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Abstract— While impedance control is one of the most
commonly used strategies for robot interaction control, variable
impedance control is a more recent preoccupation. If designing
impedance control with varying parameters allows increasing
the system flexibility and dexterity, it is still a challenging issue,
as it may result in a loss of passivity of the control system.
This has an important impact on the stability and therefore
on the safety of the interaction. In this paper, we propose
methods to design passivity filters that guarantee passivity of
the interaction. They aim at either checking whether a desired
impedance profile is passive, or modifying it if required.

I. INTRODUCTION

Robots are increasingly present in the same space as
humans. The development of collaborative robots designed
to safely support operators during the execution of tasks
has certainly played an important role in this evolution,
with applications such as lifting of heavy tools and pieces,
hand-guiding or collaborative assembly. In this context, the
question of handling physical contact in the best possible
way has become crucial. This can be obtained typically
by controlling the compliance of the interaction between
the robot and its environment, resulting in the classical
impedance control (IC) scheme [1]. IC consists in imposing
a mass-spring-damper behavior to the whole system, for
attracting the robot to the desired trajectory and for managing
the interactions, both with the environment and potential
humans involved in a collaborative task.

One of the main challenges in interaction management
using IC lies in the proper selection of the impedance
parameters, not only according to the task but also to ensure
stability for all possible parameters variations. Indeed, if
using fixed impedance parameters makes the system passive
and hence stable when interacting with a passive environ-
ment [2], [3], this property no longer holds for arbitrarily
varying parameters [4]. Not being able to modify the system
impedance during the task is a notable drawback that may
limit application ranges. For instance, human-robot interac-
tion may benefit from the ability to adapt to human’s force
or fatigue, or to dynamically modify the interaction [5].

As a result, variable impedance control (VIC) has recently
attracted more and more attention. VIC has been explored
for challenging objectives, for example to deal with explosive
movements [6], to optimize the performance of hammering
tasks [7], allow risk-sensitive interactions [8] or maximize
robot links velocities [9]. VIC has been implemented using
reinforcement learning [10], as well as adaptive approaches
for human-robot collaboration based on the estimation of the
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human arm stiffness, from the derivatives of force and posi-
tion [11], or from the measurement of muscle activity with
electromyography [12]. However, in all these contributions,
the resulting impedance of the robot is identified or learned
during task execution, and therefore these methods cannot be
used to check before execution whether a given impedance
profile will lead to for stable execution.

Though in practice varying the stiffness does not necessar-
ily lead to unstable behavior, several contributions addressed
the issue of guaranteeing a stable execution of VIC, with
a given impedance profile. In [13], the authors showed that
exploiting kinematic redundancies can ensure passivity for a
larger panel of impedance profiles. Gain scheduling control
has also been used to address VIC by interpolating feedback
gains between operating points [14]. Virtual energy-storing
tanks [15] are another solution to modify the impedance
model and guarantee passivity, by storing energy dissipated
by the system. This stored energy can then be re-injected to
simultaneously implement stiffness variations and in guar-
antee stable execution. This approach has been successfully
implemented in several applications, as in [16], [17], or [18].
In [15], it is used to deal with the interactions resulting from
tissues and membranes penetration during a robotic needle
insertion.The tank-based strategy has been shown very well
suited for VIC, in spite of some difficulties to tune its
parameters. Nevertheless, it is dependent on the states of
the system, measured during task execution and so can only
be applied online.

Other authors proposed an approach that can be used
to check the passivity of a given time-varying impedance
profile before the execution of the task [4]. While this
allows to check whether the interaction will have passive
dynamics, it provides no solution to modify a profile that
would not respect passivity conditions. The present paper
aims to overcome this issue. Based on the combination of
passivity conditions with an adaptation law on the impedance
profile, the proposed solution allows checking whether a
given profile is passive, and if it is not, it provides a method
to modify it in a way to guarantee passivity. The proposed
method can thus be used either offline, before the execution
of the profile, or online.

The paper is organized as follows. Firstly, the control
background and passivity analysis are introduced in Section
II. Then, Section III describes the proposed design methods
for passivity filters for VIC. In Section IV the features of the
proposed passivity filters are explored, first in simulation and
then using an experimental setup. Section V finally provides
conclusions and perspectives of the work.
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II. CONTROL BACKGROUND

A. Rigid Body Dynamics and Linearized Model

Consider the model of a n-joint serial robotic manipulator

H(q)q̈ + c(q̇, q) + g(q) = τc − J(q)T fext (1)

where q̈, q̇, q ∈ Rn are joint accelerations, velocities
and positions, respectively, τc ∈ Rn are the commanded
joint torques, fext ∈ Rm is the end-effector wrench,
J(q) ∈ Rm×n is the robot Jacobian matrix and
H(q) ∈ Rn×n, c(q̇, q) ∈ Rn and g(q) ∈ Rn are the inertia
matrix and the Coriolis and gravity terms, respectively. A
classical solution to linearize equation (1) is to apply the
computed torque control law, resulting in a double integrator
model in joint space, or its equivalent in task space [19].

B. Impedance Control

In order to dynamically link the system positions, veloc-
ities and accelerations with the external forces, the input of
the linearized system is computed in order to obtain

Mëp +Dėp +Kep = fext (2)

with ep = pr − p ∈ Rm, where p is the robot end effector
pose and pr a reference motion. The interaction is then
characterized by the impedance resulting from the apparent
virtual mass M ∈ Rm×m, the desired damping D ∈ Rm×m
and the desired stiffness K ∈ Rm×m. Note that M , D and
K are symmetric positive definite matrices and are chosen
diagonal to simplify developments. For VIC, the case where
D(t) and K(t) are time-varying is considered, while M is
assumed to be constant. From now on, time dependency will
generally not be mentioned in the notations for simplicity.

C. Passivity analysis

In order to investigate the stability of VIC given by (2)
with varying stiffness and damping terms, the following
storage function can be considered

V1 =
1

2
ėTpMėp +

1

2
eTpKep (3)

As K and M are symmetric, differentiating V1 leads to

V̇1 = ėTp fext +
[
1
2e
T
p K̇ep − ėTpDėp

]
(4)

If stiffness is constant or decreasing V̇1 ≤ ėTp fext, which
leads to the passivity condition

V1(t)− V1(0) ≤
∫ t

0

ėTp fextdτ (5)

Because of stiffness time-dependency in equation (4), the
sign of the term in brackets may change, possibly leading to
a violation of the passivity condition (5) in case of increasing
stiffness. Passivity can only be guaranteed if the stiffness
is either constant or decreasing. In this case, the storage
function can be used as a Lyapunov-like function to show
stability. Also, it is well known that the interaction with a
passive environment yields a passive, thus stable, interaction.

The storage candidate function (3) is conservative and
should not be used to conclude on system passivity for

increasing stiffness. Alternative storage functions need to
be explored. In order to facilitate the passivity analysis, the
authors of [20] propose to use a filtered tracking error-like
variable r ∈ Rm

r = ėp + αep (6)

where α ∈ R+ is a constant. As shown in [21], if r
is bounded then ep, ėp are bounded and, in this case, if
r → 0, then ep, ėp → 0. With this in mind, it is possible
to reformulate the control objectives using r∫ t

0

rT fextdτ =

∫ t

0

{rT (Mëp +Dėp +Kep)}dτ

=

∫ t

0

{rT (M(ëp + αėp)− αMėp +Dėp +Kep)}dτ

Using equation (6) and its derivative, it follows that∫ t

0

rT fextdτ =

∫ t

0

{rTMṙ + ėTp (D − αM)ėp

+eTp (K + αD − α2M)ėp + eTp (αK)ep)}dτ (7)

By introducing a symmetric, positive semidefinite and con-
tinuously differentiable matrix C, equation (7) can be written∫ t

0

rT fextdτ =

∫ t

0

{rTMṙ + eTp Cėp +
1

2
eTp Ċep}dτ

+

∫ t

0

{ėTp (D − αM)ėp + eTp (αK − 1

2
Ċ)ep

+eTp (K + αD − α2M − C)ėp}dτ (8)

which can be written as∫ t

0

rT fextdτ = V2(t)− V2(0) +

∫ t

0

W2dτ (9)

with

V2 =
1

2
rTMr +

1

2
eTp Cep (10)

and

W2 = ėTp (D − αM)ėp + eTp (αK − 1

2
Ċ)ep

+eTp (K + αD − α2M − C)ėp (11)

It is worth noticing that if we define C = K + αD − α2M ,
the candidate storage function (10) is the same as in [4],
resulting in the stability the conditions

0 ≤D − αM (12)

0 ≤2αK − K̇ − αḊ (13)

This particular choice leads to W2 ≥ 0, allowing to conclude
on system passivity, as in this case equation (9) leads to

V2(t)− V2(0) ≤
∫ t

0

rT fextdτ (14)

Passivity conditions (12) and (13) can be used in order to
verify whether passivity is guaranteed for a given impedance
profile. However, they do not give any information about
how to modify a profile that is not passive. In the following,
we will be interested in designing a method capable of
guaranteeing passivity properties for any given impedance
profile based on conditions (12) and (13).
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III. PASSIVITY FILTERS FOR VIC

This section introduces the design of a passivity filter, that
makes it possible to modify a non passive impedance profile
online, in order to guarantee passivity.

A. Guaranteeing passivity

Let us consider the change in system impedance, with the
stiffness (respectively the damping) varying from K0 to K1

(respectively from D0 to D1). In the following only the case
K0 < K1 is considered, as stiffness increase is the only case
for which the passivity condition can be violated, as stated
in Section II-C. Let us now define K and D such that

K = K(t) = K0 + Γ(t)δK (15)
D = D(t) = D0 + Γ(t)δD (16)

with δK = K1 −K0, δD = D1 −D0 and Γ a diagonal
matrix where all diagonal terms γi are differentiable gains
such that 0 ≤ γi ≤ 1.

As M , K, D were chosen to be diagonal, the impedance
behavior can be decoupled. In order to ensure passivity using
conditions on V2, K and D need to satisfy equations (12) and
(13). Condition (12) allows choosing α easily. For instance,
in [4] it is chosen as the ratio between the smallest eigenvalue
of D and the largest eigenvalue of M . Condition (13) implies
that ∀i ∈ {1, 2, . . . , n}

γ̇i(αδdi + δki)− 2α(k0i + γδki) ≤ 0, (17)

with δki and δdi the diagonal terms of δK and δD respec-
tively, and k0i the diagonal terms of K0.

Generally, an increase in the desired stiffness does not
come with a decrease in the desired damping, which would
be the most constraining case in terms of stability. Then,
let us assume that δdi ≥ 0. As δki > 0 and α ≥ 0, then
αδdi + δki > 0. Equation (17) can then be written as

γ̇i ≤ aiγi + bi (18)

with

ai =
2αδki

αδdi + δki
and bi =

2αk0i
αδdi + δki

Combining equation (17) with a low-pass filter, in order to
ensure smoothness of γi, a passivity filter can be designed
in such a way that it takes as input the desired switching
profile γ̄i and generates an output profile γi that guarantees
the system passivity. The filter can be then defined by

γ̇i = min(β(γ̄i − γi), aiγi + bi) (19)

where β is the filter parameter. The integration of (19)
permits to obtain γi that tracks γ̄i in such a way that
passivity conditions are respected. Note also that if the
damping decreases while the stiffness increases, the previous
reasoning can be applied, but should be adapted, based on
the numerical values of δdi and δki (the case αδdi+δki = 0
is singular and should be avoided).

Though the usage of the proposed filter may guaran-
tee passivity, the tracking performance highly depends on

the conservatism of the passivity conditions. The constant
value α plays an important role in the conditions resulting
from function V2. In [4] it is chosen in the worst case,
thus reducing the variation range of the parameters. In the
following, we will be interested in changing the candidate
storage function in order to find less conservative passivity
conditions resulting in better tracking performance of the
switching function γ̄.

B. Modifying the storage function
In this section, we are interested in finding a novel

candidate storage function that may allow us to conclude
on system passivity in a less conservative way. To do so,
let us fist modify the assumptions on (6) to replace α by a
time-dependent matrix :

r = ėp +M−1Bep (20)

where B ∈ Rm×m is a time-dependent diagonal matrix with
bounded eigenvalues.

Lemma 1: Considering the filtered tracking error as de-
fined in (20) with M a constant diagonal matrix and B a
time-dependent diagonal matrix with bounded eigenvalues.
If r is bounded then ep, ėp are bounded and that if r → 0
then ep, ėp → 0 (see Appendix A for the proof).
In this case, using the same strategy as previously in equation
(9) yields∫ t

0

rT fextdτ =

∫ t

0

{rTMṙ + eTp Cėp +
1

2
eTp Ċep}dτ

+

∫ t

0

{ėTp (D −B)ėp + eTp (BM−1(K − Ḃ)− 1

2
Ċ)ep

+eTp (K +BM−1(D −B)− Ḃ − C)ėp}dτ
(21)

that is ∫ t

0

rT fextdτ = V3(t)− V3(0) +

∫ t

0

W3dτ (22)

with

V3 =
1

2

[
ėp
ep

]T [
M B
B C +BM−1B

] [
ėp
ep

]
(23)

and

W3 = ėTp (D −B)ėp + eTp (BM−1(K − Ḃ)− 1

2
Ċ)ep

+eTp (K +BM−1(D −B)− Ḃ − C)ėp (24)

The choice C = K +BM−1(D −B)− Ḃ allows can-
celing out the cross-terms. According to equation (24), the
positivity of V3 is obtained as a consequence of Schur lemma
[22] and the condition

0 ≤ C (25)

The positivity of W3 is obtained if the following novel
passivity conditions hold

0 ≤ D −B (26)

0 ≤ BM−1(K − Ḃ)− 1

2
Ċ (27)
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It is worth noticing that the storage function V2 of equation
(10), initially defined by [4], is a special case of V3 defined in
equation (23) with B = αM , C = K +αD and α constant.
The analogy between the scalar α in equation (6) and the
matrix DM−1 in equation (20), and then between αM and
D suggests that the candidate storage function could be
modified to limit the conservatism of the worst-case choice
for α. This leads to set B = D and C = K − Ḋ. A fourth
storage function is then defined, such that

V4 =
1

2

[
ėp
ep

]T [
M D

D K +DM−1D − Ḋ

] [
ėp
ep

]
(28)

and the resulting passivity conditions are deduced from
equations (25) to (27)

0 ≤ K − Ḋ (29)

0 ≤ 2DM−1(K − Ḋ)− K̇ + D̈ (30)

As previously, all matrices are chosen diagonal and the
problem can be decoupled, thus (30) is equivalent to

k̇i +
2

mi
diḋi − d̈i −

2

mi
kidi ≤ 0

resulting in

−a1iγ̈i + a2iγ̇i + a3iγiγ̇i − a4iγi − a5iγ2i − a6i ≤ 0 (31)

with

a1i = δdi a2i = δki +
2

mi
d0iδdi

a3i =
2

mi
δd2i a4i =

2

mi
(d0iδki + k0iδdi)

a5i =
2

mi
δkiδdi a6i =

2

mi
k0id0i

which are all positive since δK and δD are positive. Then, as
a2i > 0 and γi is such that 0 ≤ γi ≤ 1, ∀γi,a2i + a3iγi > 0.
This allows to write the passivity condition

γ̇i ≤
a1iγ̈i + a4iγi + a5iγ

2
i + a6i

a2i + a3iγi
, h1i(γ̈i, γi) (32)

Additionally, in the case where δdi 6= 0, equation (29) gives
a second passivity condition for γ̇i such that

γ̇i ≤
δki
δdi

γi +
k0i
δdi

, h2i(γi) (33)

Using passivity conditions (32) and (33), a new passivity
filter similar to (19) could be defined such that

γ̇i = min(h1i(γ̈i, γi), h2i(γi), β(γ̄i − γi)) (34)

Condition (32) is however not well suited for practical
implementation as it requires derivating γ̇i, which is the
output of a min-switch and therefore can be discontinuous.
For this reason, we choose to use a more conservative but
practically implementable constraint, such that

γ̇i ≤
a4iγi + a5iγ

2
i + a6i

a2i + a3iγi
, h3i(γi) (35)

In fact, when the constraint is active, we have γ̇i ≥ 0 and
(35) becomes an equality. In this case it can be shown that

γ̈i =
2a5a2γi + a5a3γ

2
i + (a2a4 − a3a6)

(a2 + a3γi)2
γ̇i

and

a2a4 − a3a6 =
4

m2
i

δki(
mi

2
d0i + δdik0i + d0

2
i δdi) ≥ 0

resulting in γ̈i ≥ 0. This leads to the fact that if γ̇i respects
the constraint given by equation (35), then it also respects
the passivity condition (32). Finally, the proposed passivity
filter resulting from conditions (33) and (35) is defined by

γ̇i = min(h2i(γi), h3i(γi), β(γ̄i − γi)) (36)

IV. VALIDATION

A. Simulations

In order to illustrate the advantages of the proposed ap-
proach, simulations analyzing passivity properties on a one-
dimensional mass-spring-damper system were performed.
The simulated system has a constant mass m = 10kg, a
stiffness varying between k0 = 2N/m and k1 = 22N/m and
a damping ratio of 0.1. The considered reference trajectory
was set such that pr = 10 sin 0.1t. The stiffness is expected
to vary according to the switching function γ̄ illustrated in
Fig. 1 in dashed gray. The passivity filters (19) and (36),
associated to storage functions V2 and V4, respectively, are
tuned with the parameter β = 10. The resulting switching
functions γ are represented in Fig. 1. One can see that even

Fig. 1. Switching variable γ resulting from filter with conditions from V2
and V4 and its reference.

if the outputs of both filters first evolve similarly, the output
of filter (36) converges much more rapidly to the reference
switching variable. This illustrates the fact that the conditions
given by V4 are less conservative than those given by V2.
Note that no external force is applied to the system, and
in this case passivity is guaranteed if the derivative of the
storage (Lyapunov-like) function is negative. As shown in
Fig. 2, when comparing the evolution of V̇1, V̇2 and V̇4 in
the case where γ is calculated using passivity condition (19)
(based on V2), one can see that in contrary to function V1
which is too conservative, V2 and V4 guarantee passivity.
On the other hand, using passivity condition (36) (based on
V4), one can see in Fig. 3 that functions V1 and V2 cannot
guarantee passivity, whereas V4 is capable of doing so.

7162



(a) Storage functions.

(b) Derivative of storage functions.

Fig. 2. Time evolution of storage functions for γ calculated to respect
passivity constraints (19) (based on V2).

(a) Storage functions.

(b) Derivative of storage functions.

Fig. 3. Time evolution of storage functions for γ calculated to respect
passivity constraints (36) (based on V4).

B. Experiment

The passivity filter (36) was then tested experimentally in
a needle insertion task, inspired by the scenario described in
[15]. A 16G medical needle was placed in a needle holder,
mounted at the end-effector of a KUKA iiwa 14 robot,
equipped with an ATI-Mini40 force-torque sensor (Fig. 4).

Fig. 4. Experimental setup.

The needle punctured a 4-layer silicon phantom, whose
layers imitate skin, fat, muscle and liver, respectively. The
muscle is the stiffest layer, followed by skin, fat and liver.
Generally, during needle insertion procedures, no rotations of
the needle are desired, thus we choose to change impedance
profiles only in translation. The impedance parameters are

chosen such that all inertial terms mi = 5kg and the damping
ratio is set to be 1. The desired stiffness varies with the
depth in the phantom such that k̄i = 3000, 3500, 4000N/m
for fat/liver, skin and muscle, respectively. Outside of the
phantom, the system starts insertion with k̄i = 1000N/m and
extracts the needle with k̄i = 3000N/m. The filter parameter
is β = 50. The VIC algorithm implemented in C++ generates
torque commands fed to the system at 500Hz, using KUKA’s
Fast Robot Interface protocol.

(a) Stiffness and damping profiles for needle insertion and extraction.

(b) Passivity constraints and γ̇i during stiffness increase. Condition h2i

increases to high values and was cut-out of the scope for readability.

Fig. 5. Impedance profile and evolution of γ̇i.

The effective stiffness and damping (ki and di), generated
by the passivity filter are shown on Fig 5a. The influence of
the passivity filter on the impedance profile can be observed
when the needle punctures the skin, at t = 9.35s, and the
stiffness is increased from 1000 to 3500N/m. In this case,
the velocity of the switching variable γi increases freely until
it meets the constraint h3i imposed by the passivity filter (36)
(Fig 5b) that shapes its further increase rate. This allows an
important stiffness increase while guaranteeing passivity.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we propose a design method for filters
that permit the tracking of impedance profiles for variable
impedance control, while guaranteeing passivity. Two filters
are derived based on two candidate storage functions. The
proposed passivity filters were validated in simulation and in
an experimental setup featuring a KUKA iiwa collaborative
robot executing a needle insertion task.

Future work aims at expanding the proposed filter design
with other passivity conditions in search of even less con-
servative passivity guarantees. Also, it can be investigated
how unusual impedance profile variations, such as increasing
stiffness while decreasing damping, impact on the passivity
guarantees and the design of the passivity filters.
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APPENDIX

A. Proof of Lemma 1.

As the matrices M and B are chosen to be diagonal, the
problem can be decoupled accordingly to the diagonal terms.
Hence ∀i ∈ {1, 2, . . . , n} :

1) if ri is bounded then epi, ėpi are bounded : the solution
of the differential equation

ri = ėpi +
bi
mi

epi (37)

is given by

epi = e
−

∫ t
0

bi(τ)

mi
dτ
epi(0) +

∫ t

0

e
−

∫ t
τ

bi(σ)

mi
dσ
ri(τ)dτ (38)

As bi ∈ R+ is considered to be bounded such that
bi ≤ bi ≤ b̄i, (38) can be upper bounded by

|epi| ≤ |epi(0)|+
∫ t

0

e
− bi
mi

(t−τ)|ri(τ)|dτ

≤ |epi(0)|+ sup
t

(|ri(τ)|)
∫ t

0

e
− bi
mi

(t−τ)
dτ

≤ |epi(0)|+ sup
t

(|ri(τ)|)mi

bi
(1− e−

bi
mi
t
) (39)

what shows that if ri is bounded then epi is bounded.
Additionally, using (37) one get that

|ėpi| ≤
b̄i
mi
|epi|+ |ri(t)| (40)

that can be written using (39)

|ėpi| ≤
b̄i
mi
|epi(0)|+ sup

t
(|ri(τ)|) b̄i

bi
(1− e−

bi
mi
t
) + |ri(t)|

what shows that if ri is bounded then ėpi is bounded.

2) if ri → 0 then epi, ėpi → 0: Considering
the 2-norm for a scalar function f ∈ R defined by
||f ||2 =

√∫∞
0
f2(τ)dτ , one can show that ||epi||2 is

bounded. Hence

||epi||2 = ||e−
bi
mi
t
epi(0) +

∫ t

0

e
−

∫ t
τ

bi(σ)

mi
dσ
ri(τ)dτ ||2

≤ ||e−
bi
mi
t
epi(0)||2 + ||

∫ t

0

e
− bi
mi

(t−τ)
ri(τ)dτ ||2

as bi
mi

is constant, following the same steps of the proof

of Lemma 1.6 in [21], one can show that ||e−
bi
mi
t
epi(0)||2

is bounded and that ||
∫ t
0
e
− bi
mi

(t−τ)
ri(τ)dτ ||2 is bounded

as ||ri||2 is bounded. This shows that ||epi||2 is bounded.
Using Corollary 1.1 from [21], as epi, ėpi and ||epi||2
are bounded, then limt→∞ epi = 0. Finally, from (40) with
limt→∞ epi = 0 and limt→∞ ri = 0, one can conclude that
limt→∞ ėpi = 0.
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