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Abstract— This paper focuses on robustness to disturbance
forces and uncertain payloads. We present a novel formu-
lation to optimize the robustness of dynamic trajectories.
A straightforward transcription of this formulation into a
nonlinear programming problem is not tractable for state-of-
the-art solvers, but it is possible to overcome this complication
by exploiting the structure induced by the kinematics of the
robot. The non-trivial transcription proposed allows trajectory
optimization frameworks to converge to highly robust dynamic
solutions. We demonstrate the results of our approach using a
quadruped robot equipped with a manipulator.

I. INTRODUCTION

When an external force is applied to a legged robot with
a manipulator it may cause the robot to slip, or to fail to
track a path with its end-effector. Similarly, the performance
degrades when the robot poorly estimates how slippery the
ground is or how heavy is its payload. In either case the
motion fails because completing the task while compensating
for the external force requires the robot to either command
more torque to its actuators than they are capable of deliv-
ering, to produce unrealistic contact forces, or both. These
limitations impose constraints that the robot motion has to
satisfy. Therefore, one way to look at robustness is to define it
as some metric of distance to these constraints, for instance,
as the force the robot can compensate for before violating
the motion constraints. This kind of robustness could be
optimized over by the robot controller, however, considering
robustness during motion planning would allow us to avoid
difficult-to-execute motions altogether.

We tackle the problem of robustness against external
perturbations and unmodeled payloads for complex legged
robots with manipulation capabilities. We focus on increasing
robustness at the planning stage to provide any tracking
controller, including robust control schemes, with greater
margins of control authority. In previous work [1], we used
the smallest unrejectable force (SUF) applied at some link
of the robot as a robustness metric for improving single
configurations via convex conic optimization. In this work,
we propose a novel formulation to make the computation
more tractable and versatile, allowing us to consider the
optimization of entire trajectories with nonlinear dynamics.
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Fig. 1: A legged loco-manipulation system: ANYmal [2] is
a fully torque-controlled quadruped robot. We equipped it
with a Kinova Jaco [3] robot arm. An accompanying video
is available at https://youtu.be/vDesP7IpThw.

Our new computational framework enables us to combine
trajectory optimization (TO) with the SUF metric to produce
highly robust and dynamic trajectories.

A. Related Work

[4] presented a motion planning and control framework
for a platform similar to ours (see Fig. 1). The authors
demonstrated successful execution of tasks such as open-
ing a door and carrying a box alongside a human. The
authors addressed robustness to external disturbances with
an inverse dynamics-based whole-body controller and by
re-planning locomotion continuously in a receding-horizon
fashion. However, contrary to our approach, they did not
take into account robustness explicitly at the planning-level.

[5] proposed a solution to improve the robustness to joint-
torque tracking errors at the control stage. The authors mod-
eled deterministic and stochastic uncertainties in joint torques
within their control framework optimization. Their idea is
similar to what we present in this paper, but we maximize
the upper-bound force magnitude the system can withstand
from any possible direction—and we do this during planning.

The authors of [6] included external forces estimation
directly into their hierarchical controller. Their objective was
to minimize actuator torques while enforcing constraints for
the contact forces. However, contrary to our work, they did
not enforce actuator limitations explicitly.

Modeling the capabilities of the system explicitly using
polytopes has recently become more popular than using
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simplified metrics for robustness. In [7], the authors derived
the equations of a so-called Gravito-Inertial Wrench Cone
(GIWC). It is a feasible region used as a general stability
criterion. This representation is very efficient for testing
robust static equilibrium of a legged robot, but it fails to take
into account any actuation limits. [8] proposed to incorporate
the properties of [7] with system torque limits. They use the
resulting polytopes to optimize the Center of Mass (CoM)
trajectory in the xy-plane for the base-transfer motion of
a quadruped. Despite the reduced size of this problem,
the technique used to compute polytopes was prohibitively
expensive, and as a workaround they computed polytopes
once at the beginning and used them as an approximation
for the remaining motion.

We have followed this line of research in our previous
work [9] and we proposed a force polytope representation
considering system dynamics: the residual force polytope.
The polytope is computed from the forces and torques re-
maining after accounting for Coriolis, centrifugal, and grav-
ity terms, as well as nominal motion feed-forward torques.

All the polytope calculations proposed in the literature
[10], [8], [9] require a significant amount of computation
time. In general, deriving an explicit description of a pro-
jected polytope is NP-hard [11]. As a result, prior work using
polytopes in trajectory optimization, e.g., [8], resorted to the
approximation of fixing the polytope for an entire trajectory.

[12] recently formulated a computationally tractable ap-
proach for finding maximally sized convex bodies inscribed
in a projected polytope. Their scheme does not require an
explicit description of the projection and works by combining
Fourier-Motzkin elimination with techniques from adjustable
robust optimization. The scheme was adapted for robustness
computations in robotics in [1], where the SUF were es-
timated for static configurations. However, despite an im-
provement over exact computation, due to the computational
complexity of their formulation it was not previously possible
to consider trajectory optimization of full system dynamics
and maximization of robustness based on dynamic polytopes
at the same time. We further adapt the technique of [12] to
reformulate the problem of computing the SUF. The resulting
reformulation allows to consider trajectory optimization and
robustness maximization in a bilevel optimization setting.

Bilevel optimizations are mathematical programs that in-
clude the solution to other programs in their constraints or
objectives. They are common in robustness settings, and
have been used for robust control of robots. [13] optimized
trajectories with full dynamics for robustness as a bilevel
problem; it is particularly related to our work, but with some
key differences: they considered robustness to noise and dealt
with a fixed base manipulator—both differences allowed for
simplifications in their optimization problem.

B. Statement of Contributions

We present a TO framework capable of planning robust
and dynamic manipulation tasks for legged robots, such as
the one shown in Fig. 1. Our main contributions are:

1) Proposal of a novel solution to a bilevel optimization
problem that marries dynamic trajectory optimization
with maximization of robustness against disturbances.

2) Explanation of the non-trivial transcription and refor-
mulation required to make this problem tractable for a
nonlinear programming (NLP) solver.

3) Comparison of our method’s results against a tradi-
tional optimization objective across different scenarios.

4) Validation of the planned motions using both full-
physics simulation and real-life hardware experiments.

We will also make our framework/implementation available
upon acceptance/publication of this paper.

II. TRAJECTORY OPTIMIZATION

Trajectory Optimization (TO) is a well-known and pow-
erful framework for planning locally-optimal trajectories of
dynamic systems such as legged robots subject to constraints.
TO falls under the broader category of optimal control
problems. In general, TO aims to design a finite-time control
trajectory as a function of time, u(t), which drives the system
from an initial state x(tI) towards a final state x(tF ), and
given the system dynamics ẋ = f(x, u) which must be
satisfied over the entire interval tI ≤ t ≤ tF . Optimal control
problems can be solved using dynamic programming or by
means of transcription (see [14]).

In this work, we employ a technique called direct tran-
scription because it readily handles strict constraints on
states and controls. Such constraints take a key role in
computing the SUF. The main alternative, Differential Dy-
namic Programming (DDP), offers faster computation and
provides a linear controller next to the optimized trajectory.
However, handling constraints with DDP is a challenging
subject of research [15], [16]. This currently makes DDP
less applicable to our case. A second alternative, shooting
methods, have been reported to result in slower computations
and higher susceptibility to local optima [14]. Using direct
transcription, we formulate the continuous optimization prob-
lem by explicitly discretizing the system state and control
trajectories. This method results in the formulation of a large
and sparse NLP problem [14]. The resulting constrained
nonlinear optimization problem can then be solved using
a sparse, large-scale nonlinear programming solver such as
Knitro [17].

III. MODEL FORMULATION

The model of a legged robot can be formulated as a
free-floating base B to which limbs are attached. For the
specific case of the robot shown in Fig. 1, the kinematic
tree stemming from the base branches into four legs and
one robotic manipulator with six Degrees of Freedom (DoF).
The motion of the system can be described with respect to
(w.r.t.) a fixed inertial frame I . Let us express the position
of the base w.r.t. the inertial frame, expressed in the inertial
frame, as IrIB ∈ R3. Let qIB ∈ H be a Hamiltonian
unit quaternion defining the orientation of the free-floating
base w.r.t. the inertial frame, and let ψIB ∈ R3

be the
modified Rodrigues parameters (MRP) [18], [19] of the unit
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quaternion qIB .1 We use ψIB to parameterize the orientation
of the free-floating base.2 The joint angles describing the
configuration of the 6-DoF arm and the four 3-DoF legs
are stacked in a vector qj ∈ Rnj , where nj = 18.
The generalized coordinates vector q and the generalized
velocities vector v of this floating-base system may therefore
be written as

q =

IrIBψIB
qj

 ∈ R3 × R3 × Rnj , v =

[
νB
q̇j

]
∈ Rnv , (1)

where nv = 6+ nj and the twist νB = [IvB BωIB ] ∈ R6

encodes the linear and angular velocities of the base B
w.r.t. the inertial frame expressed in the I and B frames,
respectively. The equations of motion of a floating base
system that interacts with the environment are written as

M(q)v̇ + h(q,v) = S>τ + J>s (q)λ+ J>e (q)f , (2)

where M(q) ∈ Rnv×nv is the mass matrix and h(q,v) ∈
Rnv is the vector of Coriolis, centrifugal, and gravity terms.
The selection matrix S = [0nτ×(nv−nτ ) Inτ×nτ ] selects
which DoF are actuated. Here, nτ = nj as all limb joints
are actuated. The vector of ground-feet contact forces and
contact torques λ is mapped to joint-space torques through
the support Jacobian Js ∈ Rns×nv , which is obtained by
stacking the Jacobians which relate generalized velocities to
limb end-effector motion as Js = [J>C1

· · · J>Cnc ]
>, with

nc being the number of limbs in contact and ns the total
dimensionality of all contact wrenches. We assume ANYmal
has point-feet and thus we only model linear contact forces
at the feet. Finally, f represents any external force applied
to the end-effector. This force may be the result of a push
or some unpredicted disturbance. In a nominal scenario, this
force is zero, i.e., f = 0. The Jacobian Je ∈ R3×nv is used
to map a linear force f applied at the end-effector to joint-
space torques.

IV. PROBLEM FORMULATION

We transcribe the continuous optimization problem by
explicitly discretizing the system state and the control tra-
jectory using a direct transcription technique. We divide the
trajectory into N equally spaced segments or intervals

tI = t1 < t2 < · · · < tM = tF , (3)

where the points are referred to as mesh points.3 The number
of mesh points is given by M = N +1. Henceforth, we use
xk ≡ x(tk) and uk ≡ u(tk) to indicate the value of the state
and control variables, respectively, at mesh point k. We treat

1R = R ∪ {−∞,+∞} is the affinely extended set of real numbers. We
use the same notation as [19].

2The MRP encode a 3D rotation with the stereographic projection of a
Hamiltonian unit quaternion. The derivatives of the rotation matrix w.r.t.
the MRP parameters are rational functions, making this representation a
particularly good choice for purposes of differentiation and optimization.

3Some authors also refer to these mesh points as nodes, knots, way points,
or grid points.

the values of xk and uk as a set of NLP variables, and we
finally formulate the general TO problem as:

argmin
ξ

gM (xM ) +

M−1∑
k=1

g(xk, uk)

subject to xk+1 = xk + h f(xk, uk)

xk ∈ X
uk ∈ U

(4)

where g(·, ·) and gM (·) form an optional cost function, h =
(tF − tI)/N is a fixed integration step size, and X and U
are the sets of feasible states and inputs, respectively. We
use the explicit Euler method to integrate the differential
equations of the system dynamics, but other K-stage Runge-
Kutta schemes could be used, e.g., the Trapezoidal method
(implicit, K = 2) or the Hermite-Simpson method (implicit,
K = 3).

A. Parameterization

Similarly to [20], we directly optimize over the space of
feasible states, control inputs, and constraint forces, i.e., for
each discretized mesh point k, the vectors of generalized
coordinates qk, generalized velocities vk, control inputs τk,
and contact forces λk form the vector of decision variables
ξk. The entire vector of NLP decision variables is:

ξ , {q1,v1, τ1,λ1, · · · , qN ,vN , τN ,λN , qM ,vM}.4 (5)

Methods that treat contact forces as optimization variables
are referred to as planning “through contact”. This approach
increases the number of decision variables, but the problem
becomes better conditioned [21].

B. Objectives

We consider three different optimization objectives G1–G3.
The first objective corresponds to the feasibility problem, i.e.,
a problem with constraints but without any cost to minimize.

The second objective G2 achieves the minimization of
actuator torques and is defined as

G2 : argmin
ξ

M−1∑
k=1

τ>k τk. (6)

Finally, objective G3 corresponds to the maximization
of the SUF at the end-effector. G3 involves a problem
reformulation which is explained in Section V-A—the main
contribution presented in this manuscript.

C. Constraints

We now analyze the constraints formulated in the NLP in
detail. TABLE I shows a summary of these constraints.

4Notice that τM and λM (i.e., the control and contact forces at the final
state) are not required, and thus not part of ξ.
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1) Bounds on Decision Variables: We constrain the joint
positions, velocities, and torques to be within their respective
lower and upper bounds with (7)–(9).

qL ≤ qk ≤ qU ∀k = 1 :M (7)
vL ≤ vk ≤ vU ∀k = 2 :M − 1 (8)
τL ≤ τk ≤ τU ∀k = 1 :M − 1 (9)

We further fix the initial and final velocities to zero:

v1 = vM = 0. (10)

2) Friction Cones: Similarly to [7], we model friction at
the contact points using an inner linear approximation with a
four-sided friction pyramid. Consider the set of points {Ci}
where the robot is in contact with its environment. Let ni
and µi be the unit normal and the friction coefficient of the
support region at each contact, respectively. A point contact
remains fixed as long as its contact force f ci lies inside the
linearized friction cone directed by ni:

|f ci · ti| ≤ (µi/
√
2)(f ci · ni), (11)

|f ci · bi| ≤ (µi/
√
2)(f ci · ni), (12)

f ci · ni > 0, (13)

where (ti, bi) form the basis of the tangential contact plane
such that (ti, bi,ni) is a direct frame.

3) System Dynamics: Using explicit Euler integration, we
enforce the nonlinear system dynamics (f ) with a finite set
of defect (or gap) constraints in our NLP formulation:[

qk+1

vk+1

]
−
[
qk
vk

]
− h f

([
qk
vk

]
,

[
τk
λk

])
= 0. (14)

4) Stationary Feet: Let the forward kinematics function
for a foot-point contact i be given by f fk(q, i).

f fk(qk, i) = pi ∀i = 1 : 4, k = 1 :M (15)

5) Gripper Task: The gripper is constrained at the initial
and final instants of the trajectory (k = 1 and k = M ).
For both of these mesh points, there exist five constraints:
three to constrain the placement of the end-effector, and two
for constraining the pitch and roll describing the orientation
of the end-effector. This enforces a specific location for the
pick and placing of a bottle (e.g., see Fig. 2), as well as the
correct orientation of the fingers to embrace it, while leaving
the grasp yaw as a degree of freedom to the solver.

TABLE I: Summary of the formulated NLP constraints.

Constraint Structure Relation

Bounds on ξ Linear Mixed
Friction Cones Linear Inequality
System Dynamics Nonlinear Equality
Stationary Feet Nonlinear Equality
Gripper Task Nonlinear Equality

Building on the formulation above, we now want to im-
plement additional terms to model the external disturbances.
We are interested in maximizing the forces applied at the
end-effector that the robot can compensate for while still
satisfying all the NLP constraints from TABLE I.

Fig. 2: The figure shows the robot at the beginning of a pick-
and-place task. The ground-feet contact forces are shown in
yellow and the friction cones are shown in red.

V. ROBUSTNESS TO DISTURBANCES

External forces applied to the robot can cause the robot to
slip, lose contact between a foot and the environment, or to
fail to track the desired end-effector path. In each of these
cases, the motion fails because the external force causes a
violation of one of the motion constrains. We therefore define
robustness as some metric of distance to the constraints.
More specifically, we consider the friction cone constraints
on the contact forces and the actuator torque bounds limiting
the control commands that can be used to compensate for
external forces. As pointed out by [8], when transformed
into a common reference frame, these constraints form a
convex polytope bounding the volume of all admissible
external wrenches applied to the robot. In [9] we proposed
a geometric method to inscribe a ball into the polytope and
use its radius as a metric of robustness. This approximation
is especially useful since the radius of the maximum volume
inscribed ball gives a bound for the magnitude of forces from
any direction that the system can compensate for without
violating the constraints.

A. Maximum Volume Inscribed Ball of a Polytopic Projection

In order to reject a disturbance force, additional motor
torques and ground reaction forces are needed. Our ro-
bustness metric, the SUF, is the smallest force for which
no reaction forces/torques exist that also satisfy friction-
cone constraints and motor limitations. In previous work
[9], the SUF was computed via a Linear Programming (LP)
problem. The trajectory optimization would have this LP
problem inside its objective, which is not desirable. Hence,
we propose a new way to compute the SUF. The key idea
in this robustness analysis is to approximate the relationship
between the disturbance force and reaction forces/torques as
affine. Adapting the results from [12], we find a practically
efficient way to simultaneously optimize the robustness met-
ric and the affine relationship prescribing it. These results go
beyond earlier adaptations in robotics by [1] because those,
like our work relying on LP, were not suitable for use in a
trajectory optimization setting.5

5This is due to the fact that computing derivatives of an LP would require
a differentiable solver. Solving an LP inside an optimization problem can
also lead to higher computational time.
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Let us define the extended torques and ground-feet contact
forces as τ+ and λ+, respectively:

τ+ = τ +Kτf (16)
λ+ = λ+Kλf , (17)

where τ and λ are the nominal torques and ground-feet
contact forces, Kτ and Kλ are some (instantaneous) gain
matrices which map a force expressed in end-effector space
to joint-torque space and ground-feet contact space, respec-
tively, and f is a potential external force applied at the
end-effector. In a nominal situation, there are no disturbance
forces and thus f = 0, τ+ = τ , and λ+ = λ. Assuming no
variation in accelerations, replacing τ and λ in the equations
of motion (2) with the right-hand side of (16) and (17) gives:

0 =
(
S>Kτ + J>s Kλ + J>e

)
f (18)

Alternatively to constraints (9) and (11)–(12), we can repre-
sent the actuator torque bounds and friction cones constraints
using τ+ and λ+ as:

Aττ
+ ≤ bτ (19)

Aλλ
+ ≤ bλ. (20)

We then substitute (16)–(17) into (19)–(20) and for each row
aτ of matrix Aτ we write the constraint as:

a>τ (τ +Kτf) ≤ bτ ∀ |f | ≤ ρ, (21)

where ρ is the radius of the maximum volume inscribed ball
of a polytopic projection, and it represents the magnitude
of the smallest potential disturbance that cannot be directly
rejected. We then define f = ρχ, where χ ∈ R3 is a vector
with unit length, which allows us to find the greatest ρ with:(

max
χ

a>τ (τ +Kτρχ)

)
≤ bτ . (22)

The objective function of the left-hand side of equation (22)
can be seen as a scalar product of the vectors a>τKτρ and
χ, which is greatest when these vectors are collinear:

argmax
χ

a>τKτρχ ≡ K>τ aτ

‖a>τKτ‖
. (23)

Simplifying (22) with the right-hand side of (23) leads to:

a>τ τ +
∥∥a>τKτ

∥∥ ρ ≤ bτ . (24)

Equations (21)–(24) address the constraints on actuation
limits. We repeat the same process for the ground-feet contact
forces to obtain:

a>λλ+
∥∥a>λKλ

∥∥ ρ ≤ bλ. (25)

Next, we substitute Kτ = Kτρ and Kλ = Kλρ into
(18), (24) and (25) and write:

S>Kτ + J>s Kλ + J>e ρ = 0, (26)

a>τ τ +
∥∥a>τKτ

∥∥ ≤ bτ , (27)

a>λλ+
∥∥a>λKλ

∥∥ ≤ bλ. (28)

This substitution removes the bilinear products between Kτ ,
Kλ and ρ while keeping the equality and inequalities valid.

B. Constraints’ Structure Exploitation

We now extend the problem formulation and transcribe the
constraints (26)–(28) directly into NLP constraints and we
extend the vector of decision variables with Kτ , Kλ, and
ρ. However, by trying this, one will soon realize we face an
NP-hard problem. Additionally, there is a significant increase
in the amount of decision variables, and the dependency of
both Js and Je on joint positions means that constraint (26)
is nonlinear and non-convex. Ultimately, this quickly renders
any efforts of a naı̈ve transcription ineffective, as the solver
would be unable to digest it.

In order to solve this issue, we have to analyze the inherent
structure of the problem and its constraints. Let Kτ be the
unknown in constraint (26). Splitting the structure of the
constraint as[

0
I

]
Kτ = −

[
J>base
s

J>limbs
s

]
Kλ −

[
J>base
e

J>limbs
e

]
ρ (29)

highlights that Kτ can be obtained as a function of Kλ

and ρ without performing any inversions. Doing this satisfies
the bottom equality implicitly. The top part of the equality
affecting the floating base still needs to be enforced.

This key-insight into the structure of the constraints allows
us to transcribe the problem so that the solver will converge
successfully.

C. NLP Reformulation

1) Parameterization: We extend the previous definition of
ξ to accommodate for the extra decision variables required.
Recall that Kτ k need not be discretized.

ξ+ , ξ ∪ {ρ1,Kλ1, · · · , ρN ,KλN}. (30)

2) Objective: G3 is the sum of all the ρk in ξ+:

G3 : argmax
ξ+

M−1∑
k=1

ρk (31)

3) Constraints: We bound all the ρk in ξ+ to R+ with a
linear one-sided inequality:

ρk ≥ 0 ∀k = 1 :M − 1. (32)

We enforce the top part of constraint (29) explicitly:

J>base
s Kλ + J>base

e ρ = 0 (33)

Finally, (27) is rewritten as:

a>τ τ +
∥∥a>τ (−J>limbs

s Kλ − J>limbs
e ρ

)∥∥ ≤ bτ , (34)

A summary of the constraints added to the NLP with the
reformulation is shown in TABLE II.

TABLE II: Summary of the reformulated NLP constraints.

Constraint Structure Relation

Bounds on ρ Linear Inequality
Equation (33) Nonlinear Equality
Equation (34) Nonlinear Inequality
Equation (28) Conic Inequality
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(d) “Handstand” scenario.

Fig. 3: We set up a multitude of terrains for testing a pick-and-place task: flat ground, slabs at different heights (a), and
inclined supports (b)–(c). An extreme scenario where the robot performs a “handstand” is shown in (d). The plots underneath
each scene show the SUF (in newtons) for the trajectories computed using different optimization objectives.

VI. PERFORMANCE EVALUATION

In order to evaluate our work, we compared the robustness
of the three objective functions proposed in Section IV-B:
feasibility (G1), minimum torques (G2), and maximum SUF
(G3). We ran the comparison across different scenarios for a
pick-and-place task. Furthermore, we benchmarked the times
taken to evaluate all NLP constraints and the convergence
times for problems of different sizes.

Fig. 3 shows four different settings for a pick-and-place
task of a bottle on a table. We set up scenarios with
challenging terrain, where the robot stands on steps with
different heights or inclined slabs. The trajectories optimized
with our method (G3) demonstrated greater robustness, as
shown in plots (a)–(c) in Fig. 3. The initial guess used for
G2 and G3 was the result of the feasibility problem G1.

We also verified the robustness of trajectories for different
inclines. For this, we varied the grade of the slopes in the
“ramp” scenario (Fig. 3b) from 0◦ to 60◦. The trajectories
computed with our metric consistently showed a greater SUF
for all the tested slopes (see Fig. 4).

As an extreme example, we created a scenario where the
robot has to perform a “handstand”, i.e., support its own
weight on two of its legs (see Fig. 3d) while using the
remaining two for keeping its balance. In this scenario, it is

0 10 20 30 40 50 60

40

60

80

inclination [deg]

S
U

F
 [N

] Ours
Min. torques      
Initial seed

Fig. 4: Mean and standard deviation of the SUF at the end-
effector for varying inclinations on the “ramp” scenario.

TABLE III: Times taken to evaluate the NLP constraints.

Constraint Function (µs) Jacobian (µs)

Gripper Task 9.15± 25.18 14.93± 2.47
Stationary Feet 18.29± 2.07 57.67± 225.53
System Dynamics 55.07± 169.64 3801.85± 1353.08
SUF Constraints 73.76± 239.97 1396.90± 989.31

TABLE IV: Convergence times of objectives G1–G3 for
problems with different size: 11, 21, and 41 mesh points.

M G1 (s) G2 (s) G3 (s)

11 0.46± 0.007 115.45± 0.27 229.34± 0.39
21 0.74± 0.009 143.48± 5.56 608.09± 8.04
41 1.21± 0.005 835.81± 15.59 1775.23± 12.85

especially important for the robot to press downwards against
the floor and upwards against the ceiling to maintain stability.
Because of this, torque minimization (G2) is not an appropri-
ate objective for this scenario, as confirmed by the degraded
SUF when compared to the initial seed in plot (d). On the
other hand, our method is able to increase the robustness
of the initial seed by a small amount, because it allows to
trade off torque expenditure for more stable ground/ceiling-
feet contact forces. We would like to emphasize that the
motions in all of the scenarios are within the actual physical
capabilities of the robot, even the “handstand” scenario.

TABLE III shows the computation times for function and
Jacobian evaluations of the NLP problem constraints. The
longest time is spent computing the Jacobian of the system
dynamics. Evaluating the Jacobian of the SUF—which is
involved when optimizing G3—takes the second longest time.

TABLE IV shows the total time it takes for the solver
to converge for problems of different size. We benchmarked
problems with 11, 21, and 41 mesh points (for a 1-second
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Fig. 5: Joint positions, velocities, and torques of ANYmal for a 2-seconds long trajectory on flat ground. The dotted lines
correspond to the planned trajectory. The solid lines show the data collected by the state estimation on the real robot.

trajectory, this is the equivalent of a discretization at 10,
20, and 40Hz). Each average and standard deviation are
taken from five samples. G1 is the fastest to solve as it is
a feasibility problem and does not consider any optimality
function. In our tests, the overall best robustness of G3
(shown in Fig. 3) also comes with the trade-off of the longest
times required until convergence.

All evaluations in this section were carried out in a single-
threaded process on an Intel i7-6700K CPU with 4.0GHz
and 32GB 2133MHz memory. The proposed optimization
framework has been implemented using Julia [22] and the
optimization library Knitro [17]. The chosen solving algo-
rithm was the interior-point method6 presented by [23].

VII. EXPERIMENTS

We conducted hardware experiments on an ANYmal [2]
quadruped equipped with a Kinova Jaco [3] robot arm. The
motion planning is performed a priori and the optimized
trajectories are then sent to the controller for playback.

A. Robot Control

To execute our whole-body motions, we tracked the joint
position with feed-forward velocity and torque. We updated
the references for joint position, joint velocity, and joint
torque at 400Hz. The decentralized motor controller at every
joint closes the loop compensating for friction effects. During
our experiments, we used kp = [150, 150, 100] as propor-
tional and kd = [0.5, 0.5, 0.45] as derivative joint space gains
for each leg, respectively. The arm used Kinova’s driver for
joint trajectory control. We synchronized the execution of
both controllers.

In order to evaluate how well the real robot tracks motions
using our controller, we compared the planned joint states
over time with the state estimation data from the robot. We
computed a 2-seconds long trajectory using our framework

6Interior-point methods (also known as barrier methods) replace the NLP
problem by a series of barrier subproblems controlled by a barrier parameter.
They are generally preferable for large-scale problems.

for a pick-and-place task sampled at 400Hz and commanded
the robot at the same frequency. Fig. 5 shows the plots of
the planned trajectory against the data collected during our
experiments. The plots show that joint positions are within
acceptable tolerances and joint velocities are tracked well,
but joint efforts are significantly different. This validates
that the motions generated by our trajectory optimization
are dynamically consistent. The mismatch in joint efforts is
expected due to differences between the real robot and our
model, and also due to signal delays. Additionally, as we
executed our trajectory open-loop without re-planning, the
errors accumulated. Nonetheless, the tracking controller can
execute the dynamic motions we planned.

B. Description of the Experiments

We executed the pick-and-place of a bottle on a table for
different terrain: on flat ground and on a “ramp” (Fig. 6a).
The object being grasped was not modeled and it is therefore
an external disturbance. We also tested the trajectories for
ground-feet friction coefficient mismatches by placing a
skateboard underneath the feet of the robot (Fig. 6b). A video
is available at https://youtu.be/vDesP7IpThw.

(a) “Ramp” terrain (b) “Skateboard” scenario

Fig. 6: Snapshots of the real robot executing the planned
motions on a ramp (see Fig. 3b) and on a skateboard.

For the motions shown in the video, we optimized the
trajectories at 100Hz and then linearly interpolated them to
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400Hz. It was the interpolation result that was then tracked
by the controller. We did this because computing optimal
trajectories with G3 gets more computationally expensive as
the problem discretization increases (see TABLE IV).

To select the frequency of the trajectory before interpo-
lation, we computed the root-mean-square error (RMSE) of
the SUF over time for the same trajectory using different
discretization resolutions, with a 400Hz resolution as a
baseline. As shown in Fig. 7, for a trajectory discretized
at 100Hz its SUF RMSE ≈ 0.5N, which is acceptable for
our purposes.

50 100 150 200 250 300 350 400
0.0

0.5

1.0
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R
M

S
 E

rr
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Fig. 7: Root-mean-square error (RMSE) in newtons of the
SUF given different discretizations, for a 400Hz baseline.

VIII. FUTURE WORK

Robustness Through Environment Exploitation: This work
has focused on isotropic robustness, but for some tasks it
may be more appropriate to be able to resist disturbances
along particular directions, e.g., as in Fig. 8. Based on our
work [9], it should be straightforward to adapt Section V-A to
maximize either the volume of an ellipsoid or the magnitude
of a specific vector inscribed in the projection of the dynamic
force polytope.

Fig. 8: Left: Door rotating over its hinges as a pivot point.
Right: Door sliding back and forth on a frame.

Robust Dynamic Loco-manipulation: In this work, we did
not study scenarios involving the making or breaking of sup-
port contacts with the environment. It would be interesting
to adapt the trajectory optimization transcription to allow for
multi-contact tasks or for dynamic loco-manipulation.

Minimization of Robustness Loss: Our framework maxi-
mizes the robustness of a trajectory assuming reliable ex-
ecution. However, the system dynamics around a nominal
trajectory are not linear, and given large enough perturbations
the robot may be driven into areas of low robustness. This
can be alleviated by accounting for neighboring states and
taking the control noise into account.
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