0 Y]v‘q, |1)| 0
N|u‘u |u| 0 _Nlrlr |7"
(3
Ty XFFu
T=| T | = YrF, 9)
Tr NFF’I‘

where M is the vector of inertial forces, C (v)v is the
vector of centripetal forces, D (v)v is the vector of drag
forces, T is the vector of propulsion forces and moments,
m 1is the vehicle mass, I, is the rotational inertia about
the Z, axis, y, is the coordinate of the centre of gravity in
the Y}, axis, X, Y,, N,, are the linear drag coefficients and
Xjulus Yio|v> Njrjr» Nju|u are the nonlinear drag coefficients,
F,, F,, F,. are the control signals from the joypad or
trajectory tracking controller and X, Y, N are the linear
force coefficients.

It should be noted that added mass terms have been omit-
ted to reduce the number of coefficients being identified and
avoid over parametrisation. However, the dominant effects
of added masses are accounted for by the inclusion of the
corresponding coefficients in the identified system model.

The choice of terms used in the model described in Equa-
tions 3-9 was based on observations of the dynamic response
of MallARD and consistency as well as significance of model
parameter values estimated across repeated datasets. When
MallARD is driven and allowed to drift in the X, axis,
repeatable patterns of yaw motion about the 7, axis are in-
duced, this indicates coupling between motion in the X} axis
and rotation about the Zj axis. Such coupling is somewhat

A N
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Fig. 3. Schematic diagram of MallARD’s thruster layout. F’ -F} are forces
applied on MallARD by the thrusters.

F2 Fl/

expected since MallARD is least symmetrical about the X,
axis due to the presence of cables connecting its pontoons.
Alongside the coupled terms present in Equations 3-9, linear
coupled drag terms, coupled force terms and nonlinear force
functions were also initially included in the model. However,
identified coefficients were either near zero or not repeatable
across datasets and therefore were excluded from the model.

C. Thrust allocation

Figure 3 shows the thruster layout present on the Mal-
IARD. In the present work, two different thrust alloca-
tion schemes are used. The first is a standard method
used previously by the authors in [2], termed here as
the MP (Moore-Penrose) allocation. For this allocation,
individual thruster commands [ F F, F3 Fy }T are
calculated by multiplying the vector of joypad com-
mands [ F, F, F, ]Tby the inverted thrust allocation
matrix T

T_

(P B Fy B =T'[F, F, F ]|

(10)
where T is the Moore-Penrose inverse of T, which is
defined in [2] for MallARD.

The second thrust allocation scheme, termed the AF (al-
ways forward) allocation, was proposed here to overcome
issues associated with the deadband. In the AF method, all
of the thrusters are continuously operating and providing a
positive force in their respective frames. With all thrusters
operating at the same level, slightly above the deadband,
the resultant thrust in the body frame will be zero, due
to the symmetry of the thruster layout in the X} and Y},
axes. To generate thrust in a given direction in the body
frame, the input to two particular thrusters is increased
equally; for example, to produce forward motion in X3, the
inputs to thrusters F3 and Fj are increased. The thruster
command values never drop below a positive threshold F,4
that prevents them from entering the deadband. Table I
presents the algorithm used to generate the individual thruster
command signals Fi-Fy from the joypad inputs.

1815



TABLE I
COMPUTATION OF INDIVIDUAL THRUSTER COMMANDS F' - F4 FOR THE
AF THRUST ALLOCATION

if ., >0 |F| 0
if F-<0 0 |Er|
else 0 0

ocfo|ococd

Input F Fy F} F;
ifF, >0 0 0 |Fu |Fu]
if F, <0 |F,| |F. 0 0

else 0 0 0
iftF, >0 |F,] 0 |F| 0
if F, <0 0 |Fy| |Ey|

else 0 0 0

I
0
0

&
5
5
5

Fo=Y F, (11)

IV. EXPERIMENTS AND MODEL IDENTIFICATION

A. Data collection

For each of the two thrust allocations, namely MP and
AF, a total of seven sets of data were collected, referred to
as S1-S7 with an optional ending of —M P or —AF where
it is necessary to distinguish between data collected using
the two thrust allocations. The first three sets (S1-S3) were
used for model identification. When generating each of these
sets, excitation was limited to a single DOF as much as was
practicable while avoiding boundaries of the confined area,
i.e. the pool walls. For the first dataset (S1) MallARD was
dominantly excited by F},, for the second set (S2) by F,, and
for the third set (S3) by F;.. The excitation signals F,,, F,,, F.
for each of the three sets were generated using the joypad,
as a series of pulses in the positive and negative directions
with varying amplitudes and lengths. It was not possible
to use predetermined excitation signals due to the limited
pool size (2.4x3.6 m Figure 1), which is a typical constraint
and a limitation of conducting experiments under open-loop
conditions. Throughout the experiments MallARD was kept
at least 0.5m from the pool walls, and for consistency
the same person operated the joypad. Datasets four to six
(54-56) were used for the first stage of validation and
were collected from a repeat of the experiments performed
to obtain datasets S1-S53. Dataset seven (S7) is the final
validation set, for which MallARD was driven around the
pool with excitation combined across the three degrees of
freedom. Dataset S7 contains a variety of typical motion
patterns, including figures of eight, circles and squares.

For each dataset, Mallard’s pose in the earth-fixed frame
(from LiDAR based SLAM) and the joypad inputs were

recorded. The respective rates for the SLAM’s pose output
and joypad were 15Hz and 100 Hz.

B. Model identification

To perform model identification, Equations 3-9 are multi-
plied out and coefficients are grouped as follows:

U =vr + (X|u|uc lu| + Xuc) u+ Xp.F,

v =—ur + (Yjplve [V + Yoe) v + YpcF, (12)
7 =Nygct + (N|r\rc |7"‘ + NT‘C) T+ N\u|uc |u‘ u+ NpcF
Xjulu

X X
where X\u|uc = —m Xue = Tr?’ Xrpe = wf’ Yv|v|vc =
Y. Y Y, myg Nirir
L;;‘v, ch = m: YFCN: nfs Nudc = ]ZJ7 N|T\7"C = Iz“ ’
N, _ ulu _ N
Nyo = 2o, Niype = 22 N, = Nz,

The model given in ]iunation 12 is then discretised and
arranged into the form a = B@ such that coefficients may
be determined using the least squares method:

0" =B\a (13)

where \ is the MATLAB backslash operator, a is the column
vector of output measurements, 6 is the row vector of
coefficients, 8 is the vector of estimated model coefficients
and B = [ b} by ]T is the regressor matrix of
measured data that is independent of the coefficients.

Using measurements from datasets S1-5S3, the model
coefficients are determined in four steps. First the uncou-
pled coefficients are estimated for each DOF. To determine
coefficients X, jyc, Xuc and Xpe, dataset S1 was used and
the variables of Equation 13 are given as:
ax :Uk — Ug—1

At
b = [ |uk—1|ue—1 up—1 Fup-1 |
0 :[ X\u|uc KXue Xpe ]

To determine coefficients Y),|y¢, Yoe and Y. dataset S2 was
used and the variables of Equation 13 are:

— Vg—1Tk—1
(14)

Vg — V-1
At
bi = [ |vk—1|ve—1 vk—1 Fur—1 |
0 = [ Yv|v\vc Yie Yre ]
To determine coefficients N|,.., Ny. and Np. dataset S3
was used and the variables of Equation 13 are:

ak + Up—1Tk—1

15)

Tk — Tk—1
Uw="Rp
be = re1lre—1 1 Frroa |
0= [ N|r|7’c Nrc NFC ]

Notice that the coupled terms are not included in Equa-
tions 16. This is because coupled coefficients Nyq.
and N, cannot be identified using this dataset since there
is minimal movement and no excitation in the X, axis.
To address this, dataset S1 was used once more and the
previously determined coefficients X|yjue, Xue and Xpe
were used to form a:
Tk — Tk—1
At
— NpeTrp—1

(16)

ap = - (N|T\Tc |Tk—1| + Nrc) Tk—1

(17)
b :[ g1 | w1 % ]

0 = [ N|u\uc Nude ]
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TABLE II
MODEL COEFFICIENTS IDENTIFIED FROM DATASETS ONE TO THREE
USING BOTH THE MP AND AF THRUST ALLOCATIONS

Coeff. MP allocation AF allocation
Xue -0.10 -0.20
Xiufue -1.67 -1.74
Xre 0.15 0.14
Yoe -0.23 -0.23
[vo]ve -1.26 -0.80
Yre 0.26 0.20
Nye -0.73 -0.48
Ir|re -0.30 -0.20
Npc 1.39 1.3
Nude -0.14 0.04
Nyujue 1.07 0.63

To identify model parameters, pose information in the
earth-fixed frame is converted to velocity using the five-
point stencil method. Earth-fixed velocity is then converted
to body-fixed velocity using Equation 1.

Table II lists the coefficients obtained for both the MP and
AF thrust allocations.

V. RESULTS AND DISCUSSION

The two developed models (MP and AF) are compared
using validation data sets (54-S7). All results presented in
this section are based on a 15 step (one second) ahead
velocity prediction. This horizon length was selected as
it was deemed to be appropriate for model-based control
and providing additional information to improve SLAM
estimates.

Velocity predictions at time ¢ are generated by taking
the velocity measurement at time ¢ — 15 and recursively
evaluating the system model, given in Equation 12, for 15
subsequent time steps. Joypad inputs F,,, F, F, were resam-
pled at 15 Hz to time align them with velocity measurements.
Error vectors are obtained by subtracting predicted from
measured velocity values.

A. Results for single-axis excitation

Datasets S4-56 were used to generate velocity predictions
with excitation limited to a single axis as much as possible
while avoiding collisions with walls. Figure 4 shows an
example of a measured versus predicted velocity plot using
dataset S5-M P. Under dominant excitation in the Y} axis,
predicted velocity tracks measured velocity well and similar
results were obtained by evaluating the developed models
on the other five associated datasets. For brevity their plots
are omitted and the derived RMS error values are presented
in Table IIl. Although all errors shown in Table III are
generally low, the AF allocation consistently outperforms the
MP allocation.

B. Results for multi-axis excitation

To test motion prediction under combined excitation
in F,, F, and F,, the final dataset S7 was employed.
Figure 5 displays a sample of the measured and predicted

-0.2r A S T Measured
Predicted

st T (b)]
0 5 10 15 20 25 30 35
Time (s)

Fig. 4. Plot (a) shows measured velocity v versus 15 step ahead model
prediction for the S5-M P dataset and Plot (b) displays the dominant
excitation F3,.

TABLE III
RMS ERROR COMPARISON FOR VELOCITY PREDICTION USING THE MP
AND AF THRUST ALLOCATION

Excitation RMS error RMS error
axis Dataset MP allocation AF allocation
Xy S4 2.3 cm/s 1.8 cm/s
Ys S5 3.5 cm/s 2.2 cm/s
Zy S6 0.10rad/s 0.07 rad/s

velocities in the X3, Y, and Z;, axes alongside the cor-
responding histograms for the MP thrust allocation, while
Figure 6 displays the same plots for the AF thrust allocation.
These plots clearly demonstrate the benefits of using the
AF over the MP thrust allocation: RMS errors are ap-
proximately halved and the histograms are more Gaussian
in shape. Figure 7 displays a sample autocorrelation of
prediction errors for the Y, axis. Results clearly indicate
that the prediction errors corresponding to AP allocation are
much closer to white, as indicated by significantly smaller
autocorrelation components for non-zero lag. Similar results
are obtained for the remaining two axes but are omitted here
for brevity. Better performance of the AF thrust allocation
under combined excitation was expected, as the deadband
present in the MP allocation has a greater impact on the
axis in which thrust is first applied; if thrust is added onto
a second axis, the deadband has already been overcome and
the thrust response changes, causing prediction error.

VI. CONCLUSIONS

Developed dynamic models of an aquatic surface vehicle
were extensively evaluated and found to be sufficiently ac-
curate in terms of the test metric, which is one second ahead
velocity prediction. The accurate and reliable performance of
the models in validation tests using this metric confirms their
suitability for model-based control applications as well as the
provision of improvements in the accuracy and precision of
pose estimation. The dynamic models developed are already
being used by the authors for software development in full-
system simulations.

Although both thrust allocations produced dynamic mod-
els with low error, the new AF thrust allocation showed
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Fig. 5. Plots showing a 40s sample of measured velocities against their

15 step ahead predictions for the three axes. Alongside each velocity plot
is the associated error histogram and RMS error value, both derived from
prediction error over 400s. Excitation was applied to all three axes and the
MP thrust allocation was used.
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Fig. 6. Plots showing the same information as presented in Figure 5 but

generated using the AF thrust allocation data.

significant improvement, especially for the angular velocity
prediction.
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