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Abstract— The sense of touch is an essential sensing modality
for a robot to interact with the environment as it provides
rich and multimodal sensory information upon contact. It
enriches the perceptual understanding of the environment and
closes the loop for action generation. One fundamental area of
perception that touch dominates over other sensing modalities,
is the understanding of the materials that it interacts with,
for example, glass versus plastic. However, unlike the senses
of vision and audition which have standardized data format,
the format for tactile data is vastly dictated by the sensor
manufacturer, which makes it difficult for large-scale learning
on data collected from heterogeneous sensors, limiting the
usefulness of publicly available tactile datasets. This paper
investigates the joint learnability of data collected from two
tactile sensors performing a touch sequence on some common
materials. We propose a supervised recurrent autoencoder
framework to perform joint material classification task to im-
prove the training effectiveness. The framework is implemented
and tested on the two sets of tactile data collected in sliding
motion on 20 material textures using the iCub RoboSKkin tactile
sensors and the SynTouch BioTac sensor respectively. Our
results show that the learning efficiency and accuracy improve
for both datasets through the joint learning as compared to
independent dataset training. This suggests the usefulness for
large-scale open tactile datasets sharing with different sensors.

I. INTRODUCTION

Tactile sensing is arguably the first developed and most
widely used sensation for humans to interact with the envi-
ronment, given the widespread of nerve ending, corpuscles,
and receptors that together sense temperature, pain, pressure,
vibration and many other subtle sensations. Equipping robots
with tactile sensing and understanding contributes another di-
mension to robots’ perception other than conventional modal-
ities such as vision and audition. By providing information of
vibration, force, torque, and sometimes temperature through
physical contact with the environment, the sense of touch
is crucial for real-time planning and stable movement [1].
Perceptual understanding from rich tactile data also provides
additional guarantee for safety, especially when robots are
increasingly expected to move out of fixed workstations and
interact closely with humans in our daily environment [2].
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Extensive research has been carried out in the tactile
space including applications such as robotic manipulation
[3] [4], object detection [5], and material classification [6].
More recent works focus on object identification [7] [8],
slip detection [9] [10] [11], and grasp control [12] [13].
Furthermore, some works propose to integrate tactile sensing
with vision to supplement the texture information with more
apparent features such as shape and color [14] [15].

However, one challenge of tactile sensing is the lack of
a unified representation. Unlike images that has a universal
lattice RGB representation with pixel value ranging from 0
to 255, tactile sensors all have their unique design, imple-
mentation and distinct representation for properties such as
pressure, vibration, and temperature. The scales of the sensor
readings also vary according to the sensor mechatronics. Due
to this huge variance, research in tactile understanding is
grossly in silos. Each group tends to collect its own datasets
from scratch and it is hard to draw any inference from other
few publicly available datasets.

Common types of exploratory movements for tactile sens-
ing are pressure, static contact, lateral sliding, etc [16]. As
pressure and lateral sliding require time to execute, tempo-
ral information plays an important role in implicating the
texture properties. However, the duration and the temporal
resolution may vary across experiments. It is also laborious
to properly align the signal samples, despite some possible
but computationally expensive methods such dynamic time
warping [17] and resampling with delay estimation [18].

In addition, although a few tactile sensors have been
used in research, such as the Gelsight [19], iCub RoboSkin
[20], and SynTouch BioTac®, each sensor has a unique
implementation. To the best of our knowledge, no work is
devoted to improve the learnability of data collected on one
sensor using datasets from others. This in consequence limits
the usefulness of open tactile datasets and generalizability of
existing tactile representation models across sensors.

To explore the joint learnability and shareability of fea-
tures learned from heterogeneous tactile sensors, we propose
a supervised recurrent autoencoder framework to perform
joint material classification task. Two datasets are used for
validation — one collected with the BioTac sensor and one
open dataset on iCub RoboSkin [21]. The joint training
model is benchmarked against independently trained ones.
While the RoboSkin dataset was collected for the purpose of
validating the effectiveness of the representation model under
a loosely controlled setup with a cost-effective sensor which
has higher noise in the dataset, the BioTac dataset is aimed
to provide a clean dataset at the other end of the spectrum
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under strict control of the setup and procedure with a highly
precise sensor. Our findings show that the compressed latent
representation can be shared and used to boost the learning
efficiency and accuracy. In summary, the main contributions
of this paper are threefold:

« A dataset consists of 20 materials with 50 samples each
is made publicly available;

o A recurrent autoencoder unit that compresses both spa-
tial and temporal information is proposed and tested on
the two datasets;

o A supervised autoencoder joint learning framework is
proposed and validated to improve the learning perfor-
mance as compared to independent training.

The rest of this paper is organized as follows: In Section
II, related works on texture classification are reviewed. The
proposed supervised recurrent autoencoder framework is
described in Section III, together with implementation details
of independent and joint training approaches. Section IV
presents the experimental results and analysis. Section V
concludes the paper with future work.

II. RELATED WORK

The early attempts to recognize tactile features mainly
apply signal processing techniques. In [22], FFT and a
learning vector quantization technique discriminate the sound
signals produced when an electret piezoelectric microphone
moves through a material. In [6], a bio-mimetic approach
is used to capture the changing rate of stimuli for material
classification with strain gauges and polyvinylidene fluorides.

Along with the widespread of machine learning methods,
more feature-based algorithms have been applied to auto-
matic texture classification. Optimal parameters (velocity and
force) of exploratory movements have been chosen based
on Bayesian exploration; interpretable features like traction,
fineness, roughness are hand-crafted based on the sensor
readings [23]. In [24], further improvement is achieved by
taking multi-modal readings (force, vibration, and tempera-
ture) of the sensor into consideration.

Other ways of interpreting the tactile signal have also been
proposed. For example, readings of tactile sensor units in
a sensor array can be treated as pixels in an image with
some signal processing technique; consequently, taxel image
can be formed from discrete sensor readings. For example,
[25] makes use of deep convolutional neural network to
process the signals and achieves classification accuracy up
to 97.3%. Integrated representation has also been explored
by combining deep convolutional features of camera images
and Gelsight sensor data [26] with a proposed data com-
pression method called Deep Maximum Covariance Analysis
(DMCA). To further improve the classification results, [21]
proposes to incorporate different exploratory movements
on the same materials learned by a Convolutional Neural
Network (CNN) and Long Short Term Memory (LSTM),
achieving an accuracy of 98%.

In summary, various tactile sensors have been designed to
model the environment and the main focus of texture classi-
fication would arguably lie in constructing abundant features

from sensor readings and formulating efficient algorithms,
statistical models or more intriguing networks, to capture
the distinguished characteristics for each label. While most
models stand with their own merits, however, to the best of
our knowledge, little attention has been devoted to making
inferences of datasets from different tactile sensors which
makes prior work difficult to use.

III. METHODOLOGY

Borrowing the approach of domain adaptation [27], in this
work, we hypothesise that, at a more abstract level, there
exists a representation that distinguishes material textures
and is common to data collected from different sensors
through a common exploratory action within some noise
limit. The following sections present and discuss our ap-
proach, experiment design, and implementation to find such
latent representation that may enhance model performance
and enable datasets from different sensors to be jointly
learned.

To examine our hypothesis, we propose and evaluate a
Recurrent AutoEncoder framework with Classifier (RAEC).
It comes with a "header” network that is unique to receive
outputs from different sensor. This network can be treated as
a pre-processing unit to extract basic common features. The
basic structure of the framework is shown in Fig. 1, where
E and D stand for the header at the encoder and decoder
side, respectively.
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Fig. 1: The recurrent autoencoder framework with classifier

Based on this basic framework, we explore variation on
training steps and the amount of data provided for the
dataset. The following subsections discuss the framework
and training procedures in more details.

A. Raw Input Features

For the texture classification task, all models are trained
to predict a label y within C' classes. The input data are
first passed to the corresponding “header” network and trans-
formed to features. We choose lateral sliding as the common
exploratory movement, of which each feature comes in as
a sequence of x;(t)!=4 !, where T is the total sequence
length. Since multiple features are present in both BioTac and
RoboSkin sensors, one input data can be expressed as a set
of input features, i.e. X; = {x;(t)}{=3 ~'. The ground-truth
y for each input is labelled according to the given material.
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B. Header Network

The “header” networks are attached to the front of the
encoder and mirrored to the end of the decoder respectively.
They are designed to adapt to unique input data from
different sensors. Different neural network blocks have been
tested. Convolutional Neural Network (CNN) is chosen for
RoboSkin data to capture features in taxel images reproduced
from the Skin readings. Its model parameters for each layer
follow the original implementation in [21]. For BioTac data,
however, since the 19 electrodes are sparsely and not evenly
distributed which are less reasonable to be treated as an im-
age, a simple multi-layer perceptron (MLP) is implemented
as the header.

C. Recurrent Autoencoder

Instead of implementing a direct feedforward network, we
propose a supervised recurrent autoencoder that transforms
the input to a latent representation and classifies the object
with a simple linear predictor. The supervised learning
setting with autoencoder has been shown to regularize the
solution and to enhance the stability of representation learn-
ing [28]. The encoder-decoder structure forces the network
to distill the input so that only important information is
kept in the latent representation, shown as z in Fig. 1. This
distillation facilitates data compression and noise reduction.
In this work, we also add LSTM blocks to form a recurrent
autoencoder. Featuring its gating mechanism, LSTM has the
edge over processing sequential data and preserving long
term dependencies. Its forget gate automatically filters out
trivial information and the input gate adds new information
in; the cell state represents the memory of LSTM and is
finally converted to output with activation function. We
believe that embedding the spatial and temporal information
in one latent vector assists to handle phase shift and to
capture the repetitive pattern one may encounter during
sliding motion. Therefore, it automatically facilitates the time
alignment between different models, eliminating the need to
perform one-to-one rigorous mapping among sequences.

In this work, the number of LSTM cells are set according
to the input sequence length, i.e. 400 for BioTac data and 75
for RoboSkin data. All cells have a hidden size of 90 and a
hidden layer of depth 1, and the size of the latent vector z
is chosen to be 40.

D. Classifier

Based on the autoencoder structure, it is assumed that the
latent vector z represents well the intrinsic texture features.
Therefore, it is mapped to a distribution over C' classes (20
in this work) with a linear layer and the model is trained to
minimize multi-class cross-entropy loss.

N C
classification loss = — Z Z I(c,yi)log(px,,c) (1)

i=1 c=1

where y; is the ground truth label for sample i, I(-,-) is a
binary indicator function, and py, . represents the predicted

probability of the class ¢ for sample X;, which is obtained
from a softmax layer.

E. Independent and Joint Training

As aforementioned, the BioTac data and RoboSkin data
use different header networks. For independent training, each
dataset is separately trained with a weighted combination of
reconstruction loss and classification loss. The reconstruction
loss minimizes the difference between the decoded output
and the input data, and is designed to capture the distinctive
input pattern. It has also been shown to improve generaliz-
ability as a method of regularization [28]. The classification
loss is computed as negative log likelihood loss between the
output and the ground-truth label.

To testify the interoperability of the latent representation,
joint training is carried out between two models, i.e. BioTac
model and RoboSkin model, in a semi-supervised approach.
While the network structures remain intact for both models,
the loss function is modified to also include a mean square
error (MSE) loss term to compute the difference between the
two latent representations given the same ground-truth label.
In order to ensure the stability of training, the MSE loss
only contributes to the training after the first 20 epochs. This
additional loss aims to minimize the disparity between the
two latent representations and therefore intends to bond them
together or more likely draw them to some shared hyperspace
where the materials can be differentiated by more abstract
and generalizable features. Fig. 2 shows the block diagram
and weighted losses; the dotted line of MSE loss is only
added for joint training.

@erl - Classification loss, w, = 1

Header| — LSTMI LSTMI  — Header |

bz —
1 MSE loss, w, =1
1 (joint training)

Header B Header B

LSTM B Zp LSTM B

Classifier B === C|assification loss, w, = 1
_Reconstruction loss, w, = 0.01 R

Fig. 2: Block diagram with loss weightage

All the methods were implemented in Python using the
PyTorch machine learning library [29]. The models are
trained to minimize the loss functions as follows:

For independent training,

L1 = reconstruction loss 4 classification loss

T ®)

C
1
ey 2D woetp.)

i=1
Eqn. (2) consists of a reconstruction loss to penalize
disparities between the decoder output X; and the input
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data X, and a cross entropy loss to penalize classification
error. N represents the number of input data in a mini-
batch. w,, w, are weights for the reconstruction loss and
the classification loss, respectively. They are chosen to be
0.01 and 1 in order to scale two losses into similar order of
magnitude.

For joint training, the loss function is the same as indepen-
dent training for the first 20 epochs and back-propagate along
individual models separately. After 20 epochs, the MSE loss
for two latent representations is added as shown in Eqn. (3):

N

L=ILg+Li+w,Lc =Lg +Lﬂ+wz% ;(Z:B —21)2 3)
where Ly and Lj represent the individual loss for BioTac
model and iCUb model. L¢ represent the MSE loss between
two latent spaces, zp for BioTac model and z; for iCub
model. w, represents its weight, which is set to 1.

All data are divided as 60% for training, 20% for valida-
tion, and 20% for testing. The Adam optimizer [30] is used
with a learning rate of 0.0005. All models are trained for a
maximum of 2000 epochs, with a batch size of 32 samples.
The finalized model is chosen based on the highest validation
accuracy. A dropout rate of 0.2 is used to avoid over-fitting.

After training all the models, the accuracy (Acc) on the
test dataset is computed and used as the evaluation metric.

L X
Acc = i ;(yz — )2 (@)

where y; and g; are the prediction output and the ground-
truth label respectively.

IV. EXPERIMENTS

This section explains the details of our experiments, from
robot set up for data collection, independent and joint train-
ing, to data reduction testings.

A. Data Collection Setup

We hypothesize that sliding is essential to tactile percep-
tion as it provides sequential feedback that can be used to
infer the pattern and texture. Therefore, in addition to the
online RoboSkin dataset [21], we set up the experiment to
collect lateral sliding data with BioTac sensor for material
texture classification.

The BioTac sensor is attached as a passive end-effector on
the KUKA LBR iiwa 14 manipulator. The movement is de-
signed in such a way that the BioTac sensor gradually comes
into contact with the material and then slides with a constant
linear velocity and a constant contact force controlled by the
on-board controller. This predefined motion path is repeated
for 20 different types of materials with 50 samples each.
The material snapshots are shown in Fig. 3. The dataset is
accessible” with all modalities of BioTac sensor, together
with algorithmic and auxiliary robot information.

*https://dexrob.github.io/dexrob/supervised_ae_
iros_2020/

Fig. 3: Snapshots of 20 materials used in this work (left
to right, top to bottom): carpet net, cotton, bath towel,
leather fake, polypropileno, felt, soft material, paper 2,
polypropileno smooth, polypropylene thin, soft material,
cork, eva, paper 1, fiber board, wood hard, styrofoam, sponge
soft, foam, metal

1) Constant Force Control: Each material is firmly at-
tached to a metal plate placed on a levelled platform within
the robot’s workspace. According to [23], the change in fluid
pressure of the BioTac sensor is linear to the magnitude of
the contact force within the range of ON — 2N, as shown in
Fig. 4.

Normal Force vs. Change In DC Pressure

AP
2| — BestFit:0.01154P

251

Normal Force (N)

100 150
Change in Ppc (bits)

Fig. 4: Relationship between the normal force and the change
in Ppc reading [23]

This linear property is used to set a conditional execution
of the sliding movement. In general, the KUKA robot exe-
cutes position control and follows a path defined in Cartesian
space consisting of the following segments. It starts from a
global home position, moves to a set-down point around lcm
above the material, and gradually lower down with a linear
speed of 0.5mm/s until the Pp ¢ reading of the BioTac sensor
reaches a certain threshold (40 in the current setting) and
triggers the sliding motion. The sliding is executed with a
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linear motion command to a predefined target at a distance of
20cm from the starting point. A sample of the force profile
during the slide is shown in Fig. 5. It is shown that the
pressure increases over 40 and the friction changes from
static to dynamic and remains approximately constant as the
sensor slides through different parts of the material. Finally,
the robot arm is lifted by 10cm and eventually brought back
to the global home position.

110 A
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80 1

Ppc
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0 1 2 4 5 6

Tim:; [s]

Fig. 5: A sample force profile
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Fig. 6: A sample velocity profile

The robot and sensor setup is shown in Fig. 7 with the
full motion path drawn in color for demonstration.

global home

return to
global home

setdown point e lift 10cm

— =S NNy

Fig. 7: Robot setup and predefined motion path

2) Velocity Control: Since the robot executes position
control, the velocity is controlled by setting a proper speed
limit in Cartesian space. The Cartesian frame is shown in the
upper left corner of Fig. 7. The downward motion is executed
in z direction in a speed of 0.5mm/s and the horizontal

sliding is executed in z direction with a maximum speed
limit of 2.5cm/s, following the optimal setting stated in [23].
The actual Cartesian velocity is calculated from the joint
velocity readings using KUKA iiwa’s Jacobian matrix. A
snapshot of the velocity profile for the linear sliding motion
is shown in Fig. 6, where the blue line represents the raw
data, and the green line represents the processed data filtered
with a median filter with a kernel size of three. It is noted
that after taking consideration of a few spikes that can be
explained by joint control, the speed can be approximated as
a constant value relatively smaller than the maximum limit.
3) BioTac Reading: As shown in Fig. 8, the BioTac sensor
is a mult-modal tactile sensor that senses the deformation
of the elastomeric skin through changing impedance of
the 19 electrodes when the conductive fluid path diverts
[31]. There are other modalities such as the vibration and
temperature, but they are currently not used in this work. At
the beginning of each experiment, the sensor is calibrated
to ensure consistent readings. The sensor sampling rate is
100H z. For each collection, the start and end timing of the
sliding motion are recorded to crop the sensor readings. Each
sliding motion lasts about 8s and only the mid-400 frames
are used the dataset to remove any transient data. The whole
system is controlled in Robot Operating System (ROS).

A B
Rigid Core

PahNe

mpedance Conductive El2stic Skin
Electrodes Fluid

Pressure

Fig. 8: Schematic diagram of BioTac sensor and the distri-
bution of its 19 electrodes [32]

B. Independent and Joint Training

In this experiment, we take reference of the state-of-the-
art CNN-LSTM architecture proposed in [21] and use it as
baseline. Similar architecture is reproduced for BioTac data
by replacing the CNN layers with a single layer perceptron.
Each experiment is repeated for 4 times with different
splitting of training and testing datasets and the results are
shown in Table I. Note that the accuracy for RoboSkin data
is slightly better than what was reported in [21] and that
may be due to the upgrade of library packages and different
parameters chosen for LSTM.

The X in X — LSTM represents either CNN or MLP
network for RoboSkin and BioTac respectively, equivalent to
the “header” network used in RAEC. It is shown that com-
pared to directly applying LSTM, adding the autoencoder
structure to transform the data to a latent space improves
the performance by about 1% for BioTac data and 3%
for RoboSkin data. The more significant improvement for
RoboSkin can be explained because RoboSkin data is noisier
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TABLE I: Results of three architectures for BioTac
dataset and RoboSkin dataset

Method Accp Accy
X-LSTM 94.50% 90.00%
RAEC

(independent) 95.31% 91.14%
RAEC (joint) 96.01% 93.23%
Mapping to known 94799, 91.67%
space

TABLE II: Results for swapping classifier test

Accp Accr
Before swapping 96.01% 93.23%
After swapping 95.31% 93.23%

0.8

Accuracy
o
"

Joint B validation accuracy
Independent B validation accuracy
Joint | validation accuracy
Independent | validation accuracy

T T T T T T
0 25 50 75 100 125 150 175 200

Epoch

Fig. 9: Validation accuracy comparison between independent
training and joint training

bearing a more loosely constrained experiment setup [21];
therefore autoencoder helps to remove the noise of the data.

—— Training set

0.20 4 Validation set

0154 |

C

~ 0.10 4

0.05 4

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Epoch

0.00 4

Fig. 10: MSE loss of latent embedding of two sensors during
joint training

The comparison between RAECs obtained by independent
training and joint training shows that binding the latent
representation of two datasets actually boost the perfor-
mances of both. The accuracy increases by about another
1% and RoboSkin model seems to gain more benefits in
joint training. In terms of learning speed, Fig. 9 presents the
validation accuracy for the first 200 training epochs and it is
shown that both models converge faster with joint training.
Fig. 10 also shows that the MSE of latent embedding of two
sensors are minimized during joint training process of 2000
epochs.

A complementary experiment has also been conducted as
follows. One RAEC is trained independently and then fixed;

then the other RAEC is trained in an unsupervised way, i.e.
only the reconstruction loss and MSE loss between two latent
spaces are minimized. The result is shown in the last row of
Table I. It is noticed that RoboSkin model improves, while
BioTac model degrades by mapping to the other known latent
space, which is explainable by our observation that BioTac
data is cleaner than RoboSkin data.

A quick test of swapping the linear classifier between two
models have also been implemented. As shown in Table
II, after interchanging two classifiers, the performance is
retained. It helps to substantiate our claim that a unified
representation between two sensor datasets can be achieved.

C. Data Reduction Test

To further explore how joint training can contribute to
the learning process, a data reduction test is designed to
gradually reduce the amount of training data of one of
the datasets. Specifically, one set of data are kept as a
whole, while the other is gradually reduced to a portion
(training ratio) of 90%, 50%, 25%, 17%, and 11%. During
the training, the model with full data is always updated, while
the other is updated time to time, depending on the training
ratio. The results are presented in Table III and Table IV
respectively. Two independent models are also tested with
reduced training data and the results are listed as the last
column for the sake of comparison.

TABLE III: Partial reduction on BioTac dataset

Training Ratio Accp Accy Accp (independent)
90% 94.27% | 93.75% 93.75%
50% 90.63% 93.23% 91.67%
25% 83.33% | 93.75% 86.46%
17% 77.08% | 91.67% 78.65%
11% 70.31% | 92.19% 69.79%

TABLE 1V: Partial reduction on RoboSkin dataset

Training Ratio | Accp Accr Accy(tndependent)
90% 9427% | 91.15% 90.62%
50% 96.88% | 86.98% 82.29%
25% 96.88% | 73.96% 71.35%
17% 94.28% | 58.85% 57.81%
11% 96.88% | 45.31% 46.35%

It is observed that performance drops generally against
any data reduction. However, it is worth noting that the
impact of data reduction on the BioTac dataset is higher
for the RoboSkin dataset and the complete opposite for
the other way round. We hypothesise that the difference
in noise level present in the datasets contributes to such
outcomes. This further suggests that heterogeneous tactile
datasets taken from different sensors on the same tasks can
be combined using the proposed joint training approach to
improve training results provided that the available datasets
contain clean and/or sufficiently large number of training
samples.

V. CONCLUSIONS

In this study, we demonstrate that accurate and efficient
texture classification for a collection of mundane materials
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can be achieved with the proposed recurrent autoencoder
framework. In addition, jointly training two models with
diverse input data collected by different tactile sensors can
complement each other and boost the performances of both
in terms of accuracy and converging rate. The obtained
latent vector can arguably capture and compress the temporal
and spatial information as a succinct representation which
provides information that can be leveraged to facilitate the
learning process of other models. We also provided a com-
plete multi-modality dataset for lateral sliding of the BioTac
Sensor.

Based on the current data and framework, future im-
provements can be made to further enhance the robustness
and generability. Multi-modality integration can be explored
and unique features such as temperature may introduce a
new dimension to the latent representation. Current network
structures do not share parameters at LSTM layers because
one-to-one mapping in temporal scale is hard for two sensors.
Networks relying less on temporal scale, like Spiking Neural
Network (SNN) can be explored in the future. Moreover,
if new sensor is available, the model can be extended to
include more diverse input, and evaluate the applicability
of the latent representation, which promisingly indicates
explainable tactile features that are shared by and transferable
among various tactile sensors.
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