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Abstract— Estimates of limb posture are critical for the
control of robotic systems. This is generally accomplished by
utilizing on-location joint angle encoders which may complicate
the design, increase limb inertia, and add noise to the system.
Conversely, some innovative or smaller robotic morphologies
can benefit from non-collocated sensors when encoder size
becomes prohibitively larger or the joints are less accessible
or subject to damage (e.g., distal joints of a robotic hand or
foot sensors subject to repeated impact). These concerns are
especially important for tendon-driven systems where motors
(and their sensors) are not placed at the joints. Here we create a
framework for joint angle estimation by which artificial neural
networks (ANNs) use limited-experience from motor babbling
to predict joint angles. We draw inspiration from Nature where
(i) muscles and tendons have mechanoreceptors, (ii) there are
no dedicated joint-angle sensors, and (iii) dedicated neural
networks perform sensory fusion. We simulated an inverted
pendulum driven by an agonist-antagonist pair of motors that
pull on tendons with nonlinear elasticity. We then compared
the contributions of different sets of non-collocated sensory
information when training ANNs to predict joint angle. By com-
paring performance across different movement tasks we were
able to determine how well each ANN (trained on the different
sensory sets of babbling data) generalizes to tasks it has not been
exposed to (sinusoidal and point-to-point). Lastly, we evaluated
performance as a function of amount of babbling data. We
find that training an ANN with actuator states (i.e., motor
positions/velocities/accelerations) as well as tendon tension data
produces more accurate estimates of joint angles than those
ANNs trained without tendon tension data. Moreover, we show
that ANNs trained on motor positions/velocities and tendon
tensions (i.e., the bio-inspired set) (i) can reliably estimate joint
angles with as little as 2 minutes of motor babbling and (ii)
generalizes well across tasks. We demonstrate a novel frame-
work that can utilize limited-experience to provide accurate and
efficient joint angle estimation during dynamical tasks using
non-collocated actuator and tendon tension measurements. This
enables novel designs of versatile and data-efficient robots that
do not require on-location joint angle sensors.
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Fig. 1. Schematic of tendon-driven system with 1 kinematic degree of
freedom and 2 degrees of actuation (motors) that pull on tendons with
nonlinear elasticity (creating a tension, fT,i). The motors are assumed to
be backdriveable with torques (τi) as inputs.

I. INTRODUCTION

Tendon-driven robots are becoming popular due to a num-
ber of advantages these designs can provide [1]–[3]. Elastic
tendons can increase energy efficiency by storing potential
energy and can protect actuators from impacts by dissipating
energy upon impact [4]–[7]. Additionally, tendon routings
offer flexibility to how torques and angular velocities at the
motors are converted to torques and angular velocities at
the joints [8]–[11]. Most importantly, tendon-driven systems
offer flexible placement options for the actuators, which
eliminate the need for motors to be placed on the joints
themselves. Proximal actuator placement moves the center
of mass towards the body of the robot thereby reducing
limb inertia and allowing for more efficient displacement
in quadrupeds or anthropomorphic robots [12]. However,
most successful state-based robotic control strategies need to
observe or approximate joint angles which is generally done
by placing sensors on the joints [3], [13] (in the absence
of alternatives such as visual feedback). Although sensors
in general have lighter mass than motors, this can still add
unwanted inertia to the limbs. These on-location sensors are
prone to motion noise and their wiring is often cumbersome
and poses a potential risk of damage. These adverse effects
become more pronounced for smaller, distal joints where the
mechanical design may make the joint inaccessible (e.g., in
the case of a tendon-driven finger in a robotic hand). One
alternative solution, which biology seems to take advantage
of, is to have non-collocated sensors (i.e., in the muscle
and tendon instead of the joint) and use fusion of sensory

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7778



information from actuators and tendons to predict joint
angles. It is interesting to note that biological systems do not
seem to have dedicated sensors that explicitly and uniquely
encode joint angles. Instead, they have sensors for muscle
(actuator) lengths and velocities (called muscle spindles,
[14]) and for tendon tensions (called Golgi tendon organs,
[15])1. Previous work has emphasized that a functional
(yet indirect) relationship exists between sensory states in
general and kinematic states (like posture) [1], [17], [18].
It is therefore speculated that these sensory signals may be
integrated through their spinal and supraspinal projections
to form internal representations of expected or virtual limb
position [19]–[22]. The existence (and possible use) of this
indirect relationship between sensory states and kinematic
states in biology implies it may be possible to use sensory
fusion in tendon-driven robots to infer joint angles from
actuator (e.g., motor angles) and structural (e.g., tendon
tensions) sensors, thereby removing the need for on-location
joint angle encoders.

While it is sometimes possible to derive analytical rela-
tionships among tendon tensions, motor rotations, and joint
posture given the precise equations for the kinematics and
dynamics, in practice it is often impractical or impossible to
obtain accurate and time-invariant models of such nonlinear
dynamical systems [3], [23]. Furthermore, even if an accurate
model of the system were available, these relationships (i)
would not generalize across changes in mechanical designs
or tasks and (ii) will become increasingly inaccurate as the
plant suffers mechanical changes due to either damage or
normal wear and tear [24]. Therefore, data-driven systems
that can efficiently create mappings between sensory infor-
mation are preferred in practical applications [23], [25], [26].

Here we introduce a framework to train artificial neural
networks (ANNs) from limited-experience via motor bab-
bling to be able to predict joint angles from sets of non-
collocated sensory information. As a proof of concept, we
simulated an inverted pendulum (controlled by two mo-
tors that pull on tendons with nonlinear elasticity), trained
ANNs on different sets of sensory information (i.e., actuator
and/or tendon tension data) for different durations of motor
babbling, and evaluated the performance of the ANNs and
their ability to accurately predict joint angle for different
unlearned movement tasks.

II. METHODS

A. Plant Definition and Equations

In order to determine the utility of observing different
sets of sensory information in a tendon-driven system it is
important to have a consistent model across trials—such as
a standard numerical simulation. As we aimed to conduct a
thorough and systematic experiment, it was also impractical
to use a physical system that is prone to imperfect modelling
and time-varying changes to physical parameters. For those
reasons, we have simulated a simple 1 degree of freedom

1There are additional biological sensors that detect stretch in the skin and
synovial capsule, but these do not directly encode joint position either [16].

tendon-driven system with 2 degrees of actuation that pull
on tendons with nonlinear stiffness (Fig. 1) such that we
can know/control the parameters that govern the system’s
dynamics and we can reliably conduct many experiments
on the same plant. We modelled the actuators as brushed
DC motors with no gearing to allow for the motors to be
backdriveable and considered the input to be motor torques
(τi). Similar to [27], the tension on the tendons ( fT,i, (1))
depends nonlinearly (exponentially) on tendon deformation
(εT,i), which is a function of the pendulum joint angle (θ j)
and the motor angle (θm,i).

fT,i(θm,i,θ j) = kT
(

exp(bT εT,i)−1
)

(1)

where εT,i =

{
rmθm,1− r jθ j; i = 1
rmθm,2 + r jθ j; i = 2

and bT >0, kT > 0 are shape constants.

The equations of motion for this system can therefore be
written as (2) where G is the torque due to gravity, and I, D,
and r represent the moment of inertia, damping coefficient,
and moment arm values of either the joint or the motors
(denoted by the subscripts j and m, respectively, and chosen
from [27]).


θ̈ j =

1
I j

[
−D j θ̇ j−G(θ j)+ r j

(
fT,1(θ j,θm,1)− fT,2(θ j,θm,2)

)]
θ̈m,i =

1
Im,i

[
−Dmθ̇m,i− rm fT,i(θ j,θm,i)+ τi

]
(for i ∈ {1,2})

(2a)

(2b)

Lastly, we express this system of equations by
its state space representations, (3), where the
~x = [θ j, θ̇ j,θm,1, θ̇m,1,θm,2, θ̇m,2]

T , ~u = [τ1,τ2]
T , and

y = h(~x) = θ j. {
~̇x = f (~x)+g(~x)~u

y = h(~x)

(3a)
(3b)

B. Motor Babbling Experiments

In order to efficiently learn a mapping from a particular
sensory set (~xi

sens) to joint angles, we performed motor
babbling experiments whereby we (i) passed a series of
random input torques to the motors, (ii) recorded all sub-
sequent sensory information, and then (iii) trained an ANN
to predict joint angle from that specific sensory set (Fig.
2). The babbling input torques were generated from low
frequency, band-limited white noise (1-10 Hz), offset by
uniformly selected input values. The offset value changed
every 4 seconds on average (0.25 Hz) and the amplitude of
the noise was chosen to restrict the input values within the
allowable range. This particular type of babbling differs from
the step inputs used in [3] in that here we have added low
frequency white noise to the step inputs which allows us to
search the solution space around equilibrium postures in the
hope of sampling the nullspace.
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Fig. 2. Proposed setup for training artificial neural networks on motor
babbling. Random input torques were generated from low frequency, band-
limited white noise (1-10 Hz), offset by uniformly selected input values
that change every 4 seconds on average. These motor babbling signals are
passed through the plant and all subsequent sensory information is recorded.
Lastly, an artificial neural network is trained on a particular set of sensory
information (~xi

sens) to predict joint angle (θ i
j,pred).

C. Training & Testing Artificial Neural Networks

In order to observe the effect (if any) that the duration
of motor babbling has on an ANN’s ability to predict joint
angle from a specific sensory information set, the subsequent
experiments were conducted for babbling durations between
30 and 360 seconds (resolution: 15 seconds). Four separate
sensory information sets were considered throughout this
paper: First, as a baseline set, we consider the set of all
motor states and tendon tensions as in (4).

~x 1
sens =

[
~θ T

m
~̇θ T

m
~̈θ T

m
~f T

T
~̇f T

T
~̈f T

T

]T
∈ R12 (4)

We then consider the bio-inspired set, which observes mo-
tor position and velocities and tendon tensions (5). This set
is reminiscent of the sensory signals available to biological
systems from the non-collocated muscle spindles and Golgi
tendon organs, respectively.

~x 2
sens =

[
~θ T

m
~̇θ T

m
~f T

T

]T
∈ R6 (5)

The last two sets, given by (6) & (7), consider the
sensory sets that do not include tendon tensions in any
form. The first considers motor position and velocities only

(this set parallels a hypothetical biological system that only
uses spindle information to determine joint posture), and
the second incorporates motor acceleration to see if it can
provide useful information about the plant dynamics not
captured by kinematics alone.

~x 3
sens =

[
~θ T

m
~̇θ T

m

]T
∈ R4 (6)

~x 4
sens =

[
~θ T

m
~̇θ T

m
~̈θ T

m

]T
∈ R6 (7)

For each babbling duration, 50 different babbling experi-
ments were conducted. For each experiment, a ANN (with
one hidden layer of 15 nodes) was constructed for each of
the four sensory sets where it was trained on 90% of the
babbling data and then tested on the remaining 10% for 50
epochs (divided randomly). Previous work determined this
architecture to be sufficient in the case of rigid tendons
and sufficed as an initial guess for this experiment. The
performance for each epoch was given by the RMS error
with the performance of the final epoch serving as the testing
performance of each ANN. The traces of testing performance
on babbling data versus epoch number were averaged over
the 50 trials to produce more robust curves where trends
can be more easily identified. When we overlap the average
testing performance versus epoch number curves for each
babbling duration, we get Fig. 3. From these plots we can
identify two main trends; (i) when testing on a subset of
the babbling data, networks trained with tendon tension data
(Fig. 3 bottom) outperform those networks trained without
them (Fig. 3 top), and (ii) this trend (as well as the overall
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Fig. 3. Overlaid plots of testing performance on babbling data (RMS
error in degrees) versus epoch number for all babbling durations of interest
(30,45,...,360 seconds). For the four sensory sets of interest, the overall trend
of each plot is conserved across changes in babbling duration. Additionally,
the artificial neural network trained on the bio-inspired set (i.e., motor
positions/velocities and tendon tensions) performed better than those neural
networks trained without tendon tension data.
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Fig. 4. Proposed flow chart for testing artificial neural network generalizability. First, one of the four movement tasks of interest is chosen (where joint
angle and/or stiffness are prescribed either sinusoidal (Sin) or point-to-point (P2P) trajectories). A feedback linearization controller then calculates the input
torques needed to produce the desired movements, which are then passed through the plant to produce the experimental joint angle (θ j,exp) as well as the
four sensory sets of interest (~xi

sens). These sets are then passed through the artificial neural networks (ANNs) that were trained on babbling data to predict
joint angle (θ i

j,pred). The experimental and predicted value can then be compared to determine each ANN’s ability to generalize to each movement task.

shape of each curve) do not seem to depend on babbling
duration. This second observation is to be expected as the
networks will only be tested on data similar to the training
data. Therefore, in order to address the effect that babbling
duration has on the overall performance of these predictive
ANNs, we must consider how they ANNs generalize to
different types of movement tasks that the ANNs have not
been exposed to.

D. Generalizing to Different Movement Tasks

While it is important to understand how these ANNs
performed on the test data (random 10% sample of babbling
data) to identify whether different sensory sets can be used
to predict joint angles sufficiently, it is perhaps more im-
portant to understand if these limited-experience ANNs can
generalize to different types of movements. To adequately
address each ANNs ability to generalize, we needed to
identify movement tasks that were representative of most
typical movements. An enabling feature of tendon-driven
system with tendons with nonlinear stiffness is the ability
to control joint angle independently of joint stiffness (K j,
(8)) by choosing different tendon tensions in the nullspace
of the joint dynamics. Therefore, by defining four different
movement tasks where joint angle and stiffness were pre-
scribed either sinusoidal or random point-to-point trajectories
within the range of these values (10 min @ 1 kHz), we
were able to generate movement tasks that categorized most
typical movements. The sinusoidal trajectories were assigned
random frequencies between 0.125 and 1 Hz to ensure that
the movements were not (i) too fast or (ii) phase locked. The
amplitude was chosen to sample the entire range of either
joint angles or joint stiffness. The point-to-point trajectories
were generated by randomly jumping to values that were
uniformly sampled from the range of possible values every
4 seconds on average (0.25 Hz) [3].

K j =
∂

∂θ j

[
r j

I j

(
fT,1(θm,1,θ j)− fT,2(θm,2,θ j)

)]
(8)

In order to calculate the sensory sets associated with
each movement task, a feedback linearization algorithm was
used. The reader is directed to [27] for a more thorough

explanation of the controller, but in short, if we consider the
outputs of the system to be y = h(~x) = [θ j,K j]

T , then we can
completely transform the nonlinear system of equations, (3),
into a linear system that can be controlled by feedback. We
find that we must differentiate the joint angle 4 times and
the joint stiffness 2 times in order for the input torques to
appear, which corresponds to a total relative degree of 6 for
a system of equations with 6 states, which is a criterion for
use of feedback linearization, (9).y [4]

θ j
= L4

f hθ j(~x)+LgL3
f hθ j(~x)~u

ÿK j = L2
f hK j(~x)+LgL f hK j(~x)~u

(9a)

(9b)

~u =

[
LgL3

f hθ j(~x)~u
LgL f hK j(~x)~u

]−1([ vθ j

vK j

]
−
[

L4
f hθ j(~x)

L2
f hK j(~x)

])
(10)

By choosing ~u to be (10), we can choose ~v = [vθ j ,vK j ]
T

such that the (now linear) system stabilizes around the
prescribed reference trajectories. Note that Ln

f hθ j and Ln
f hK j

represent the n-th Lie derivatives of the functions hθ j(~x) =
θ j and hK j(~x) = K j along f (~x), respectively. Addition-
ally, LgL3

f hθ j(~x) and LgL f hK j(~x) are the Lie derivatives
of L3

f hθ j(~x) and L f hK j(~x) along g(~x), respectively, where
LgLn

f hθ j(~x)= 0 for i∈{1,2} and LghK j(~x)= 0. It is important
to note that the use of a feedback linearization controller
(that relies on an accurate model of the system) was used
to (i) prescribe desired movement trajectories and (ii) fully
observe the internal sensory states. As such, it is not a
part of the proposed framework to build ANNs to predict
joint angle but instead a tool used to generate systematically
varied movements and their associated sensory sets needed
to test the performance and generalizablity of the proposed
networks.

Once the experimental sensory sets were generated for
each movement type, we tested how well each ANN was able
to recover the actual joint angle of the system by calculating
the RMS error of the predicted joint angle and the actual joint
angle (given by the forward simulation of the plant). This was
repeated 50 times (50 Monte Carlo runs) for each babbling
duration so that we may calculated the average RMS error
across trials. For more explanation of how these ANNs were
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trained and tested, please see the supplementary video that
demonstrates how one set of ANNs generalized to a specific
task.

III. RESULTS

As we can see in Fig. 3, ANNs trained with tendon tension
data outperform those networks trained without them. We
can see that ANNs trained with the bio-inspired set will
generally converge to a performance value comparable to
the ANNs trained with the baseline set (< 1◦ RMS error),
which is better than the performance of the ANNs trained
without tendon tension. As previously mentioned, while it is
useful to know that incorporating tendon tensions in these
ANNs produces better joint angle estimates when testing
on babbling data, the results on Fig. 3 do not show how
these ANNs generalize to movements that are different than
the babbling data. Therefore it was necessary to test these
ANNs on different types of movements to observe how well
they generalize and how the duration of babbling affects the
performance.

We can see from Fig. 5, where we plot average RMS
error versus babbling duration, that for each movement type
the bio-inspired set generalizes (i) better than those ANNs
trained without tendon tension data and (ii) nearly as well
as the baseline (i.e., full) set for babbling durations longer
than 2 minutes. It is important to note that the babbling
data is completely random and as such we will expect
some jaggedness in the results. We can also see that the
ANN trained on all motor states generalized well for longer
babbling durations (≥ 5 min) for every task except the one
with point-to-point joint angle and sinusoidal joint stiffness
trajectories (Fig. 5, top right). Lastly, the ANN trained on just
motor position and velocity data performed poorly across all
movement tasks, in agreement with the testing performance
on babbling data. From these results, we find that an ANN
can be trained with a bio-inspired set of sensory data for as
little as 2 minutes of motor babbling to produce a joint angle
predictor that (i) performs comparably to an ANN trained
on all sensory data and (ii) generalizes to most types of
movements. It is worth noting that the standard deviations
for the ANNs trained on the bio-inspired set and the set
of all motor and tendon tension states are comparable as
the performances converge (see supplementary figures on the
Github repository).

IV. DISCUSSION

We created a framework for joint angle estimation
by which artificial neural networks (ANNs) use limited-
experience from motor babbling to predict joint angles. As
vertebrate animals seamlessly learned to control redundant
tendon-driven limbs with (i) no dedicated joint-angle sensors
by (ii) combining different non-collocated sensory informa-
tion (e.g., muscle length via muscle spindles and tendon
tension via Golgi tendon organs) we therefore explored
whether and how ANNs might predict joint angles when
trained on different sets of sensory data (each containing
different information) in a tendon-driven robotic system. We
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Fig. 5. Plots of the average performance (RMS error) versus babbling
duration (minutes). For each babbling duration, 50 artificial neural networks
(ANNs) were trained from babbling data and the average error when testing
on each of the four movement tasks were plotted. The ANN trained on the
bio-inspired set (i) outperforms the ANNs trained without tendon tension
data and (ii) approaches the performance of the baseline set (”All Motor
and Tendon Tension States”) for babbling durations greater than 2 minutes.
Please see the video online for a demonstration of how these ANN were
trained and how they performed for different tasks.

found that ANNs trained with sets of sensory data generated
from motor babbling that include tendon tension (either the
bio-inspired set or the set of all motor and tendon tension
states) performed better than those ANNs trained with sets
of sensory data that did not include tendon tension data
(Fig. 3). Specifically, the bio-inspired set (Fig. 3, bottom
left) performs comparably to the set of all motor and tendon
tension states (Fig. 3, bottom right) when testing on a subset
of babbling data with RMS prediction errors < 1◦.

By comparing performance across different movement
tasks we were able to determine (i) how well each ANN
(trained on the different sets of sensory data generated by
motor babbling) generalizes to tasks it was not exposed to
(sinusoidal and point-to-point) and (ii) what effect (if any)
the amount of sensory data (i.e., duration of motor babbling)
has on each ANN’s performance. In Fig. 5, we found that,
in general, the ranking of average ANN performance when
generalizing to different dynamical tasks was consistent with
the training performance ranking seen in Fig. 3. Additionally,
we found that ANNs trained on the bio-inspired set of
sensory data generalize as well as those ANNs trained on
all motor and tendon tension states when provided with at
least 2 minutes of babbling data. Therefore, we conclude
that it is possible to train an ANN on limited non-collocated
measurements of motor position, motor velocity, and tendon
tension only to reliably estimate joint angles during a variety
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of movements. Importantly, this novel bio-inspired state
estimation framework with non-collocated sensors in tendon-
driven systems can provide accurate joint angle estimation
during dynamical tasks with limited data if tendon tension
measurements are available.

While these results serve as an important proof-of-concept
for such a framework, there are potential limitations based
on the assumptions made. Specifically, these results were
generated for a specific type of motor babbling, from net-
works of a specific design and set of hyper-parameters, and
on particular mechanical plant. It is therefore critical that
future work focus on quantifying the affects that changes to
these parameters may have on the performance, learning, and
robustness of networks designed to predict joint angles from
limited-experience, non-collocated sensory data.

Lastly, this work has the important consequence of sup-
porting the neurophysiological hypothesis that Golgi ten-
don organs (commonly assumed to be used to estimate
joint torques) may in fact be a critical contributor to mus-
cle spindle afferents to estimate joint kinematics. Such a
co-evolutionary relationship has been conjectured in the
past [28], and is now supported by our computational work.

SUPPLEMENTARY INFORMATION
The code used in this study and additional figures/movies

can be accessed through the project’s Github repository at:
https://github.com/danhagen/iO-IROS-2020.
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