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Abstract— Automated vehicles need to not only perceive their
environment, but also predict the possible future behavior of
all detected traffic participants in order to safely navigate
in complex scenarios and avoid critical situations, ranging
from merging on highways to crossing urban intersections.
Due to the availability of datasets with large numbers of
recorded trajectories of traffic participants, deep learning based
approaches can be used to model the behavior of road users.
This paper proposes a convolutional network that operates on
rasterized actor-centric images which encode the static and
dynamic actor-environment. We predict multiple possible future
trajectories for each traffic actor, which include position, veloc-
ity, acceleration, orientation, yaw rate and position uncertainty
estimates. To make better use of the past movement of the
actor, we propose to employ temporal convolutional networks
(TCNs) and rely on uncertainties estimated from the previous
object tracking stage. We evaluate our approach on the public
“Argoverse Motion Forecasting” dataset, on which it won the
first prize at the Argoverse Motion Forecasting Challenge,
as presented on the NeurIPS 2019 workshop on “Machine
Learning for Autonomous Driving”.

I. INTRODUCTION

Predicting the future motion of other traffic participants,
implicitly or explicitly as in this work, is key to behavior
planning in automated vehicles [1], [2], [3], [4]. This holds
in particular for challenging maneuvers like lane merging
on highways or crossing an intersection, where accounting
for the behavior of other road users is vital for the safe and
successful execution of the planned manoeuvre. Furthermore,
an adequate long-term prediction of other traffic participants
enables behavior planning on an extended planning horizon,
so that safety is increased as critical situations can be
detected early and reacted upon, and passenger comfort as
well as driving efficiency can be increased.

In literature, motion prediction of road users is a well-
studied field [5] dating back to early approaches using a
Kalman filter in combination with kinematic models [6].
These classical approaches, however, cannot adequately ac-
count for driver behavior and the driving environment and
thus perform badly for long-term predictions. Extensions
of these classical approaches, e.g. with Gaussian processes
[7], solve some of these problems, but come with other
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(a) Synthetic input image.  (b) The input image with the

predicted trajectories overlaid.

Fig. 1: Examples of the input and output of the prediction
network. The input image (a) encodes other traffic partic-
ipants and their previous motion (yellow), lane geometry
(colored centerlines and light grey outline) and drivable area
(darker grey). In (b), six forecasted trajectory hypotheses
are displayed along with their estimated probabilities and
estimated position uncertainties. The circles are centered on
the predicted positions and the radius corresponds to two
times the predicted standard deviation. The thin red line
shows the ground truth trajectory.

limitations, as highlighted in [5]. Recently, advances in
neural networks [8] as well as the availability of motion
forecasting datasets, e.g. [9], gave rise to approaches based
on neural networks [10], [11], [12], [13].

In this work, we build upon the approach presented by
Cui et al. [13] that creates synthetically generated actor-
centric images and the actor state as the input for a mainly
convolutional neural network. An example of such synthetic
images can be seen in Fig. 1a. An appealing key idea of [13]
is the introduction of a novel loss function, which allows the
network to learn predicting multiple hypotheses efficiently
without additional annotation for manoeuvre classes. Moti-
vated by the good results achieved by Cui et al., we enhance
and further improve the performance of that approach with
a number of new innovations.

Firstly, we extend the network to allow producing es-
timates for the uncertainty inherent in the predicted tra-
jectories. This can be seen in Fig. 1b, where the uncer-
tainty is visualized as circles around the predicted positions.
Secondly, we add estimated uncertainties from a previous
tracking stage to the network input to further support the
assessment of the inputs; and thereby improve the quality
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of the predictions, as well as the quality of the hypothesis
probabilities and the estimated uncertainties. Thirdly, we
introduce multi-task learning with additional loss functions to
cover additional vehicle state dimensions, namely velocities,
accelerations, orientation and yaw rate. Lastly, we include
the past trajectory of the actor as an input to the network
and process it with a temporal convolutional network (TCN).
As a result, the proposed network architecture explicitly
considers the past trajectories.

We evaluate our approach on the publicly available “Ar-
goverse Motion Forecasting” dataset [9]. As announced at
the NeurIPS 2019 workshop on ‘“Machine Learning for
Autonomous Driving”, our approach won the first place on
the public Argoverse Motion Forecasting challenge in 2019.

II. RELATED WORK

Forecasting future motion of traffic participants has been
addressed extensively in the past, and is currently a very
active research topic. For short prediction horizons of one
second or less, simple kinematic models are often used, e.g.
in Kalman filters [6], as the short-term motion of vehicles
is mostly determined by kinematics. However, for larger
prediction horizons of several seconds, vehicle motion is also
largely dependent on other traffic participants, driver inten-
tions and road geometry. In order to simplify the prediction,
several approaches attempt to explicitly model the possible
maneuvers a vehicle can perform [12], [14]. In contrast, the
approach presented in this work does not explicitly model
possible maneuvers, but relies on a neural network to learn all
possible maneuvers from training data. Additionally, Ziegler
et al. [15] propose to generate a list of possible future paths
that a vehicle can take using constraints from map data. The
approach in this work also requires map data, but it is only
used as an input to the neural network, and not to explicitly
generate trajectory proposals. We thereby do not constrain
the trajectory hypotheses to always follow driving lanes or
maintaining a certain distance from the lane boundaries,
as many human drivers also do not obey these constraints
in the real world. Many other approaches only predict a
single trajectory per traffic participant [16], [14], while our
approach generates multiple possible future trajectories for
each actor and scores them with probabilities.

The approaches in [11] and [17] propose the prediction of
the vehicle environment using dynamic occupancy grid maps.
While these approaches are also able to generate multiple
future paths for each actor, the output representation is an
occupancy grid map, where the information of the single
actors is lost. The approach presented in this work, however,
generates multiple trajectories as explicit lists of future states,
which include position, velocities, acceleration, etc.

Motion forecasting methods are often based on recurrent
neural networks (RNNs), because of their capability to pro-
cess and generate sequences, which are in these applications
a sequence of objects states, i.e. trajectories. Mercat et
al. [10] use a long short-term memory (LSTM) [18] to
predict multiple future trajectories per traffic actor, jointly
for all traffic actors in a scene, and scoring the trajectories

using self-attention layers. The approach in [19] also utilizes
LSTMs and attention for jointly predicting trajectories, but
introduces latent variables for generating multiple trajectories
per traffic actor. In our work, we employ a simpler, feed-
forward architecture that also predicts multiple trajectories
for each actor and can be parallelized across all traffic actors.

Cui et al. in [13] encode map information and the state
of the traffic participants in synthetically generated actor-
centric images and use it as the input to a mainly con-
volutional neural network. In addition, they define a novel
Multiple-Trajectory Prediction (MTP) loss, which allows
the network to learn multiple hypotheses efficiently without
additional annotation for manoeuvre classes. As shown in
their work, predicting multiple possible trajectories for each
traffic participant leads to better results than generating just
one trajectory. This is due to the problem of mode averaging,
which means that multiple possible maneuvers, e.g. turning
left or going straight, are averaged into a single mode,
which is in some cases (e.g., at intersections) an unrealistic
manoeuvre.

III. METHOD

In this section, we outline the problem of motion predic-
tion for traffic participants, shortly recap on the method pro-
posed by Cui et al. in [13] and then present our modifications
to it.

A. Problem Formulation

In order to train a neural network for trajectory prediction,
we need a set of recorded trajectories of traffic participants.
These can be extracted from data recorded from a vehicle
equipped with sensors such as cameras, lidars and radars,
infrastructure sensors or drones. Systems to detect objects in
sensor data and track them in time are a necessity for today’s
autonomous driving [20], so we assume such a system is
already in place. Many such systems employ a variant of
the Kalman Filter, e.g. an LMB filter [21] [22]. With such
a system in place, trajectories of traffic participants can then
be easily recorded and used for training a prediction system
[9], as it is shown in this work.

We denote the state of an individual traffic participant
at the time step j with S;;. The states comprise all data
that is inferred by the tracking system, i.e. position in x
and y coordinates, velocity v, acceleration a, orientation ¢
and yaw rate ¢. The task is then to predict the future states
[Si(j+1)s - - -+ Si(j+)] for each actor 4, up to the prediction
horizon H, given the current and past states of all traffic
participants and map data M. The prediction horizon H is
typically equivalent to several seconds, as this is required for
the motion planning to handle complex urban traffic scenar-
ios. M is a high-definition map, containing road polygons,
lane centerlines and polygons indicating drivable area, to
give additional context information to the neural network.
Such maps are already employed in most state-of-the-art
motion and behavior planning systems in automated vehicles.
The maximum number of past states that we process in this
approach is denoted by 7'. Note that there may not be exactly
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T past states available for every traffic participant, as traffic
actors may appear in and disappear from the perceptible field
of the sensors. We require past data to be equally-spaced in
time, e.g. at a constant sampling frequency of 10 Hz.

B. MTP Background

To aid the understanding of our approach, we recap on
the MTP method proposed by Cui et al. that composes the
basis of this work. There, rasterized images, which encode
information about the scene in a bird’s eye view, are used as
the main input to the prediction network [13]. Since each
traffic actor is predicted individually, one input image is
generated for each actor, using the information of a high-
definition (HD) map and the other traffic participants. From
the HD map, drivable area, road polygons and lane center-
lines are rasterized on top of each other. While drivable area
and road polygons are rendered with separate fixed colors,
the color of the lane centerlines encodes the direction of the
lane, relative to the actor of interest. The actor of interest
is always rendered centered near the bottom of the image,
pointing upward, and the other image contents are rotated
and shifted accordingly. The current state S;; and future
states are also adjusted according to this transformation.
Other traffic participants are also rendered, but in a different
color (yellow) than the actor of interest (red). Also, all traffic
participants’ positions in previous time steps are rendered
with decreasing brightness to produce a “fading” effect. The
input image (Fig. 1a) is then processed by a CNN in order
to generate features.

Besides the image, the network in [13] also receives the
current state of the actor of interest at time ¢;. In [13],
this current state comprises the current (observed) velocity,
acceleration and yaw rate of the actor. These features are
concatenated with the features generated by the CNN and
then fed into a series of two linear layers, which generate
the output vector. This output vector can be reshaped to be
a set of M possible trajectory hypotheses 7;,,;, where m =
1...M for the actor of interest 7, as well as an estimated
probability for each hypothesis to actually occur. M is a
design parameter and fixed after the network creation. The
output of the network is a vector, which can be reshaped to be
of dimensions M x (2H +1), which can be interpreted as M
trajectories with predictions over H time steps, where each
prediction contains x and y coordinates, plus an additional
probability per trajectory.

The loss is backpropagated only for the best matching
trajectory and the predicted probabilities:

M
EZ‘ITP = aclassﬁgjl‘ass + Z Im:m" L(Tij; 7-imj)z (1)
m=1
where ﬁfjl.“ss is a cross-entropy loss that is calculated for
the estimated probabilities of the hypotheses and 455 1S @
tunable hyperparameter. I,,,—,,~ is a binary function, which
evaluates to 1 if m = m™ and to O otherwise. The mode m*
is the mode that fits best to the ground truth trajectory:
m* = argmin dist(7T;j, Timj)- ()
me{l,....M}

dist(7;j, Timj) can be any single-mode distance function, e.g.
an MSE between the predicted trajectory positions and the
ground truth positions. In [13], this can also be a function
comparing the angle formed between the end positions of
both trajectories and the actor position at time j. L(7;;, Tim;)
is a single-trajectory loss between the trajectory of mode m
and the ground truth. In [13], this is an MSE loss between
the x and y positions of both trajectories.

C. Our Approach

Similar to [13], we use rasterized images as the main input
to the network, as this is an efficient method to represent
map information and the dynamic surrounding of the actor of
interest. We also use MobileNetV?2 [23] as the CNN, but any
other CNN could also be used instead. The overall structure
of our network is shown in Fig. 2. Besides the image, we also
use current and past state of the actor of interest as inputs
to the network. A TCN extracts features from the past and
current states, which are then concatenated with the features
from the CNN and the current state. A series of three linear
layers calculates the final output, which are the M predicted
trajectories.

In the following, we describe the modifications we made
compared to the approach in [13].

1) Using inherent uncertainties: In [13], the actor state
that is fed into the network in addition to the rasterized image
encodes the current velocity, acceleration, and yaw rate. We
propose to additionally make use of the uncertainties that
are estimated in Kalman filter based object tracking systems.
More specifically, we use the variances P that are estimated
for all components of the actor state. This means that the
dimension of the state input and the input of the TCN is
increased to be 2S5. Adding the variances as an additional
input can help the network to better estimate if trajectories
are at all possible due to uncertainty in the state, and to
estimate the resulting probabilities and uncertainties, thereby
improving the overall quality of the generated trajectories.

2) Utilizing past trajectories explicitly: Furthermore, we
propose to use not only the current state of the actor, but
to also explicitly use states from previous time steps for
the prediction. This is motivated by the assumption that the
current state does not fully encode the history of the actor
of interest, and that more information can be gained for the
prediction of the actor by processing its past states. While
the network in [13] receives the motion history implicitly
via the “fading” effect in the rasterized images, an explicit
usage of the data as an additional input can be superior.
The additional data contains not only past positions, but also
the past velocities, accelerations, orientation, yaw rate and
tracking uncertainties, which are difficult to encode in and
extract from rasterized images.

For processing this information, we propose to use a
temporal convolutional network (TCN) [24]. TCNs are,
similar to recurrent neural networks (RNNs), capable to
process sequences and extract temporal features from them.
TCNs showed in many tasks superior performance compared
to RNNs as shown in [25], so we decided to use them
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Fig. 2: Structure of the proposed network. The inputs are a rasterized image of the static and dynamic environment of the
actor to predict, the current state of the actor with uncertainties estimated by a previous object tracking stage, and the past
states of the actor, also with uncertainties. The image is processed by a CNN to produce features, which are concatenated
with the current state and features extracted from the past states by a TCN. A series of linear layers produces the predicted
trajectories, comprised of future states and position uncertainties.

in our approach. The TCN in our network receives the
past and current states [S;(j_1,, 1), -,Sij], as well as the
corresponding state uncertainties, as the input. T;; is the
number of available past states for this actor, which can range
from one to the maximum 7. The TCN generates a number L
of output features, describing information extracted from the
past trajectory. The TCN features are later combined with the
features obtained from the CNN and with the current state of
the actor of interest, to then predict the output trajectories.

3) Multi-task learning: The model output are a set of M
possible hypotheses for the actor of interest and estimated
probability for each hypothesis to actually occur, same as in
[13]. In contrast to [13], we propose to generate not only
future position estimates, but also to predict all the other
features of the states [S;(;11),...,S; (j+m)), i.e. velocities,
accelerations, etc. This multi-task learning can help the
network to learn faster and generalize better, as shown in
[26], [27]. The resulting single-mode loss for Eq. (1) is then

oA ) — pos v a
L(ng ) sz]) - aposLimj + avLimj + aaLimj+

gL, + oLt 3)

imyj*

We employ MSE losses for all of these loss terms L,
except for Lf,fj, which is covered in the next section. All
« values are tunable hyperparameters. Note that we actually
use two values [cos(¢), sin(¢)] to represent the orientation of
the vehicle, which proved to be easier for the neural network
to estimate than the raw euler angle ¢, as euler angles are
prone to ambiguities. As multiple hypotheses are generated,
we use the MTP approach to only calculate gradients for
the trajectory that is closest to the ground truth, as stated in
Eq. (1).

4) Estimating position uncertainties: Predicting uncer-
tainties for each trajectory point can be helpful for the
following motion planning stage, as it is another indicator
of how much the predicted trajectory can be trusted, aside
from its predicted probability. In [13], an MSE loss was

employed for L} and no uncertainties were estimated. In

[16], an alternative loss function which learns the position as
well as the uncertainty of the prediction simultaneously was
presented, which bases on the assumption that the predicted
position errors are sampled from a half-normal distribution.
There, it is used to predict only a single trajectory, but it can
easily be applied to multiple trajectory prediction:

pos d d?m(j«kh)
Li=2 52—
h=1 im(j+h)
Here, 6 denotes the uncertainties (standard deviations) es-
timated by the network, and d are the actual euclidean
position distances between the ground truth trajectory and
the estimated trajectory at each predicted point j + & of the
generated trajectory m. Generating the uncertainty estimates
is implemented by increasing the size of the generated output
vector per predicted trajectory, so that it has dimensions
Mx((S+1)-H+1).

+ log &im(j+h)> : “4)

As an alternate method for predicting uncertainties, we
also explored the possibility to use an MSE loss for the
position (as in [13]), and employing an additional MSE loss
for the uncertainty:

H
1 A
Lo =2 2 (! [XiGg+n) = Kim(im| |, +
h=1

Qg (dim(j+h) - Czim(j+h))2>~ (5)

Here, x;(j41) is the vector of x and y positions of the actor
i at timestep j+h, while X;,,,(;4 1) are the corresponding pre-
dicted position values. a, is a hyperparameter that controls
the influence of the uncertainties on the total loss. cfim(j+h)
is calculated from G,,(;4n) and should ideally be equal to
E [dim(j+n)], which, using the half-normal assumption, is

. 5 i () V2
equal to U—\/; This means that d;,(j4p) = W%;)\f can

be used to calculate cfim(j+h) for Eq. (5). This approach is
closer to the implementation in [13], as it also uses MSE
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loss for position.

We report results for both the modified MSE position
loss and the combined trajectory and uncertainty loss in the
following section, where we refer to the variant using the
position loss of Eq. (4) as Variant A, and to the variant using
the position loss of Eq. 5 as Variant B.

IV. EXPERIMENTS

Here, we shortly describe our experimental setup, outline
the metrics that we use for the evaluation of our method,
and then highlight our results on the Argoverse Motion
Forecasting dataset. We also provide details about the actual
implementation.

A. Experimental Setup

We evaluate our approach on the Argoverse Motion Fore-
casting Dataset v1.1 [9]. This dataset consists of 323,557
challenging scenarios of 5 seconds each, sampled at 10 Hz,
which were extracted from more than 1000 hours of driving
on public roads in Miami and Pittsburgh. In each scenario,
the positions of all detected traffic actors are given, and the
movement of one traffic actor of interest shall be predicted.
Aside from the large number of scenarios, an advantage of
this dataset is the availability of detailed HD maps, which
are required for implementing our approach.

The dataset is split into 205,942 scenarios for training,
39,472 scenarios for validation and 78,143 scenarios for
testing. In the test dataset, labels are not available, but a
dedicated server can be used to upload results and obtain
scores of the proposed approach. This server was also used
for the Argoverse Motion Forecating challenge, which was
a competition held by Argo AI from September 2019 to
December 2019 [28]. In the competition, two seconds of
recorded trajectories were available per scenario as past states
of the traffic participants, while three seconds of future
trajectories should be predicted for the actor of interest in
each scenario of the test dataset. In our experiments, we
therefore use the same split between past states and future
states, that is two seconds of history and three seconds as
the label/ground truth. Note that our approach can also be
applied for larger values of the prediction horizon H and is
not restricted to three seconds.

As the trajectories in the data are noisy and contain only
positions, we run an extended Kalman filter (EKF) with
a Constant-Turn-Rate-and-Acceleration (CTRA) state model
to estimate the missing quantities and smooth the recorded
trajectories. Since the dataset does not contain object extents
or classifications, the generation of the synthetic images
had to be implemented using hypothesized object extents.
Hence, the dataset is not optimal for the implementation
of this approach, but as shown in the following sections,
it nonetheless performs well, and might perform even better
on datasets which contain these additional features. In our
experiments, we noticed that a large part of the trajectories
in the dataset are going more or less straight, which lead
to worse performance of the network in predicting turning
maneuvers. To counteract this, we added random rotations

to the images, so that the extraction of the map features is
more robust.

B. Evaluation Metrics

As evaluation metrics, we use the metrics described in
[9], which are also used in the Argoverse challenge. The
minimum Final Displacement Error (minFDE) calculates the
final displacement (at time %) of the best of the top-K most
probable hypotheses:

; 5 2 ; 2
pe i \/(TH Trm)? + (Ya — Ukm)?
This means that with varying K, the number of hypotheses
that are evaluated can be modified. The minimum Average
Displacement Error (minADE) then calculates the average
displacement over the whole prediction of the hypothesis
with minimum FDE. The Drivable Area Compliance (DAC)
calculates the average percentage of the top-K hypotheses
that are on the drivable area at all times. Miss Rate (MR)
calculates the percentage of scenarios in which none of the
top- K hypotheses is closer than a threshold 0, to the ground
truth trajectory. For the Argoverse challenge, the threshold
0y was set to 2.0 meters.

The metrics minADE and minFDE encourage the gener-
ation of multiple trajectories in the network, as the network
then has multiple attempts at generating a trajectory that
is near to the ground truth. As shown by [13], using a
metric that just compares the most probable hypothesis to
the ground truth favors single-hypothesis models, which
optimize for averaged prediction error while generating un-
realistic trajectories in many cases.

minFDE =

C. Implementation Details

The network was implemented in PyTorch [29]. We used
the Rectified Adam Optimizer [30] with Lookahead [31], and
stopped training after 40 epochs. The initial learning rate was
set to 10~2 and reduced by a factor of 10 every 12 epochs.
For the challenge, we trained on both training and evaluation
set to further improve results, but the results in this paper
are achieved by using only the training dataset. The values
for the hyperparameters used for both variants are listed in
Table II. We use the Mish activation function [32] throughout
the network (except for the pre-trained MobileNetV2 CNN).
The uncertainties are passed through a softplus activation, in
order to ensure that they are always positive. For the TCN,
we employ a similar structure to the one defined in [25],
with 5 layers of convolutional blocks with a kernel size of
2, which reduces the number of features from 2S5 = 14
to 6, 6, 4, 4 and finally L = 2 features. Using 5 layers
ensures that the receptive field of the TCN is large enough
to cover enough past states, as the receptive field increases
exponentially with the depth of the network.

The model runs inference in 2.0ms with batch size
B =1 and in 7.4ms with B = 32, when using NVIDIA
TensorRT acceleration (generation of images and upload-
ing/downloading data to/from GPU excluded) with ONNX
Runtime on an NVIDIA Geforce 1080 Ti.
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TABLE I: Results of our approach (Variant A and B) on the test dataset, compared to the Argoverse Baseline from [9] and

our re-implementation of the MTP model from [13].

K=1 K=3 K=6
Model minADE; minFDE; DAC; MR; | minADE3 minFDE3 DAC3 MR3 | minADEg minFDEg DACg MRg
Argoverse Baseline 2.96 6.81 090  0.81 2.67 6.17 090  0.75 2.34 5.44 090  0.69
MTP (M = 3) 2.11 4.63 098  0.68 1.28 2.41 098 046 1.28 2.41 098 046
MTP (M = 6) 2.14 4.68 0.98  0.68 1.35 2.59 098 0.37 1.04 1.70 097 0.26
Variant A (Eq. (4)) 1.90 4.19 098  0.63 1.19 2.28 098 0.31 0.94 1.54 097 0.21
Variant B (Eq. (5)) 1.99 4.37 098  0.66 1.22 2.34 098 033 0.97 1.60 097 024

TABLE II: Values for the hyperparameters o from Eq. (1)
and Eq. (3).

Model Qelass Qpos Qu Qg Qg Qi Qg
Variant A (Eq. (4)) 0.2 1.0 005 02 10 1.0 -
Variant B (Eq. (5)) 04 1.0 0.1 03 10 10 02

D. Results

In Table I, we report the results obtained by our approach,
compared to the Argoverse Baseline from [9] and to our re-
implementation of the MTP model from [13]. For the MTP
model, we use two configurations, one with M = 3 and one
with M = 6. With Variant A, we refer to our model using
the position loss in Eq. (4), while Variant B uses the position
loss in Eq. (5).

We report all metrics for K = 1,3, 6. Furthermore, our
evaluations show that with our training setup, the MTP
model achieves heavily improved results, compared to the
Argoverse Baseline. In addition, increasing M from 3 to 6
significantly improves all metrics at K = 6, as the metrics
reward generating more trajectory hypotheses. However, our
approaches with variants A and B achieve even better results
in most metrics, outlining the benefits of the new network
structure and our training setup. Variant A performs slightly
better than Variant B in most metrics. In spite of that,
for assessing the quality of the predictions, the predicted
uncertainty must be evaluated as well.

(a) Variant A

(b) Variant B

Fig. 3: Visualization of the predicted trajectories with esti-
mated position uncertainties. The circles are centered on the
predicted positions and the radius corresponds to two times
the predicted standard deviation.

In order to visualize the predicted uncertainties for both
variants, we look at an exemplary intersection scenario from

the validation set, as depicted in Fig. 3. It is shown that
while both variants produce similar predictions, the esti-
mated uncertainties of the predictions are quite different. For
evaluating the estimated trajectory uncertainty quantitatively,
we use reliability diagrams as in [16]. These are generated
by measuring the observed distance between the predicted
points of the best matching trajectory versus the ground
truth, and then computing the fraction of observed errors
that fall inside the expected range indicated by the predicted
variance. This means that for a predicted variance of 1, we
would expect about 68% of observed errors to be within the
predicted one sigma, as we assume a half-normal distribution
of observed errors. A reliability diagram for the variants A
and B is depicted in Fig. 4, where the observed error fraction
is plotted versus the predicted error fraction. The closer the
plot is to a diagonal line, the better the estimated variances
resemble the true error distribution. From the graph, we
can see that both variants are quite well aligned with the
reference line, while Variant B produces slightly better
uncertainty estimates than A. Variant A, however, shows
better performance with its predictions according to Table I,
while the quality of the predicted uncertainties is equally
good as Variant B. The uncertainties of both variants are
reliable enough to be used in a subsequent motion planning
stage. To further improve the quality of the uncertainties,
recalibration techniques such as in [33] can be employed.

1.0 v
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—— Variant A
—— Variant B
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o
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Fig. 4: Reliability diagram for both variants at K = 6. Both
variants are quite well aligned with the ideal reference line.
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V. CONCLUSIONS

In this work, we presented an approach for predicting the
future trajectories of traffic participants, which makes use
of uncertainties that are inherent in the process of detecting
and tracking objects. We also exploit their previous motion
history via a temporal convolutional network, and employ
multi-task learning to further improve the results. Finally,
we have evaluated two variants of our method for learning
the uncertainty of the prediction. Our approach delivers state-
of-the-art results as it won the first place at the Argoverse
Motion Forecasting Challenge, as presented on the NeurIPS
2019 workshop on “Machine Learning for Autonomous
Driving”. In our future work, we want to explore multiple
trajectory prediction for different domains such as human
motion prediction, and extend existing approaches such as
[34]. Also, we want to evaluate the potential of robust
regression methods as proposed in [35] for the prediction.
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