
Model-Based Quality-Diversity Search for Efficient Robot Learning

Leon Keller1, Daniel Tanneberg1, Svenja Stark1, Jan Peters1,2

Abstract— Despite recent progress in robot learning, it still
remains a challenge to program a robot to deal with open-ended
object manipulation tasks. One approach that was recently
used to autonomously generate a repertoire of diverse skills
is a novelty based Quality-Diversity (QD) algorithm. However,
as most evolutionary algorithms, QD suffers from sample-
inefficiency and, thus, it is challenging to apply it in real-world
scenarios. This paper tackles this problem by integrating a
neural network that predicts the behavior of the perturbed
parameters into a novelty based QD algorithm. In the proposed
Model-based Quality-Diversity search (M-QD), the network is
trained concurrently to the repertoire and is used to avoid
executing unpromising actions in the novelty search process.
Furthermore, it is used to adapt the skills of the final repertoire
in order to generalize the skills to different scenarios. Our
experiments show that enhancing a QD algorithm with such a
forward model improves the sample-efficiency and performance
of the evolutionary process and the skill adaptation.

I. INTRODUCTION

Open-ended learning, or life-long learning, refers to a
process where a robot has to autonomously acquire skills and
knowledge by interacting with an environment forever [1].
In real-world scenarios robots are often exposed to changing
environments or even need to solve new tasks without
being trained on them beforehand, and not all future tasks
can be foreseen to specify them for learning. As manually
modifying the programming of the robot is time consuming
and costly, it is a necessity that robots are able to deal
with these challenges autonomously with little or no human
intervention to develop throughout their lifespan [2].

A common task in life-long learning is to explore an
unknown environment. Quality-diversity algorithms [3] have
been used to make robots autonomously explore a user-
defined behavior space [4]. These algorithms are typically
evolutionary algorithms that aim at generating a repertoire of
skills which is as diverse as possible by choosing the parents
of each generation based on a novelty score. While these
algorithms often are able to build a repertoire which covers
the behavior space reasonably well, they suffer from sample-
inefficiency – a crucial limitation for robotic applications.
In this work, we address the sample-inefficiency problem by
incorporating a neural network into the evolutionary process.
This model is trained from the samples in the repertoire and
used to select the most promising children at each generation,
thus avoiding to execute children that are unlikely to improve

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No
#713010 (GOAL-Robots) and No #640554 (SKILLS4ROBOTS). Calcula-
tions for this research were conducted on the Lichtenberg high performance
computer of the TU Darmstadt.

1 Intelligent Autonomous Systems, Technische Universität Darmstadt
2 Robot Learning Group, Max-Planck Institute for Intelligent Systems

Fig. 1: Overlay of four learned skills from the skill repertoire
obtained by M-QD on the Place task, where the goal is to place
the grasped objects safely onto the table and shelves.

the repertoire. Quality-diversity search algorithms (with and
without model) produce a discrete skill repertoire. Thus,
in order to generalize to arbitrary desired behaviors in a
continuous behavior space, skills in the repertoire need to
be adapted. Our approach achieves this adaptation by using
the gradient descent approach from [4], extended by the
learned neural network. The nearest neighbour of the desired
behavior in the repertoire is selected and adapted to the
desired behavior over multiple optimization steps.

The contribution of this work is twofold: First, we propose
a Model-based Quality-Diversity search (M-QD) algorithm
that extendes QD search with a neural network that learns
to score actions. Second, we propose an action adaptation
strategy using this learned model. We show for both cases
that adding the model helps to increase sample efficiency,
and therefore reduces the number of expensive robot rollouts.
We evaluate the proposed M-QD and the adaptation with
multiple tasks in a 2D environment and a robot environment.

A. Related Work

A popular family of algorithms that has arisen from
novelty search [5] is called Quality-Diversity search (QD) [3]
which has been applied to robotic tasks [4]. These QD
algorithms rate solutions based on a quality function and
aim at finding qualitative solutions, in addition to building a
diverse repertoire covering a defined behavior space as good
as possible. The Novelty Search with Local Competition
algorithm (NSLC) [6], for example, tries to achieve these
objectives by using a multi-objective genetic algorithm to
optimize a nearest neighbour-based local quality function
in addition to the novelty of found solutions. Behavioral
repertoire evolution (BR-Evolution) [7], in contrast, tracks
all found solutions in an archive and progressively improves
the quality of this archive by replacing solutions with better

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9675

solutions that have a similar behavior. The multi-dimensional
archive of phenotypic elites (MAP-elites) [8], [9] discretizes
the behavior space in multiple bins and iteratively fills these
bins with high quality solutions.

When using such novelty search algorithms to build a
repertoire for a continuous behavior space, the skills of
the discrete repertoire have to be generalized in order to
estimate actions for arbitrary desired behaviors. One recent
approach [4] tries to achieve that by applying gradient
descent, where the gradient of the mapping between actions
and behaviors is estimated using a local linearization and
samples from the repertoire. However, this approach often
needs many adaptation steps and fails if the task is highly
non-linear. Another approach uses a behavioral repertoire
as a training set for a conditioned generative adversial net-
work [10] and then generates solutions for a given goal using
this network. Similarly, the map-based Bayesian optimization
algorithm (M-BOA) [11] adapts a behavior-performance
map, generated by MAP-elites, using Bayesian optimization.

Models have been integrated into evolutionary search
processes in a number of ways [12]. Estimation of distri-
bution algorithms [13] iteratively train a model to estimate
the probability distribution of promising solutions and then,
instead of mutation and crossover operators, use this model
to generate new populations. Other algorithms directly try to
build an inverse model of the mapping between objective
and decision space [14], [15], [16]. Lastly, in a process
called surrogate modelling [17], [18], [19], [20], [21], many
algorithms try to build a model of the objective function in
order to reduce the number of computationally or otherwise
expensive fitness evaluations.

Similar to our method, the Surrogate-Assisted Illumination
(SAIL) algorithm [22] aims to minimize the number of
evaluations of a novelty search algorithm by integrating an
approximated model of the objective function.

Our method is based upon a quality-diversity algo-
rithm which iteratively builds an unstructured repertoire of
skills [4]. However, our approach is not purely evolutionary:
similar as in model-based evolutionary learning, we incorpo-
rate a model into the QD algorithms to accelerate learning.
Compared to popular model-based evolutionary learning, our
method is most similar to surrogate modelling, however, our
model predicts the behavior and quality of a given candidate
instead of the fitness with respect to an objective function. By
using the predicted behavior and quality, we can eliminate
samples that are unlikely to find a novel or to improve a
known behavior, resulting in less samples that have to be
evaluated on the robot.

II. LEARNING A REPERTOIRE OF DIVERSE SKILLS

As described in the introduction, our approach consists
of two distinct parts. The first part focuses on learning a
diverse repertoire of skills covering a user-defined behavior
space, whereas the second part focuses on adapting these
skills in order to reach behaviors which are not present in
the repertoire. We first introduce the quality-diversity search
algorithm which builds the foundation of our approach, and

introduce our model-based quality-diversity search variation.
Lastly, we describe the gradient descent approach which is
used to adapt the skills of the learned repertoires.

A. Formalization

We define an action a ∈ A ⊆ Rn as a vector of real valued
parameters. When an action gets executed, the corresponding
environment transitions from a start state sstart ∈ S ⊆ Rn to a
destination state sdest ∈ S ⊆ Rn. We refer to this destination
state as the behavior of an action. This behavior sdest = b
is task-specific and can include any observable state of the
robot (e.g. joint angles) and/or its environment (e.g. position
of objects). Additionally, each action gets assigned a task-
specific quality score q. Actions are evaluated with respect
to their behavior b and their quality q using the evaluation
functions

fb(a) = b and fq(a) = q .

We refer to the tuple s = (a, b, q) as a skill, including its
action a, and the corresponding behavior b and quality q.

B. Quality-Diversity Search

Quality-Diversity (QD) search is a novelty-based evolu-
tionary search algorithm. In contrast to classical evolutionary
algorithms, the evolution is mainly driven by novelty, which
measures how unique the behavior of an skill is, instead
of a fitness function. Additionally, QD uses a task-specific
quality score to prefer better performing actions whenever
multiple actions produce a similar behavior. The goal of a
QD algorithm is to learn a repertoire of diverse and good
performing skills, covering a given or learned behavior space.

The novelty of skills in the repertoire is measured accord-
ing to a novelty score function. In this work, we use the
average Euclidean distance to the K nearest neighbours as
novelty score function, similar as in [4], [5] and given by

nov(a) =
1

K

K∑
i=1

d(fb(anni
), fb(a)) ,

where d(.) denotes the Euclidean distance and
{ann1

, . . . , annK
} are the K nearest neighbours of a,

measured in behavior space. More precisely, the nearest
neighbours are given by the K actions in the repertoire
whose behavior is closest to the behavior of a, measured
using the Euclidean distance.

The algorithm is initialized with an empty repertoire. The
first generation of skills is created randomly by sampling
uniformly in action space. All following generations are cre-
ated by applying crossover and mutation operators to parent
skills, which are sampled from the repertoire proportionally
to their novelty score. Every time a new generation is created,
all its actions get evaluated in order to get their behavior and
quality. After that, every candidate skill is compared to its
nearest neighbour in the current repertoire. If the distance
between the behavior and its closest neighbour is greater than
a predefined threshold value tdist, the new skill is added to the
repertoire. If the distance is smaller than the threshold tdist,
the new skill replaces the closest neighbour, if it performs

9676

Algorithm 1 Model-based quality-diversity search (M-QD)
Initialize empty repertoire
Initialize model φ with random parameters
while current generation ≤ max generation do

parents ← repertoire.sample(population size)
population ← populate(parents)
survivor ← ∅
for all action a ∈ population do
b̃, q̃ ← φ(a)
if ñov(a, b̃) > tnov or q̃ua(a, q̃) > tqua then

b, q ← evaluate(a)
bnn, qnn ← repertoire.closest(b)
if d(b, bnn) > tdist then

repertoire.add((a, b, q))
else if q > qnn then

repertoire.replace(nn, (a, b, q))
end if

end if
end for
update novelty score of all skills in the repertoire
update model φ using mini-batches from the repertoire

end while

better according to the task-specific quality score. Otherwise,
the skill is not added to the repertoire. All skills that are
removed or not added to the repertoire are saved in a separate
archive. After all skills of a generation are processed, the
novelty score of all skills in the repertoire is updated and
a new generation is formed. This process is repeated for a
number of generations in order to form a large, diverse and
highly qualitative repertoire.

C. Model-Based Quality-Diversity Search (M-QD)
In order to increase the sample-efficiency of the QD-

search, we incorporate a model into the evolutionary process
described in the previous section. The model φ(a) = (b, q)
is trained to predict the behavior b and quality q for a
given action a. As a model, fully-connected feed-forward
neural networks with one hidden layer are used with ReLU
activation for the neurons in the hidden layer and tanh
for the neurons of the output layer, in order to bound the
output of the network. The model is trained in an online
fashion by using normalized mini-batches of skills sampled
from the repertoire to perform gradient descent steps with
the Adam [23] optimizer after every generation to minimize
the mean-squared error. In order to avoid overfitting to early
samples, training only starts after a warm up phase, in which
the repertoire is filled with initial skills using the previously
described quality-diversity search without the model.

In the evolutionary process, the model is used to predict
the behavior b̃ and the quality q̃ of all new candidate actions
a in the current generation before executing them. Based on
these predictions, a novelty and a quality improvement score
are estimated for each action

ñov(a, b̃) =
1

K

K∑
i=1

d(fb(anni), b̃) ,

q̃ua(a, q̃) =
1

K

K∑
i=1

(q̃ − fq(anni
)) ,

where d(.) denotes the Euclidean distance and
{ann1 , . . . , annK

} are the K nearest neighbours of a,
measured in behavior space. All actions with a novelty
score greater than threshold tnov are evaluated and eventually
added to the repertoire, following the same procedure as in
the quality-diversity search without model. Actions with a
predicted novelty below the threshold tnov are only evaluated
if their predicted quality improvement score is greater than
the threshold tqua. Otherwise, they are discarded without
executing them, assuming that they are unpromising and
would not improve the repertoire. Due to this procedure, the
sample efficiency is increased as samples that are unlikely
to produce a novel behavior or improve a known behavior
do not need to be executed in an expensive rollout.

In practice, the hyper parameters tnov and tqua need to
be chosen carefully. When chosen too low, no actions would
be discarded, nullifying the benefit of the model. In contrast,
when chosen too high, too many actions would be discarded,
putting an excessive confidence on the model’s predictions
and, thus, hinder exploration of the behavior space.

D. Adaptation of Skills

While the QD-search typically produces a repertoire which
covers the behavior space reasonably well, it is still discrete
and thus we have to adapt skills in order to reach arbitrary
given behaviors. For that purpose, we build upon the gradient
descent approach proposed in [4] and extend it with the
learned model. Similar as in [4], for a given desired behavior
b∗, the skill which is closest in behavior space snn =
(ann, bnn, qnn) is selected from the repertoire and used to
initialize the gradient descent (aj , bj)|j=0 = (ann, bnn).
Afterwards, a new action is computed by performing one
step of the gradient descent given by

aj+1 = aj + λJ̃(aj)
+(b∗ − bj) ,

where λ is the adaptation step size. Evaluating this new
action aj+1 obtains its behavior bj+1 = fb(aj+1). This
process is repeated until the difference between bj and b∗ is
smaller than a threshold tdist or the number of total performed
steps is greater than a predefined value.

In [4] the gradient J̃(aj) is estimated from samples in
the repertoire using a least squares approach and a local
linearization of the mapping between action and behaviors

J̃(aj) = BGT (GGT)−1 ,

where G = [ann1
, . . . , annK

] − aj and B =
[bnn1

, . . . , bnnK
]− bj and {(ann1

, bnn1
), . . . , (annK

, bnnK
)}

are the K nearest neighbours of aj in action space.
In order to obtain a better estimation our adaptation

strategy, in contrast, estimates the gradient J̃(aj) using the
learned neural network model.

As our neural network model is differentiable, we can
directly use its analytical derivative to obtain the gradient
J̃(aj). However, given a non differentiable model, the gradi-
ent can be estimated, for example, by using a finite difference
approach given by J̃(aj) =

φ(aj+h)−φ(aj)
h , where φ(.)

denotes the learned model.

9677

(a) 2D Obstacle (b) 2D Object (c) PushCube (d) PushSphere (e) Place

Fig. 2: (Top) Overlays of the setup of the tasks and repertoires learned using M-QD. Each blue point corresponds to a behavior archived
by a skill in the repertoire. (Bottom) Evolution of the behavior-space coverage on the different tasks. Results are averaged over 25 random
seeds (10 for the robotic tasks), the plots show the mean and one standard deviation.

III. EXPERIMENTS

We evaluate and compare the performance of M-QD in
two environments and, in total, five different tasks. First,
we introduce these tasks and describe their basic setup and
goal. Consecutively, we report the empirical results of the
conducted experiments, demonstrating the benefits of M-QD.

A. 2D Environment
We first implemented a 2D environment which consists

of a bounded two-dimensional space and an agent which is
placed on a predefined position in this space. An action a =
(a0, a1, . . . , an) is composed of multiple sub-actions ai =
(ẋ, ẏ, T), which are executed consecutively. Each sub-action
consists of a velocity in ẋ and ẏ direction and a duration T .
When executing a sub-action, ẋ and ẏ are directly applied
to the agent for T time steps.

1) 2D Obstacle Task: For the first task, a number of
obstacles are added to the task space. An action consists of
three sub-actions and the behavior of an action is defined as
the final position of the agent. The goal is to learn a repertoire
of skills which enables the agent to move to every point in the
space, thus navigating around the obstacles. Figure 2a shows
the whole setup of this 2D Obstacle task, including the
behavior space coverage after learning.

2) 2D Object Task: For the second task, a move-able
object is placed on a predefined position in the task space.
An action consists of five sub-actions and the behavior of an
action is defined as the final position of this object. The goal
is to learn a repertoire which enables the agent to push this
object to an arbitrary position in the space. Figure 2b shows
the setup of this 2D Object task, including the behavior
space coverage after learning.

Formally, for both tasks, the behavior and the quality of
an action are defined as

fb(a) = (xfin, yfin) and fq(a) =
δmin

δ
,

respectively, where (xfin, yfin) refers to the final position
of the agent or object. The parameter δmin refers to the

minimum distance the agent/object has to move to reach
the behavior corresponding to action a, and δ refers to the
actually moved distance of the agent/object. Intuitively, if
two actions lead to the same behavior, the action which
moves a smaller distance is considered to be better.

B. Robotic Environment
For the second environment, we implemented a more

complex robotic environment: It consists of an LBR iiwa 14
R820 robot by KUKA which is placed on a small platform
beside a table (Figure 1). The joint angles of the robot are
preset such that the endeffector points downwards and is
exactly placed above the center of the table. An action is
compounded of multiple via-points a = (a1, a2, . . . , an),
where each via-point ai = (x, y, z, γ, T) consists of an
x, y and z position as well as an orientation γ around
the z-axis, and a duration of T time steps. The x- and y-
orientation are kept fixed, such that the endeffector always
points downwards. When executing an action, the robot
moves along these via-points for the given durations.

The Virtual Robotics Experimentation Platform (V-REP)
is used for simulation. We used the PyRep library [24], as it
provides faster communication and parallel simulation. It is
a toolkit for robot learning research, built on top of V-REP.

1) Object Pushing Task: For the first robotic task, a sphere
or cube is placed on the center of the table. An action
consists of two via-points, where the z-coordinates are kept
fixed to the z-coordinate of the sphere or cube to increase
the likelihood of interacting with the object. The gripper of
the robot is kept closed during the whole movement. The
behavior of an action is defined as the final object position.
The goal is to learn a repertoire which enables the robot to
push the object to an arbitrary position on the table. Figure 2c
and 2d show the PushCube and PushSphere task setup,
including the coverage of the learned skill repertoires. The
quality of an action is defined s.t. actions which move the
end-effector least are considered best, given by

fq(a) = −δee ,

9678

TABLE I: Final behavior-space coverage ratio of the repertoires.
Results are averaged over 10 random seeds (25 for 2D environ-
ments), denoted are the mean and one standard deviation.

M-QD QD RANDOM

2D Obstacle 0.971 ± 0.018 0.875 ± 0.017 0.731 ± 0.004
2D Object 0.504 ± 0.073 0.366 ± 0.064 0.035 ± 0.002
PushCube 0.828 ± 0.059 0.709 ± 0.047 0.216 ± 0.073
PushSphere 0.685 ± 0.0185 0.560 ± 0.009 0.171 ± 0.004

Place 0.639 ± 0.034 0.524 ± 0.009 0.349 ± 0.001

with δee denoting the total distance the end-effector moved,
measured by the Euclidean distance.

2) Object Placing Task: For the second robotic task, the
robot has to learn to place an object safely onto a table and
shelves. Therefore, additionally shelves with different heights
are added to the table. The robot starts with a cube grasped
with its end-effector. An action consists of five via-points,
which are executed after each other, as described above. After
the last via-point is reached, the gripper is opened and the
cube is released. The behavior of an action is defined as
the final position of the cube on the table or shelves. The
quality of an action is defined such that skills in which the
cube drops as least as possible are considered best, i.e., when
the cube is placed safely onto the surface

fq(a) = d(objs, obje) ,

where objs refers to the position of the object after the last
via-point is reached but before the gripper is opened, and
obje refers to the final position of the cube on the surface.
The goal is to learn a repertoire which enables the robot
to place the cube on every position on the table as safe as
possible, whereas safe here refers to a minimal release height.
Figure 2d shows the whole setup and the covered behavior
space, we refer to this task as Place. Figure 1 illustrates
four skills learned on this task.

Formally, for all three robotic tasks the behavior of an
action is defined as

fb(a) = (xfin, yfin) ,

where (xfin, yfin) refers to the final position of the object.

C. Results
In order to evaluate our approach we performed experi-

ments on all five tasks and compared it against two baselines.

TABLE II: Hyperparameters used in the Experiments

2D Robotic
Max. generations 250 100
Population size 100 100

K 5 5
tdist 0.02 0.02
tnov 0.04 0.04
tqua 0.0 0.0

Learning rate 1e-3 1e-3
Batch size 16 16

No. of batches 500 500
No. of warmup samples 1000 1000
No. of hidden neurons 32 64
Adaptation step size 0.1 0.1

No. of adaptation steps 10 10

1) Building A Repertoire: We first evaluated the learning
of the skill repertoire, and compared the quality-diversity
search with and without our proposed model extension.
Additionally, we compared to another baseline, which we
refer to as RANDOM: This baseline accumulates a repertoire
by sampling actions uniformly from the action space. We
ran all three algorithms for 250 generations in the 2D
Environments and averaged the results over 25 random seeds.
For the robotic environments, we ran the algorithms for 100
generations and 10 different random seeds. We compared
the algorithms in terms of average quality and coverage of
the behavior space of the final skill repertoire. In all our
tasks, the behavior space is bounded. In order to compute
the coverage of this bounded space, we define that each skill
covers a circular space around its behavior, where the radius
of that circle is given by the distance threshold of the quality-
diversity search. The coverage of a repertoire in percent of
the total behavior space is then given by the area of the union
of all these circles, divided by the total area of the behavior
space. The average quality of a repertoire is defined as the
average quality of its skills.

Figure 2 shows the evolution of the coverage as well as
the final repertoires overlayed into the setup of the different
tasks. Table I reports the coverage of the final repertoires. In
terms of coverage, the random search performed poorly on
all the tasks compared to the quality-diversity approaches.
Only on the 2D-Obstacle and the Place task, random search
was able to build a repertoire which covers large parts of
the behavior space, highlighting the simplicity of the search
space in these tasks. The repertoires of QD and M-QD
both cover the behavior space reasonably well, however, M-
QD outperforms QD by a margin of more than 10 percent
on all of the tasks, and reaches this coverage with less
samples. In terms of average quality, M-QD and QD outper-
formed RANDOM, while the average quality of repertoires
generated with M-QD was slightly below the repertoires
generated with QD. For example, on the 2D Obstacle
task, RANDOM achieved an average quality of 0.63± 0.02,
while the repertoires generated with QD and M-QD achieved
an average quality of 0.83±0.01 and 0.80±0.01 respectively.
We observed this small drop in average quality between M-
QD and QD on every task, however, we consider it to be
negligible, as in our application scenario a good coverage of
the behavior space with less samples is more important.

2) Adaptation Of Skills: Next, the proposed model-based
adaptation approach is evaluated. Therefore, we evaluated
the gradient descent approach using the model to estimate
the gradient as well as the approach which uses a local lin-
earization. Additionally we compared the results to just using
the nearest neighbour in the repertoire instead of applying
an adaptation strategy. As repertoire we used the final reper-
toires produced by the model-based quality-diversity search
algorithm for all the strategies. We randomly generated 1000
goals uniformly in behavior space and averaged the results
of the different approaches over 25 different repertoires (10
for the robotic tasks).

We report the behavioral error as well as the number of

9679

Fig. 3: Behavioral error after applying the different adaptation
strategies. Results are averaged over 25 repertoires (10 for the
robotic tasks) and 1000 randomly generated desired behaviors for
each repertoire.

Fig. 4: Number of adaptation steps performed for a behavioral
error below the distance threshold, with a maximum of 10 steps.
Results are averaged over 25 repertoires (10 for the robotic tasks)
and 1000 randomly generated desired behaviors for each.

required adaptation steps to achieve these errors in Figure 3
& 4. Both adaptation strategies outperform nearest neigh-
bour on all the tasks. Adaptation with the learned model
outperforms the local linearization adaptation. The difference
between the model-based approach and the local linearization
is bigger on more complicated environments and negligible
on the simpler ones, as for example 2D Obstacle and
Place. We suspect that this is the case as in these simple
environments the local linearization already yields a reason-
able estimate of the true gradient. Furthermore, the model-
based approach requires less adaptation steps than the linear,
improving again the sample-efficiency.

IV. CONCLUSION

We proposed a Model-based Quality-Diversity search al-
gorithm (M-QD) for learning a diverse repertoire of skills in
an open-ended setting. The approach is evaluated empirically
on a 2D environment as well as on a more complex robotic
environment. The results of our experiments show that M-
QD outperforms the model-free quality-diversity search in
terms of sample-efficiency and behavior space coverage
when learning a skill repertoire. Moreover, the results show
that in comparison to a simple local linearization approach,
using a model-based adaptation strategy reduces the number
of needed adaptation steps and the average error in behavior
space – improving the repertoire generalization and skill
adaptation efficiency.

However, despite this twofold improved efficiency, the
amount of rollouts required by the model-based quality-
diversity search algorithm makes learning from scratch on a
real system still challenging. Thus, in future research, we aim
at integrating Sim2Real techniques, as for example presented
in [4], into our approach in order to adapt repertoires and
models learned in simulation to real robots, or to concur-
rently learn in simulation and on the real system.

REFERENCES

[1] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and
autonomous systems, 1995.

[2] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmental
robotics: A survey,” IEEE transactions on autonomous mental devel-
opment, 2009.

[3] A. Cully and Y. Demiris, “Quality and diversity optimization: A
unifying modular framework,” IEEE Transactions on Evolutionary
Computation, 2017.

[4] S. Kim, A. Coninx, and S. Doncieux, “From exploration to control:
learning object manipulation skills through novelty search and local
adaptation,” arXiv preprint arXiv:1901.00811, 2019.

[5] J. Lehman and K. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, 2011.

[6] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation,
2011.

[7] A. Cully and J.-B. Mouret, “Behavioral repertoire learning in robotics,”
in Proceedings of the 15th annual conference on Genetic and evolu-
tionary computation, 2013.

[8] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[9] V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret, “Scaling up
map-elites using centroidal voronoi tessellations,” arXiv preprint
arXiv:1610.05729, 2016.

[10] M. Jegorova, S. Doncieux, and T. Hospedales, “Generative adver-
sarial policy networks for behavioural repertoire,” arXiv preprint
arXiv:1811.02945, 2018.

[11] A. Cully, J. Clune, and J.-B. Mouret, “Robots that can adapt like
natural animals,” arXiv preprint arXiv:1407.3501, 2014.

[12] R. Cheng, C. He, Y. Jin, and X. Yao, “Model-based evolutionary
algorithms: a short survey,” Complex & Intelligent Systems, 2018.

[13] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Springer Science & Business
Media, 2001.

[14] I. Giagkiozis and P. Fleming, “Pareto front estimation for decision
making,” Evolutionary computation, 2014.

[15] R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, “A multiobjective
evolutionary algorithm using gaussian process-based inverse model-
ing,” IEEE Transactions on Evolutionary Computation, 2015.

[16] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin, “Bayesian
network as an adaptive parameter setting approach for genetic algo-
rithms,” Complex & Intelligent Systems, 2016.

[17] B. Wilson, D. Cappelleri, T. Simpson, and M. Frecker, “Efficient
pareto frontier exploration using surrogate approximations,” Optimiza-
tion and Engineering, 2001.

[18] Y. Jin, “A comprehensive survey of fitness approximation in evolu-
tionary computation,” Soft Computing, 2005.

[19] ——, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, 2011.

[20] M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen, and K. Sind-
hya, “A survey on handling computationally expensive multiobjective
optimization problems using surrogates: non-nature inspired methods,”
Structural and Multidisciplinary Optimization, 2015.

[21] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey
on handling computationally expensive multiobjective optimization
problems with evolutionary algorithms,” Soft Computing, 2017.

[22] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-efficient design explo-
ration through surrogate-assisted illumination,” Evol. Comput., 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” International Conference for Learning Representations, 2015.

[24] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to
deep robot learning,” arXiv preprint arXiv:1906.11176, 2019.

9680

