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Abstract— Current Navigation Among Movable Obstacles
(NAMO) algorithms focus on finding a path for the robot that
only optimizes the displacement cost of navigating and moving
obstacles out of its way. However, in a human environment,
this focus may lead the robot to leave the space in a socially
inappropriate state that may hamper human activity (i.e.
by blocking access to doors, corridors, rooms or objects of
interest). In this paper, we tackle this problem of “Social
Placement Choice” by building a social occupation costmap,
built using only geometrical information. We present how
existing NAMO algorithms can be extended by exploiting this
new cost map. Then, we show the effectiveness of this approach
with simulations, and provide additional evaluation criteria to
assess the social acceptability of plans.

I. INTRODUCTION

In 2005, Stilman et al. [1] formulated the field of Nav-
igation Among Movable Obstacles (NAMO). The NAMO
problem consists in planning a path from a start to a goal
position, while moving obstacles if necessary. It extends the
well known Piano Mover’s Problem by differentiating static
and movable obstacles, and allowing the manipulation of the
latter. to find a path or to minimize a displacement cost func-
tion (eg. travel distance, time, energy). Service robotics, in
particular, would definitely benefit from algorithms capable
of dealing with manipulable clutter, doors or objects.

Actually, service robotics also imply robot navigation in
human environments. Research in Socially-Aware Navigation
(SAN) [2], [3], [4] has shown that minimizing disturbance1

to humans is paramount in order to raise their acceptability of
robots in such environments. However, until now, to the best
of our knowledge, this necessity of minimizing disturbance
to humans (or any other autonomous agents types) has never
been considered in NAMO problems. This may lead to
cases such as in Fig.1, where current algorithms would even
deteriorate free space connectivity; forcing other agents to
either move the object again or take detours to reach their
own goal. This is why we propose to define Social NAMO
(S-NAMO) problems and algorithms to avoid such situations.

When modifying the environment configuration, the most
obvious way for a robot to minimize disturbance to humans
is to avoid invading space that humans need to keep free.
Determining these semantic spaces could be done by in
situ human behavior observation [5], but the robot may not
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1In Socially-Aware Navigation, disturbance is used as a synonym for
’discomfort’, the feeling/state of being unsafe [3].

Fig. 1: Basic pathological case (see notations Sec. III). (a) The
robot’s goal is in the adjacent room but unreachable due to a
movable obstacle. (b) Our social occupation costmap. (c) Classic
NAMO solution. (d) Our S-NAMO approach’s solution.

have the opportunity to observe long enough (due to timing
requirements, privacy concerns, or task complexity). Human
activity could otherwise be inferred from the objects layout,
through the understanding of their respective affordances and
related affordance spaces [6]. However, this would require
both an extensive prior knowledge of human environments
and good enough sensing capabilities to leverage it.

Our claim is that the significance of space (or rather, the
importance of leaving it free) can be at least partially inferred
without such strong pre-requisites. Indeed, as the field of
interior design shows, the layout of human space is very
much deliberate: “Providing adequate space for movement
is essential and requires careful consideration of ergonomics,
scale, and organizational flow” [7]. Free space thus has,
in and of itself, a strong semantic meaning we can use of
accessibility and circulation.

We build upon this observation to compute a social occu-
pation costmap to improve the social acceptability of NAMO
plans. For this, we model the environment as passageways
corresponding to the skeleton, then associate to each skeleton
cell their corresponding space allowance, and convert it
into a social cost that we then propagate in a decreasing
wave. We evaluate this model by applying it to a reference
NAMO algorithm [1] in several experimental scenarios. We
provide new quantitative performance criteria to evaluate the
social acceptability of plans, and study the computational
and displacement cost overhead of our approach.
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This paper is organized as follows. Section II provides
an overview of related work. Section III introduces the
Social Placement Choice problem and Section IV details the
proposed costmap computation. Section V presents how to
use the costmap to extend existing NAMO algorithms, and
we evaluate the approach with simulated scenarios in Section
VI. We conclude and discuss future work in Section VII.

II. RELATED WORK
In a previous state-of-the-art on NAMO algorithms [8], we

have shown that existing approaches have never considered
the consequences of the robot’s choices, beyond its interest
to reach its goal. All existing NAMO works only consider the
minimization of the robot’s displacement cost. Only Stilman
et al [1] & Kakiuchi et al [9] suggested the idea of taking
object fragility into account, but have not applied it.

The Social/Human-aware variations of problems most
related to NAMO mainly focus on direct human interaction.
In Manipulation Planning [10], [11] , Assembly Planning
[12] as well as in Combined Task/Motion Planning [13],
the focus of research is collaborative manipulation in close
proximity and/or handover manipulations. In the end, to the
best of our knowledge, there is no existing work on the social
acceptability estimation of object placement choice in the
NAMO-related motion planning literature either.

We have found that the Social Placement Choice problem
we investigate in this paper shares objectives with realistic
indoor scene synthesis [14], in that it also tries to find
implicit or explicit rules to help decide of socially acceptable
object placement For example, in [15], Yu et al. used a set
of rules, automatically learned from human-designed indoor
environments (e.g. distance/orientation to walls/specific ob-
jects, pathways between doors,. . . ) to arrange furniture in
a convincing-enough way for humans. However, there are
two major differences with our problem: in realistic indoor
scene synthesis, the aim is not to preserve an existing human-
made arrangement of space designed by humans, and since
there is no robot, the optimization of displacement cost for
an agent actually moving the objects is not addressed. Also,
it is assumed that any required semantic data is available,
but acquiring such knowledge in situ is no easy task for a
robot, as the active work in semantic mapping capabilities
shows [4]. This motivates our choice to build a new model
requiring only a binary occupancy grid of the fixed obstacles,
such a grid already being a pre-requisite of commonly-used
navigation frameworks like the ROS Navigation Stack [16].

Finally, in a survey on human-aware robot navigation,
Kruse et al. [2] show that a common social navigation
approach is to build a costmap representing zones to avoid
or favour for the robot’s trajectory. While they recognize it
may oversimplify the problem, it allows for simple search,
representation, and combination of many types of social
considerations. That is why we decide to build our model
as a social occupation costmap.

III. SOCIAL PLACEMENT CHOICE PROBLEM
Following the quote of [7] in Sec. I, “Socially-acceptable

object placements” can be defined as object configurations

that best preserve the adequacy of space for movement in
regards to ergonomics, scale and organizational flow. We re-
formulate this notion into the S-NAMO problem of Social
Placement Choice hereafter (illustrated in Fig.1).

Definition 1: SPC problem In S-NAMO, the Social
Placement Choice problem is to determine for a robot R
the plan P that brings it from initial configuration qtinit

R to a
goal configuration qtend

R while minimizing both the resulting
displacement cost2 DC(P ) and total social occupation cost
SOC(P ) caused by the occupation of obstacles Mi it moves.

Let us define notations and structures of the problem:
• a mobile robot R
• a set of fixed undeformable obstacles that cannot be

moved by the robot F =< F1, ..., Fm >
• a set of movable undeformable obstacles that can be

moved by the robot M =< M1, ...,Mn >, F ∩M = ∅
• a physical representation of the world W , with
R,F,M ⊂ W . For the sake of simplicity, elements
Ei ∈W are considered undeformable polygons in a 2D
plane, allowing us to define a world state at time t as
a set of element configurations Wt =< qtE1

, ..., qtEp
>

with qtEi
= (xtEi

∈ R, ytEi
∈ R, θtEi

∈ [0, 2π]).
• a discrete representation G(Wt) of Wt as a 2D binary

occupancy grid without loss of generality. Cells are
addressed by tuples of coordinates (x, y) ∈ N2.

• another 2D grid GSC built from G(Wt) (thus sharing
the same dimensions, position, orientation and resolu-
tion), containing in each cell a social occupation cost
SC(x, y) ∈ R+.

We write Cells(Ei, t) the cells occupied by an element Ei

at time t. The social occupation cost SOC(Mi, t) is written
as the sum SC(x, y) of each cell occupied by Mi at t:

SOC(Mi, t) =
∑

∀(x,y)∈Cells(Mi,t)

SC(x, y) (1)

The navigation plan P followed by the robot is made of path
components. A path component is a sequence of robot con-
figurations qiR where the robot moves without manipulating
the object (transit path) ptransit, or where the robot moves
with the object (transfer path) ptransfer.

The displacement cost DC(P ) of the plan P is expressed
as the sum of the estimated displacement cost DC(p) for
each path component p:

DC(P ) =
∑
∀p∈P

DC(p) (2)

The displacement cost DC(p) is the sum between each
successive robot pose qiR ∈ p of an estimation function
f(qi, qi+1) of distance, time or energy, that depends on
hypotheses as to the robot capabilities and the physical
characteristics of obstacles:

DCf (p) =

|p|−1∑
i=1

f(qi, qi+1) (3)

2typically energy, time, or distance
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IV. SOCIAL OCCUPATION COSTMAP
COMPUTATION

A. Heuristic hypotheses

Following our argumentation in Section I, let us assume
that all free space in human environments can be considered
as passageways that are designed for a certain number
of people to walk abreast (which holds especially true in
public buildings [17]). Since we only assume to have the
binary occupancy grid of static obstacles, our focus can only
be the preservation of the environment’s original topology
and space allowances. Thus, we propose the following two
heuristic hypotheses to ensure this:

1) AVOID-MIDDLE: The original free space allowance
of a passageway must be preserved as much as possi-
ble, so it must be the least divided (see Fig. 2): thus,
the cells in the “middle of the space” must have the
highest local costs;

2) AVOID-NARROW: The narrower a passageway, the
more risk there is of blocking it with an object: thus,
narrow spaces must have higher costs than wide spaces.

Fig. 2: Illustrations of the AVOID-MIDDLE and AVOID-
NARROW heuristic hypotheses. In the first figure, we can see
that leaving an obstacle in a narrow space is more likely to end
up reducing connectivity. In the last two figures, we can see that
leaving an obstacle furthest from the middle of space least divides
it, maximizing the number of people that can access it at once.

B. Computation steps overview

The above heuristic hypotheses are translated into a four
step algorithm to build the social occupation costmap from
the binary occupancy grid of fixed obstacles G(F ) :

1) Skeletonize: Find the set of free cells SK(G(F )) that
represents the middle of all passageways3 (Fig.3.A.);

2) Compute the minimal distance for each cell in
SK(G(F )) to the fixed obstacles ∈ F , i.e. measure the
original space allowance of passageways (Fig.3.A.);

3) Associate a social cost to each cell in SK(G(F )) by
relating the previously determined minimal distance
from obstacles to appropriate human-sized constants
using fconv (Fig.3.B);

4) Propagate the social cost values from the skeleton
cells in SK(G(F )) in a decreasing wave defined by
fprop (Fig.3.C.).

3That is, the thinnest discrete version (one cell wide) of the environment’s
shape equidistant to the obstacles boundaries.

Fig. 3: Illustration of the 4 step computation: skeletonization &
distance transform (A), conversion of space allowance into Social
Cost (B) and decreasing wave propagation (C)

C. Skeleton & Space Allowance

Determining the skeleton of a binary occupancy grid
and the minimal distance to obstacle cells are well-known
problems in the literature, and can respectively be done using
skeletonization [18] and distance transform [19] algorithms.

Given the tremendous amount of choice of skeletonization
algorithms in the literature, we focused our choice on three
of the most popular: Zhang-Suen [20], Guo-Hall [21] and
Medial-Axis [22]. We ended up choosing the Guo-Hall
algorithm, because, it has a very good contour noise immu-
nity, and does not produce end-of-edge artifacts like Zhang-
Suen. Just like the Medial-Axis method, it guarantees the
preservation of connected components, which is paramount
to properly represent passageways. An example of such
skeletonization is available on Fig. 3A.

To express the original space allowance of passageways
(i.e. their “broadness”/“narrowness”), we must measure the
minimum euclidean distance from fixed obstacles (in con-
trast to taxicab or chessboard distance), since passageways
do not necessarily follow perfect diagonals or straight lines in
the grid. We do that using the Euclidean Distance Transform
(Fig. 3 A.). Since the minimum distance to obstacles is only
half of the space allowance between the two nearest obsta-
cles, we double it to get the space allowance dallow(x, y).

D. From Space Allowance to Social Occupation Cost

To transform the previously computed space allowance
in each cell ∈ SK(G(F )) into a meaningful social cost
that respects the AVOID-NARROW rule, we must use real-
world measurements that define what is narrow or wide for
humans. Basically, we want the cost to be maximal for any
space allowance that is below a reference human diameter
dh, then decrease as the space allowance increases.

To find a convincing dh value, we turn to anthropometrics,
and use the DINED [23] database. We derive the value of
dh from standing breadth over the elbows, which is the
widest measurement in a standing posture with arms at rest.
According to the most recent 2004 data for Dutch adults
between the age of 20 to 60, we can reasonably cover
about 95% of the population by setting dh = 0.55m. This
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value is coherent with the average adult space clearance for
ambulatory human movement of 0.559m provided by [7].

Then, to determine a relevant decrease profile, we turn
to a commonly used law-defined measurement in french
construction [17]: “UP” or “Unités de Passage” (litt. “Pas-
sage Units”). UPs describe the minimal space allowance
between obstacles/walls for the passageway to allow proper
emergency evacuation for n persons: 1UP = 0.90m (meant
to comply with standard wheelchair width), 2UP = 1.40m,
and for three and beyond nUP = n ∗ 0.60m. An indoor
passageway is rarely more than 5UP = 3m large because
the same law recommends to increase the number of pas-
sageways rather than create ones that are more than 5UPs
large: therefore, we choose to keep the social cost constant
beyond 5UP.
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Fig. 4: Social Occupation Cost as a function of the Original Space
Allowance: SC(x, y) = fconv(dallow(x, y))

For the sake of keeping social occupation cost values
comparable, we reduce the interval of acceptable values to
[0, 1]. The cost values associated with each UP between 1
to 5 can be adjusted depending on the relative importance
users give to preserving space allowance. Fig. 4 shows a set
of values we have found to yield a reasonably convincing
social occupation cost representation in our experiments of
Section VI. Intermediate values are determined by simple
linear interpolation.

E. Propagation

As explained in the introduction of Section IV, we need
a propagation procedure that guarantees a decreasing cost
from the skeleton values, in order to guarantee the benefit of
getting the obstacle away from the “middle of space”.

For this, we use a variant of the Wavefront Propagation
algorithm [24] where we start from the skeleton’s set of cells
SK. We then iteratively mark all unlabeled 4-neighbors cells
with the λ-decayed minimum value of their own neighbor
cells from the previous iteration, with λ ∈]0, 1[, as described
in equation 4. Since the choice of λ value depends on the
grid resolution, we will discuss it in Section VI.

fprop : W → R[0, 1]

fprop(x, y) =

{
fconv(x, y) if (x, y) ∈ SK
λ ·min(Neigh(x, y)) if (x, y) /∈ SK

(4)

The resulting costmap is illustrated in 3D in Figure 3.C. As
expected, the middle of space is populated by ridges created
by local social occupation cost maxima, and the narrowest
spaces are associated with the highest costs, encouraging
placement choices outside the corridor and away from the
room’s center, especially in front of the opening.

V. EXTENSION OF NAMO ALGORITHMS

A. NAMO Algorithms structure

From our previous state-of-the-art work [8], we draw
the conclusion that NAMO algorithms share a common
structure. Basically, as long as no satisfying4 plan to reach
the goal has been/can be found, these algorithms iteratively
or recursively loop through known movable obstacles, each
using a different way to choose the order in which to do so.

Once an obstacle is selected for manipulation search,
a reachable non-colliding pose to leave it at needs to be
found so that it creates an opening for the robot. While
APPROACH 1 finds the relocation configuration as the robot
explores its action space, APPROACH 2 first samples con-
figurations, regularly or randomly, within a set of constraints
(Alg.1). Usual constraints for pose sampling are: distance
from initial obstacle pose, and a discrete set of accepted
rotations. Each NAMO approach explores the action space
with different algorithms, generally based on graph-search
like Dijkstra, A* or RRT (see NAMO algorithms comparison
table in [8]). Computation of transit paths to and from
obstacles and action space exhaustion exit conditions are not
shown for the sake of brevity.

Algorithm 1: NAMO manip. search macro algorithm

Data: World state W t and most relevant obstacle Mi

Result: A transfer path ptransfer
1 while no satisfying transfer path ptransfer found do
2 if APPROACH 1 then
3 Explore robot action space without focus;
4 else if APPROACH 2 then
5 Sample obstacle poses within constraints;
6 forall sampled poses do
7 Explore robot action space with pose

focus;
8 Relax constraints one step;
9 return transfer path ptransfer;

B. Social occupation cost integration

Minimizing both the displacement cost of existing NAMO
algorithms and our social occupation cost is a typical multi-
objective optimization problem. Such a problem is generally
solved by comparing the cost of all available solutions. In our
case, this would mean exploring the entire robot action space
to find all reachable non-colliding poses for the obstacle and

4“satisfying” meaning displacement cost optimal or not, depending on
the algorithm
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computing the associated social occupation costs. Exploring
such a high-dimensional problem is however intractable,
even in small spaces like in Fig.1.

That is why we propose to compute a heuristic com-
promise cost CC(x, y) for the set of potentially reachable
cells to move the selected obstacle at. We do that with the
following process, illustrated in Fig. 5:

1) Create an occupancy grid taking into account all ob-
stacles except the robot R and selected obstacle, Mi.

2) Inflate the grid by the inscribed circle radius of Mi.
This operation allows to find a subset of potentially
acceptable cells for Mi.

3) Compute a goal-less Dijkstra search from Mi’s center
cell. The set of potentially reachable cells for moving
Mi is thus obtained, with an underestimate of the
distance dMi

(x, y) to reach them5.
4) Compute the compromise cost CC for each potentially

reachable cell with a weighted sum of the following
normalized costs: occupation cost (SC(x, y)), distance
dMi(x, y) and a heuristic euclidean distance from cell
to NAMO goal dgoal(x, y):

CC(x, y) =
w1 ∗ d′Mi

+ w2 ∗ d′goal + w3 ∗ SC′
w1 + w2 + w3

(5)

where SC′, d′Mi
, and d′goal are respectively normal-

ized versions of SC, dMi
, and dgoal in [0, 1].

Finally, we use this knowledge in the manipulation search
subprocedure of NAMO algorithms by:
• bounding the action space exploration by stopping when

a solution leaves Mi’s center in one of the cells with
the top n percent best CC cost,

• sampling a goal obstacle pose among the cells with the
top n percent best CC cost to focus the search.

Fig. 5: Compromise cost (CC) computation steps

VI. EXPERIMENTAL EVALUATION

A. Algorithm choice

We choose to implement our method upon the founding
algorithm of Stilman et al. [1] since all following works on
NAMO have been inspired by it, and because it focuses more
on the method to choose which obstacles to evaluate and their

5The goal cells are filtered out of this set afterwards so that the robot
can’t put the obstacle on it.

order than the actual manipulation search method. Indeed, in
[1], this search is mentioned to be a bounded Breadth-First
Search over the robot action space (APPROACH 1 in Alg.
1), and we implemented it as is for the baseline NAMO
to compare against. However, to take full advantage of our
computations from Section V, we changed this subroutine
for an A* search that focuses on the best compromise cell
for the S-NAMO variant (APPROACH 2)6.

B. Simulator & simulation parameters

We implemented our approach in a custom open-source
simulator7 that only considers object geometry for interaction
(no kinematics nor dynamics) akin to the one used in [1],
and provide an integration layer with ROS for visualization in
Rviz. Fig. 1 and 6 illustrate the simulator. It is also presented
in the video provided with the paper.

All grids are set to a resolution of 0.1m/cell and the robot
action space allows for backward/forward unit translations
of 0.1m, and unit rotations of 30◦. We assume that the robot
can be reduced to a circle (of radius 0.2m) to accelerate
collision checks. Full geometry and movability-related world
knowledge is provided to the robot, as required by the
baseline algorithm [1]. Such knowledge could be provided by
an external motion capture system and markers on movable
obstacles like the baseline authors did in [25]. Displacements
with an obstacle are penalized by a factor of 2 to reflect the
extra effort (additional semantic data like obstacle weigth
could result in a finer approach). All experiments are run with
λ = 0.97 (so that social costs decrease fast enough given the
chosen resolution), w1 = 10, w2 = 2 and w3 = 15, and robot
action space exploration stops when a solution is at a cell
with a compromise cost within the best 1%. The choice of
weights here is manually tuned over the given scenarios, but
could be optimized through machine-learning over a wider
range of real-world scenarios.

C. Comparison criteria

We now need criteria for measuring both the displacement
cost efficiency and social acceptability of solutions. For
displacement cost efficiency, as in all of NAMO literature,
we use the total euclidean distance for transfer and transit
paths, respectively Ltransit and Ltransfer. As for social
acceptability, we define the following criteria:
• Total Social Occupation Cost: Derived from our

model, it is the sum of SC for all movable obstacles. It
represents the global space accessibility disturbance for
humans.

ST (Wt) =
∑
∀Mi∈M

S(Mi,t) (6)

• Number of connected components: In the grid rep-
resentation of Wt inflated by half the reference human

6The accompanying video shows how both algorithms unfold:
https://team.inria.fr/chroma/files/2020/07/iros_
2020_Renault.mp4

7Provided with all simulation code and data, available at:
https://gitlab.inria.fr/brenault/s-namo-sim
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diameter dh defined in Section IV, it is the number of
interconnected sets of cells Ci

h(Wt) that make up the
global set of accessible cells for humans. It allows to
measure the topology variation.

Ncc(Wt) = |{Ci
h(Wt)}| (7)

• Space fragmentation percentage: In the same grid
as before, it relates the size of the biggest free space
component Cmax

h (Wt) to the total size of free space. It
allows to observe the variation in space allowance.

frag(Wt) = 1− |C
max
h (Wt)|
|Cacc

h (Wt)|
(8)

A plan improves social acceptability by lowering any of these
criteria between Wtinit

to Wtend
. Finally, we also provide the

total planning time Tplanning to represent the computational
cost of each plan.

D. Experimentations

Ltransit / ST (Wtinit) / Ncc(Wtinit) / frag(Wtinit) / Tplanning

Ltransfer ST (Wtend) Ncc(Wtend) frag(Wtend)
[m] / [m] [% / %] [s]

[A]
Baseline 4. / 1.1 46.8 / 43.0 2 / 3 0.4 / 12.6 0.5 ± 0.2
S-NAMO 2.5 / 2.8 46.8 / 15.0 2 / 1 0.4 / 0 1.1 ± 0.2

[B]
Baseline 33.0 / 1.2 61.0 / 44.9 3 / 4 23.6 / 74.3 13.8 ± 1.6
S-NAMO 35.7 / 3.4 61.0 / 23.7 3 / 1 23.6 / 0. 2.0 ± 0.3

[C]
Baseline 11.2 / 0.6 559.0 / 556.5 4 / 3 45.5 / 28.5 1.3 ± 0.2
S-NAMO 13.0 / 2.5 559.0 / 545.9 4 / 3 45.5 / 28.6 3.1 ± 0.4

[D]
Baseline 31.8 / 1.0 105.4 / 116.7 14 / 15 47.2 / 45.5 28.1 ± 1.8
S-NAMO 35.4 / 4.5 105.4 / 79.3 14 / 13 47.2 / 5.0 26.5 ± 1.7

TABLE I: Performance criteria comparison table. Displacement
and computation costs for [B] and [D] are cumulated over goals.
ST and Ncc have no units. Tplanning is given as average with
standard deviation over 50 iterations.

We evaluated our approach with four scenarios of increas-
ing complexity, called [A] “corridor-to-room” (Fig.1), [B]
“crossing”, [C] “after-the-feast” and [D] “CITI-lab” (Fig. 6).
In scenarios [A] and [C], the robot is only required to reach
one goal, however in [B] and [D], it has to sequentially
reach several. Table I compares results obtained in these 4
scenarios between the baseline NAMO algorithm and its S-
NAMO counterpart. We comment these results hereafter.

Scenario [A] shows the worst-case scenario that can
happen with current NAMO approaches: unintentional con-
nectivity loss. At the cost of little extra computation and
reasonable further displacement of the obstacle (the total dis-
tance is almost the same), our approach results in complete
defragmentation. The low initial fragmentation is due to lack
of knowledge beyond the corridor.

Scenario [B] allows to highlight an interesting phe-
nomenon: NAMO algorithms, when faced with a movable
obstacle blocking a tight intersection branch they need to
pass will naturally tend to block another branch because of
the sole focus on displacement cost. As the robot needs
to get from one room to the next, it repeatedly blocks
another corridor and systematically induces an additional
computation cost, that after 4 iterations is already 6 times

greater than our S-NAMO approach. After the 4th iteration
the chosen obstacle placement even blocks all branches for
a human being of diameter dh.

Scenario [C] shows that, of the three criteria we propose
to evaluate social acceptability, only the one based on our
social cost computation ST allows us to differentiate the
quality of solutions that produce the same relative change in
number of connected components and space fragmentation.

Finally, Scenario [D] shows that our approach is capable
of growing up to scale in big realistic environments. Indeed,
despite the environment size and complex topology, Fig.6
corridors around the middle obstacle and the tight passages
between desks in the surrounding the offices are properly
detected as less appropriate than the wider areas like office
corners, the entry hall on the left and the big intersection
on the right. The results in Table I show that despite this
increase in complexity compared to the other scenarios, our
approach still succeeds in achieving more socially acceptable
solutions than the baseline approach, for almost the same
computational cost8.

While the S-NAMO solutions presented here have better
social acceptability than their baseline NAMO counterparts,
some of them could still be improved. For example, in case
[C], if the moved obstacle were a stool, it would have been
better to keep it closer and aligned to the tables than the
wall. This could only be solved better if this extra semantic
information were available. A potential approach would be to
apply conditional cost reductions and augmentations around
points of interest, but this would be the object of future work.

VII. CONCLUSION

This paper first introduced a social placement cost model
based on two heuristic hypotheses as to the significance of
free space in human environments: avoiding narrow spaces,
and not leaving objects in the middle of space. This model
relies solely on the analysis of the environment’s binary
occupancy grid of fixed obstacles. Then, we showed how
to extend NAMO to S-NAMO algorithms that result in
plans with better social acceptability. Experimental results
on scenarios of increasing complexity show the scaling
capability of our method. To the best of our knowledge, this
is the first approach to propose an answer to social concerns
in NAMO problems.

Our future works will focus on incorporating more com-
plex semantic information to further improve social ac-
ceptability. We will also apply our model to other NAMO
algorithms (e.g. [26], [27]) in order to manage partial and
uncertain knowledge of the environment, thus bringing us
closer to real-world conditions and experiments. Finally, we
plan to study the implications of other autonomous agents
actual presence such as humans.

8The high amount of detected connected components is due to the chosen
reference human diameter dh: in the offices, space is considered fragmented
between some desks because of this. This does however not make the
comparison any less relevant.
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Fig. 6: Experimental scenarios & NAMO vs. S-NAMO results. [B] is 4 rooms joined by corridors, each with a goal (executed counter-
clockwise from the right). Path to 1st goal is the only one shown for the sake of readability. [C] is a room filled with unmovable tables
(black squares) and miscellaneous movable obstacles “after a party”. [D] is a grid representing our lab’s 2nd floor obtained from a 3D
scan. First goal is in 2nd room from the left at the top, second one is in the first room from the right at the bottom.
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