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Abstract— The increasing presence of robots alongside hu-
mans, such as in human-robot teams in manufacturing, gives
rise to research questions about the kind of behaviors people
prefer in their robot counterparts. We term actions that support
interaction by reducing future interference with others as
supportive robot actions and investigate their utility in a co-
located manipulation scenario. We compare two robot modes
in a shared table pick-and-place task: (1) Task-oriented: the
robot only takes actions to further its task objective and (2)
Supportive: the robot sometimes prefers supportive actions to
task-oriented ones when they reduce future goal-conflicts. Our
experiments in simulation, using a simplified human model,
reveal that supportive actions reduce the interference between
agents, especially in more difficult tasks, but also cause the
robot to take longer to complete the task. We implemented
these modes on a physical robot in a user study where a
human and a robot perform object placement on a shared
table. Our results show that a supportive robot was perceived
more favorably as a coworker and also reduced interference
with the human in one of two scenarios. However, it also took
longer to complete the task highlighting an interesting trade-off
between task-efficiency and human-preference that needs to be
considered before designing robot behavior for close-proximity
manipulation scenarios.

I. INTRODUCTION

Despite the continued growth of industrial robot sales [1],
many assembly tasks are still performed manually in major
industries [2]. A vision for the future of manufacturing
involves robots working alongside human coworkers on tasks
that exploit the respective strengths of both. Surveys identify
interaction with co-workers as one of the most important
job criteria for human workers [3]. We introduce interaction-
supporting actions that aim to improve the coworker experi-
ence in human-robot co-located manipulation. We implement
these in a close-proximity manipulation task to understand
the impact on task performance and the coworker perception
as compared to a robot focused solely on completing its task.

We term actions necessary for an agent to complete
their task in the absence of other agents as task-oriented.
We define supportive actions as actions that support the
interaction by reducing potential interference with other
agents but are not necessary for task completion. E.g.,
when resetting a chessboard, the black agent performs task-
oriented actions by moving the black pieces to their positions
and supportive actions by moving the white pieces towards
the white player. Although the supportive actions help the
other agent, they are not altruistic as the agent hopes to
benefit from the reduced interference. Humans also perform
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Fig. 1. An example scene from our co-located manipulation scenario. The
robot’s goal is to place all the red blocks into the row closest to itself, and
the human participant’s goal is to do the same for the yellow blocks.

supportive actions, perhaps due to their modeling of others
as intentional agents that plan for mutual benefit [4], [5], or
their expectations of reciprocity [6].

Our task is inspired by other close-proximity human-robot
interaction (HRI) manipulation studies [7], [8]. It involves
two agents, a human and a robot, situated across a table
scattered with color-coded blocks, each aiming to bring the
blocks of their assigned color quickly back to their side (Fig.
1). The agents have been assigned separate goals without
a direct incentive for cooperation and the shared table is
expected to induce interference. We focus on high-level
decision-making and design supportive actions that proac-
tively avoid collision by modifying the goal configuration of
the other agent by moving their blocks. In our experiments,
the robot operates in one of two modes: (1) Task-oriented,
where the robot takes only task-oriented actions, and (2)
Supportive, where the robot takes both supportive and task-
oriented actions depending on the situation. We hypothesize
that the supportive mode would reduce interference and lead
to a better human experience. We test this in simulation with
a simplified human model and verify it with a user study on
a physical robot.

Our main contributions are the introduction of supportive
actions in a human-robot collaborative manipulation task,
simulation experiments and user study experiments that
justify the use of such actions, and the identification of a
trade-off between operational and usability metrics when the
robot is designed to deliberately take supportive actions.

After reviewing the literature in Sec. II, we formulate
the problem in Sec. III and describe our methodology in
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Sec. IV. We first experiment in simulation in Sec. V to design
the supportive actions and formulate hypotheses in Sec. VI.
We present the implementation and user study details in
Sections VIII and VII, respectively. We analyze results in
Sec. IX, discuss them in Sec. X and conclude in Sec. XI.

II. RELATED WORK

Human-robot interaction (HRI) includes scenarios where
agents work for a shared goal as well as scenarios where
agents have separate, sometimes competing, objectives. We
are interested in the latter, where humans and robots work
alongside each other on separate goals and conflict arises due
to shared space.

A focus on anticipating human actions has enabled better
robot assistants. For instance, Hawkins et al. [9] do this by
exploiting known task structure and Nikolaidis et al. [10]
use online adaptation to user preferences. Similar to us, both
of these approaches focus on the high-level decision-making
aspect of the task. Cherubini et al. [11] plan low-level
robot actions and successfully reduce human workload for
automotive manufacturing. However, they assume that the
role of the robot should be to assist, which simplifies the
robot’s decision-making. However, the types of roles and
interaction modes in mixed human-robot teams are richer,
as shown by Gombolay et al. [12].

Other work in human-robot co-presence treats the human
as an obstacle to be avoided [8], [13]. In this case, the
human’s goal is either not considered at all, or only used
to make predictions to guide a more proactive obstacle
avoidance. Our task involves separate goals for the two in
a shared space which induces the relatively under-explored
concept of Human-Robot goal conflict.

Similar close-proximity manipulation tasks have also been
studied by [14], [7]. Bansal et al. [14] consider different
goals for the human and the robot and develop a game-
theoretic model to plan low-level trajectories to minimize
conflict between the two goal-driven agents. While Gabler
et al. [7] consider a collaborative scenario, they design
the robot’s utility to include both shared and separate goals
from the human. They use game-theory to make plans that
optimize the order of the robot’s task-oriented actions for
increased joint task-efficiency. We introduce Supportive ac-
tions that modify the human’s goal configuration by moving
their blocks to reduce future conflict.

III. PROBLEM FORMULATION

We design a pair of pick-and-place tasks on a table shared
by a human and a robot and represent it as a two-agent game.
The table has two sets of blocks distinguished by color, we
assign one set to the robot bR = {b1R, ..., bnR} and the other
to the human bH = {b1H , ..., bnH}. We draw a 2D grid on the
table and place each block in a single cell. We define this
cell as the block’s location l(bi) = (r, c) and a cell near its
assigned agent as its destination, d(bi) = (r, c). A state is a
configuration of blocks on the grid, s = {biR, biH} ∀i 1 ≤
i ≥ n. Fig.2 shows a grid configuration where n = 2 and
bR = {1,3} and bH = {2,4}.
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Fig. 2. An example board configuration consisting of blocks (1 − 4)
for the robot (red) and the human (yellow). Robot actions (a1−4) are
depicted by the arrows. a1, a3 are task-oriented actions while a2, a4 are
supportive and a2 is a more useful supportive action because it reduces
potential interference when reaching for block 1.

In this task, an action a can move at most one block to
a different location. For instance, in Fig. 2, a1 = (1, d(1)),
moves block 1 from its location to the goal. We also allow
idle actions that do not move any blocks. Both agents are
instructed to start performing actions simultaneously, and so,
if one agent finishes their action early, they have to wait for
the other to complete their action before starting to perform
the next one. We assign each agent the goal to take actions
that lead to a state, sG, where each of their blocks is in
its destination cell, in minimum time. Their goal state only
includes their own blocks and not the others.

IV. METHOD

We first explain how to construct the sets of task-oriented
and supportive actions and then describe two decision-
making strategies used by the robot to perform the task.

A. Action Sets

We define two action sets for the robot to use: task-
oriented, ATO(s) and supportive, AS(s). ATO includes
actions that each move a robot block to its destination,

ATO(s) = {a = (bR, d(bR)) | ∀bR, l(bR) 6= d(bR)}. (1)

AS includes the supportive actions. We define a supportive
action, a = (bH , d), for one of the human’s blocks, bH , that is
closer to the robot than the human. We set the destination,d,
of this action as the closest empty cell that is closer to the
human. This way, we balance the cost of the additional action
with reducing the potential for interference while favoring
the human’s preference of retrieving objects near them. E.g.,
in Fig. 2, ATO = {a1, a3} and AS = {a2, a4}.

B. Task-Oriented Robot

The task-oriented baseline randomly samples an action
from the task-oriented set at a given state, aR ∼ ATO

R (s).
The goal is to complete the task with the fewest actions.
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It chooses randomly because all task-oriented actions are
necessary for reaching the goal state.

C. Supportive Robot

The Supportive robot chooses actions using a policy, π
containing actions from task-oriented and supportive sets.
This policy is an ordered set of actions ranked by their
priority and is defined by the user before starting the task.
We take a heuristic approach to create π for the task to reflect
the utility of supportive actions.

We initialize π as an empty list and populate it by iterating
over the following rules until no new action is generated. We
also initialize B to a list of all the blocks in the grid.

1) Return empty if B is empty.
2) If a block biR ∈ B exists such that biR has no human

block that might cause a conflict when reaching for it,
then pop biR and return a task-oriented action for it.

3) Else, find a supportive action from B that has conflict
with the most robot objects in B.

This approach is designed to produce actions that reduce
the probability of collision between the human and the robot
while trying the minimize the task completion time. It applies
to any block configuration.

Given a predefined policy, π, the robot checks the list
in order and executes the first action that is feasible in the
current state s. If no feasible action is found, it defaults
to sampling available task-oriented actions until the goal is
reached. We assign a fixed π in our task to ensure that the
participants observe similar behavior from the robot in every
trial.

Fig.2 depicts an example task with four blocks, task-
oriented actions, ATO = {a0, a2}, and supportive actions,
AS = {a1, a3}. The policy, π, for this scenario is π =
(a2, a1, a0). Here, a task-oriented action, a2, is included first
because of the lack of potential goal conflict of block 3; then
the robot takes a supportive action, a1, to reduce the potential
interference of block 2; and finally, it completes the task
with the last task-oriented action a0. The planner ignores
supportive action, a3 because block 4 causes no potential
interference with the robot’s blocks.

V. SIMULATED EXPERIMENT

We simulate a scenario with two 2-link robot arms per-
forming pick-and-place actions in 2D (Fig. 3). Our goal is
to observe the effect of supportive actions in an idealized
setting, without the variance introduced by the participants,
or errors in sensing and actuation.

We develop an OpenRAVE [15] environment with blocks
of two colors scattered on a table. We assign each arm six
blocks of the same color. The goal for each arm was to bring
blocks of their assigned color to the destination area near the
arm, highlighted in Fig. 3. We define a 7 × 15 grid on the
table and place the blocks into these cells according to two
configurations, easy and hard, as shown in Fig. 4. We con-
sider one arm as the robot and the other one as a simulated
human. The simulated human chooses task-oriented actions
while prioritizing closer blocks. We experiment with the

Robot

(Simulated) Human

Fig. 3. The simulated 2D environment with two arms, one is a simulation
of the human and the other is controlled by the robot policy.

TABLE I
SIMULATION RESULTS

Scenario Robot Mode Task Time (s) Safety Stops

Easy Task-Oriented 15.46± 0.3 4.6± 0.7
Supportive 17.75± 0.2 3.0± 0.7

Hard Task-Oriented 15.9± 0.9 7.3± 2.2
Supportive 18.56± 0.5 2.4± 1.2

robot following both task-oriented and supportive algorithms
from Sec. IV. The RRT* [16] implementation in OMPL [17]
is used to plan joint-space trajectories.

Results. The two scenarios and two robot modes make
four experimental conditions. Since we use a sampling
technique to generate plans, we run each condition 10 times
and present the mean and standard deviations in Tab. I. The
time taken to complete the task by the slowest agent is termed
Task Time. We also record the times the simulated robot
was stopped during the interaction to prevent a collision and
term these safety stops. The robot stops and waits for the
simulated human to move a threshold distance away when
this happens while the human is free to move. We find task
completion time to be higher for the supportive robot but
the safety stops are lower in Tab. I. A larger effect due to
supportive actions is observed for both metrics in the hard
scenario. The supportive robot is always slower than the
human and although the additional actions cause a longer
task time they also reduced goal conflict leading to less than
50% safety stops in the hard scenario.

VI. HYPOTHESES

Following simulation results, we anticipate the robot’s
behavior and the initial block configuration to affect collab-
orative performance. We formulate the following hypotheses
to test on a user study with a physical robot.
H1 Supportive actions will reduce the interference between

the agents. In particular, we expect the supportive ac-
tions to reduce the safety stops occurring in the inter-
action, especially for difficult scenarios.
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(a) Easy (b) Hard

Fig. 4. Layout of the easy (left) and hard (right) block configurations, viewed so the human is seated below row A. The human places yellow blocks on
the numbers below row A, whereas the robot is across the table and placing red blocks in Row G. The difficulty is due to the conflict caused by the robot
and human reaching for the same space. This conflict exists more in (b) since most of the yellow blocks are in front of the robot’s.

H2 Supportive actions will reduce the human’s time to com-
plete the task. We expect people to complete the task
faster when interacting with the supportive robot leading
to more idle time, especially for difficult scenarios.

H3 Supportive actions will have a positive effect on the
subjective measures of task performance. We expect
that participants will prefer the supportive robot as a
coworker, especially for difficult scenarios.

H4 Changing the initial block configuration would affect
both the subjective and objective measures. In particu-
lar, we expect that participants will find the task more
difficult to perform if the initial block configuration
includes more goal conflicts. We also expect the effect
of supportive actions to be more prevalent in difficult
scenarios, in general.

VII. USER STUDY DESIGN

We conduct a user study to test the effect of the support-
ive actions. The study was approved by Monash University’s
Ethics Review Board, Project ID 21010.

A. Independent Variables

We manipulate two independent variables.
• Robot mode: {Task-Oriented, Supportive} robots as

described in Section IV.
• Scenario: {Easy, Hard} block configurations. (Fig. 4)
The block configuration in the easy and hard scenarios

are designed to cause different levels of goal conflict. While
both of them include six blocks, the robot’s blocks in the
hard scenario were arranged to be directly in front of the
human’s. We expect this would increase task difficulty by
causing more interference since both agents need to reach
into the same space.

B. Participant Allocation

We recruited 18 subjects aged 20 − 31 (M = 22.4,
SD = 3.1, 11 male, 7 female) for a within-subject study.
To reduce order effects, we counterbalanced the order of the
robot mode. We kept the scenario order the same, where hard
always followed easy. The participants were not informed
about the kind of robot they would be interacting with or
how many types there were.

C. Procedure

The experiment took place in a university lab under
experimenter supervision. We seated participants in front of
the robot as depicted in Fig.5. After reading the explanatory
statement and signing a consent form, they listened to a
scripted explanation of the experiment.

The participants were assigned yellow blocks and their
goal was to move these blocks to their destinations accurately
while minimizing task time. The start of a turn was signaled
on the scanning display in Fig. 5 and both agents performed
reaching actions simultaneously, continuing until all their
blocks were in their respective destinations. This concluded
one trial and each participant performed four. Participants
were also given three types of surveys, a demographic one
at the start of the experiment, one after every trial, and one
at the end to record their overall experience. A complete
experiment took between 30 and 45 minutes.

D. Dependent Variables

We record both objective and subjective metrics.
Objective measures. We study the effect of supportive
actions on task completion time for each agent, the total
number of safety stops, as well as human’s idle time ratio.
The task completion time is the time an agent takes to
complete a trial and is easily measured for the robot since we
programmatically record the time when the robot starts and
finishes an action. For the human, we manually annotate this
using a video recording of the experiments. We also annotate
the time the human waits for the robot after completing an
action and compute the ratio of the accumulated wait time
over a trial to their total execution time as the human-idle
ratio. We also count the times the robot has to stop due to
proximity to the human as safety stops.
Subjective measures. Participants answered ten 5-point
questions after each trial. Five of these are collected in a
Likert-scale that measures robot proficiency as a coworker
and include statements about the robot’s helpfulness, action-
selection, intention-prediction, disruption, etc. The rest of the
questions are treated as individual differential scale items.
We reversed some of the scale items so that 5 is the most
positive response to each and 1 the least. We adapt this survey
from collaborative HRI studies like [18]. The Likert-scale
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TABLE II
LIKERT-SCALE COMPOSED OF INDIVIDUAL SURVEY ITEMS WITH

CRONBACH’S α. (R) INDICATES A REVERSE SCALE.

Robot coworker proficiency (α = 0.807)
I believe the robot accurately perceived my goals.
The robot was helpful and/or cooperative.
The robot seemed to select the correct object to pick up
most of the time.
The robot disrupted me in efficiently performing the task. (R)
I felt uncomfortable with the robot. (R)

TABLE III
INDIVIDUAL SCALE ITEMS FROM SURVEY.

Individual Measures
I1 How successful were you in achieving your task?
I2 How hard did you have to work to accomplish your
level of performance? (R)
I3 How much attention did you pay to the robot and
its performance during the task?
I4 I felt unsafe with the robot.(R)
I5 How would you grade the robot as a coworker, overall?

(Cronbach’s α = 0.807) is listed in Tab. II and the individual
items are listed in Tab. III.

VIII. IMPLEMENTATION DETAILS

Our user study setup is depicted in Fig. 5 and includes the
robot and the human around a table with a checkerboard grid
on which we place the blocks. We mount an RGB-D sensor
overhead to detect the blocks and the person’s arm. These
detections guide the robot’s action-selection and trajectory
planning, which are implemented on the Universal Robot 5
(UR5) using the Robot Operating System (ROS) [19]. We
also include a scanning area that instructs the participant
about the destinations for their blocks. Our experiment is
fully-autonomous and does not require human intervention.

A. Sensing

The location of the grid is calibrated in the camera frame
ahead of time using OpenCV [20] and we apply a simple
color blob detection technique to the RGB image in real-
time to localize the blocks.

We instructed participants to wear a colored glove cov-
ering their arm to allow for its easy detection. We ensure
safety by stopping the robot arm if the user’s hand comes
within a fixed distance threshold.

B. Robot Control

We implement both task-oriented and supportive robot
policies for action-selection. For a given goal grid location,
we generate waypoints for the robot end-effector to it at
a fixed vertical offset from the grid and use the MoveIt
framework [21] to generate a Cartesian path. This path is
followed by the robot controller after which it attempts a
vertical move down to either grab or drop the block and then
moves back up. Robot joint speed is limited to (0.314rad/s)
to ensure user safety and comfort.

RGBD 
Camera

UR 5 
Manipulator

Robotiq 
Gripper

Scanning 
Display

Scanning 
Camera

Fig. 5. The experimental setup

We also included a camera station where participants
scanned blocks and were informed of their destinations after
a short delay. We use this delay to account for the human’s
higher relative speed to synchronize human-robot actions.

IX. USER STUDY RESULTS

We compare the independent variables through the objec-
tive task performance metrics first and then by participant
responses to the survey. We had to remove the data for two
participants, one due to a robot failure, and the other because
the participant did not follow experimental directions. Thus,
in total we analyze (N = 16)× 4 = 64 trials.

A. Objective Measures

We analyze some of the objective metrics in Fig. 6.
Safety Stops. We count the times when the robot has to

stop due to its proximity to the human’s arm. We compare
robot types through a Wilcoxon signed-rank test on each
scenario because the data was not normally distributed. We
find a significant effect due to the supportive robot in the
hard scenario (w = 79.5, p < 0.05). Fig. 6a shows that the
supportive robot had fewer stops in hard affirming H2.

Robot Task Time. We use a repeated-measure two-
way ANOVA to compare the robot’s task completion time.
We find a significant effect due to the supportive robot
(F (3, 60) = 74.0, p < 0.01) and no interaction. Table IV
shows that the addition of supportive actions led to a longer
robot task time.

TABLE IV
TASK COMPLETION TIME OF THE ROBOT.

Robot Robot Task Time (s)
Baseline 162.9± 3.9
Supportive 208.9± 3.7

Human Task Time. We use a Wilcoxon signed-rank test
to compare the human’s task completion time due to the
non-normality of this data. We find no significant effect due
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(a) Safety Stops (b) Human Task Time (c) Human Idle Time

Fig. 6. Objective Measures. Box-and-whisker plots of the (a) number of safety stops; (b) time taken by the human to complete the task; and (c) the
proportion of idle time spent by the human. Note, T-O refers to the task-oriented robot.

to supportive actions for either scenario. Fig. 6b shows the
human interacting with the supportive robot is faster but with
high variance, partly denying H3.

Human-Idle Time. We use a repeated-measures two-way
ANOVA to analyze the human’s idle time ratio as a measure
of task fluency. We compute this ratio by accumulating the
time the human waited for the robot to complete an action
before they could start the next one and dividing it by the
human’s task time. We find significant effects due to both
robot (F (3, 60) = 7.3, p < 0.05) and scenario (F (3, 60) =
5.95, p < 0.05) types. Fig. 6c shows that supportive robot
and hard scenario each led to higher idle time partially
affirming H3. This measure was adapted from [18] where
it was found to be correlated with higher human preference.

Supportive actions. The robot took on average fewer
supportive actions in the easy (1.9) scenario than the the
hard (2.6) due to fewer goal conflicts. The participants took
only 5 supportive actions overall and all of them took place
in the supportive robot condition.

Summary. The supportive robot confirms H1 in the hard
scenario by reducing interference; it partly confirms H3
since human’s idle time is increased, however, the human’s
task completion time is not significantly reduced. Also, the
supportive robot takes longer to complete this task.

B. Subjective Measures

We analyze some of the survey responses in Fig. 7. We
used recommendations from [22] for the following analysis.

Robot coworker proficiency. We perform a two-way
repeated-measure ANOVA on the Likert-scale from Table II
and find significant interaction (F (3, 60) = 13.9, p < 0.01).
The normalized responses in Fig. 7a show that participants
prefer the supportive robot in the hard scenario but have
no preference in the easy one affirming H1 for it. They also
show that people prefer supportive robot more when the task
difficulty increases but preference for the task-oriented robot
remains similar regardless of task difficulty.

Scenario Effect. We use a Wilcoxon signed-rank test to
compare individual scale responses from Table III. We find
significant scenario effect for both I2 (w = 0.0, p < 0.01)
and I3 (w = 34.0, p < 0.05). Fig. 7b indicates that
participants find the hard scenario more difficult to perform,
since I2 is reversed, affirming H4. It also leads to the

observation that people are more observant of the robot’s
actions in the hard scenario. A caveat is that the perceived
difficulty might also be an effect of the order of the two
scenarios, since they were kept constant in our study .

Safety Perception. We used a Wilcoxon signed-rank test
to compare the I4 scale item and do not find any significant
effect due to supportive actions. Fig. 7c shows that partici-
pants felt very safe for both robot types in our experiment.

Summary. We find that participants prefer the support-
ive robot as their coworker in the hard scenario affirming
H3; also, participants find the hard scenario more difficult
and pay more attention to the robot in it, supporting H4.

X. DISCUSSION

A surprising finding of our analysis was that supportive ac-
tions do not reduce safety stops in the easy scenario. Safety
stops can be caused by factors like an unavoidable conflict
between agent goals, uncertainty about each other’s goal,
and sensor error. We label a configuration as hard due to the
presence of more goal conflicts; this label does not allude
to the other factors. supportive actions in our work were
designed to reduce goal conflicts, they lead to fewer stops
on the hard task, but will need to be adapted for other sources
of conflict to be effective in different scenarios.

One might think that moving the human blocks close to
them would cause people to perceive the robot as helpful and
inflate supportive robot’s proficiency. However, our results,
which show that the supportive robot is only preferred in the
hard scenario, provide evidence for the human’s preference
relying on the situation-dependent suitability of the robot’s
action-selection.

Hoffman [18] found that collaborative fluency does not
track task-efficiency in team tasks. Ours is not a team task,
however, our results also show coworker acceptance to be
separate from either agent’s task-efficiency. We find sup-
portive actions to increase coworker acceptance but reduce
robot efficiency. They present a trade-off that needs to be
considered for designing robot behaviors. E.g., if a robot
is introduced into a manual process to reduce repetitive
tasks for humans and increase their job satisfaction, then
its acceptance might play a bigger role than its efficiency.
Our methodology helps highlight this trade-off by combining
the subjective and objective impact of supportive robot
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(a) Likert Scale (b) Individual Measures (c) Safety Perception

Fig. 7. Subjective Measures. Box-and-whisker plots of the (a) normalized survey response to Likert-scale items for the different robot type separated
by scenario; (b) response to measures of subjective task difficulty and attention to the robot for the two scenarios; and (c) safety perception for the robot
types. Note that the leftmost box in (b) and rightmost box in (c) have no height and so appear as a line at 5.0.

behaviors and applies to other shared-workspace human-
robot environments. We consider this methodology as one
of the contributions of our work.

XI. CONCLUSION AND FUTURE WORK

We introduce interaction-supporting actions and design
robot behavior that selects between these and task-oriented
actions by considering the human’s and its own goals. We
implement it on an autonomous robot and evaluate it in a
shared-workspace user study. The results show that this robot
increases human coworker preference in a scenario with more
goal conflicts but decreases efficiency as compared to a robot
that only takes task-oriented actions.

Our study illustrates taking actions to support interaction
while trading off on efficiency in an assembly task. Although,
the rationale from Sec. IV can help guide adaptation to
new domains, however, the actions apply only to similar
scenarios. In future work, we plan to develop a framework
for supportive behavior that can perform this reasoning based
on task-specific cost functions.

Participants took very few supportive actions towards the
robot. We believe their unfamiliarity with the task caused
uncertainty about allowed actions. An interesting extension
would be to apply this to an actual manufacturing task with
subjects who are familiar with it to test the generalizability
of our findings. We can also improve task naturalness by
increasing robot speed by employing better sensors and
models for human motion prediction.
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