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Abstract— This paper presents a method for target localiza-
tion and tracking in clutter using Bayesian fusion of vision and
Radio Frequency (RF) sensors used aboard a small Unmanned
Aircraft System (sUAS). Sensor fusion is used to ensure tracking
robustness and reliability in case of camera occlusion or RF
signal interference. Camera data is processed using an off-the-
shelf algorithm that detects possible objects of interest in a
given image frame, and the true RF emitting target needs to be
identified from among these if it is present. These data sources,
as well as the unknown motion of the target, lead to a heavily
non-linear non-Gaussian target state uncertainties, which are
not amenable to typical data association methods for tracking.
A probabilistic model is thus first rigorously developed to relate
conditional dependencies between target movements, RF data
and visual object detections. A modified particle filter is then
developed to simultaneously reason over target states and RF
emitter association hypothesis labels for visual object detections.
Truth model simulations are presented to compare and validate
the effectiveness of the RF + visual data fusion filter.

I. INTRODUCTION

Small unmanned aerial systems (sUAS) have been used for
surveillance, search and rescue and reconnaissance missions
in recent times due to their small size, and their ability
to fly over obstacles and terrain unfit for humans. Small,
lightweight, easy to use sensors like radio frequency (RF)
sensors and cameras are used popularly on UAVs. For this
application, RF receivers on the sUAS receive signals from
RF transmitters like cellphones [1]. A vision sensor (camera)
mounted on a sUAS provides good visual awareness of
the surroundings. Cameras are also inexpensive, lightweight,
and provide a continuous stream of information. However,
camera sensors on sUAS are subject to occlusion from trees
and low clouds. Alternatively, RF receivers are subject to
interference and other signals that can throw off the measure-
ment. This paper describes the fusion of information from
RF and vision sensors and how that can lead to accurate,
robust, reliable and continuous ground target localization
and tracking using sUAS. Performing sensor fusion helps
performance stay robust to sensor error, as the information
from each sensor is verified by the other, and other artifacts
from noise and clutter can be filtered out for target state
estimation (Fig 1).
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Fig. 1. Overview diagram showing RF sensor model and camera observa-
tion

This paper targets a two-tiered problem - data associa-
tion in a cluttered environment, and target localization and
tracking of a single RF emitter. The data stream from the
camera is post-processed using an object detection algorithm
to provide a set of objects of interest (OOIs). OOIs in
this case, are cars that might contain the RF emitter. The
RF emitter can change positions between different OOIs
(for example, being tossed from one car to another). This
detection set consists of the true mobile RF emitter target
and clutter. Clutter comprises the other detected OOIs in the
camera field of view, which are unlabeled and thus otherwise
indistinguishable from each other. As such, data association
is necessary to differentiate and identify the true emitter
from the clutter(other detected OOIs). After identifying the
true target, estimating the position and velocity of the target
comprises the second part of the problem. The sensor models
of both the RF and camera data are heavily non-linear and
described by highly non-Gaussian uncertainties. The true
target motion model is also unknown. These features limit
the applicability of conventional target state estimation and
data association techniques for solving this problem.

This paper proposes a Bayesian framework for fusion of
cluttered camera and RF data to perform tracking of ground
targets from sUAS. In this paper we extend the concept
of using Sequential Monte Carlo filters (i.e. particle filters)
[2]–[4] for non-linear non-Gaussian target localization and
tracking. Since reliable data association in clutter for non-
linear, non-Gaussian sensor models is a complex, difficult
problem, with no “one-size-fits-all” solution, the estimation
architecture developed in [1] for RF-only tracking is signifi-
cantly further developed here to incorporate data association
for unlabeled cluttered visual OOI measurements.
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The state-of-the-art tracking solution that has been studied
and cited repeatedly in the context of sUAS applications
is vision-based tracking. [5]–[7]. The fusion of RF and
camera sensor data for target tracking is an open problem
with sparse documentation. The major contribution of this
paper therefore is the development of a new robust target
state estimation and data association architecture for onboard
sUAS operations that support fusion of RF and camera-based
measurements.

The specific technical contributions of this paper are: 1)
a probabilistic model for data association and fusion that
rigorously establishes statistical dependencies between the
visual data association and RF emitting target tracking prob-
lem; 2) an approach for performing track data association
in clutter for unlabeled OOI observations produced by off-
the-shelf visual object detectors; and 3) a rigorous technique
for approximate online Bayesian fusion of RF and vision
data, which also accounts for data association to track the
specific RF-emitting target of interest. The rest of the paper
is organized as follows: Section II outlines background and
related work, and formulates the sUAS-based RF emitter
tracking problem; Section III describes the probabilistic
model, the data association and estimation method; Section
IV presents simulation results and discussion for various
implementations of the filter; and Section V concludes the
paper and discusses future work.

II. BACKGROUND AND PROBLEM FORMULATION

A. Background and related work

Localization and tracking of moving ground targets from
fixed wing UAS using vision-based systems has been pre-
viously studied and outlined in various publications, e.g.
[5]–[7]. Data association in clutter is a field that has also
been explored extensively for different tracking problems
involving multiple targets and different sensing systems. The
Probabilistic Data Association filter (PDAF) and the Joint
Probabilistic Data Association filter (JPDAF) [8] performs
well segregating multi target observations and clutter for
linear systems (and non-linear systems that are at least
weakly linear). However, JPDAFs are computationally com-
plex and expensive for more evolved, non-linear multi-modal
sensor models [9], which makes them not ideal for our RF
target tracking problem. Approaches like PDA and JPDA,
run linear(ized) Kalman Filter (KF)s/Extended Kalman Filter
(EKF)s to perform state estimation, and the performance
tends to deteriorate as non-linearities are more severe. KFs
along with a data association methods have long been used
to solve aerial tracking problems [10] [11], but previous
applications have mostly focused on linear motion models
and Gaussian assumptions about process and measurement
uncertainties. The vision-based clutter and data association
problem for RF-vision data fusion described in this paper
requires both highly non-linear measurement models and
highly non-Gaussian models for state and measurement
uncertainties. In particular, the combination of RF data and
occasional ‘negative’ visual object detection information
introduces severe non-Gaussianity into track measurement

updates [12]. Hence, conventional data association methods
derived for KF/EKF state estimators are ill-suited to the
problem at hand.

To cope with data association in tracking problems
with severe non-linear/non-Gaussian characteristics, Rao-
Blackwellized Particle filtering strategies (RBPFs) [13], [14]
have been used. However, RBPFs require closed-form ana-
lytical solutions for some part of the target state estimation
problem. Since this cannot be achieved in an obvious way for
combining RF and visual detection data, RBPF techniques
are not applicable here.

Recursive-Random Sample Consensus (R-RANSAC) is a
method that has been used to perform multiple target tracking
in clutter using vision based sensors aboard UAS [7], [15].
However, the problem presented in this paper differs from
the problems discussed and assumptions made in [7], [15].
In [7] the RANSAC algorithm establishes and identifies
multiple tracks for different moving objects in the frame
respectively. But, the target track to be followed is picked by
a human controller, hence eliminating the need for the type
of automated data association considered in this paper. Ref.
[16] claims that R-RANSAC is modular and can be used with
non-linear system models, explaining that R-RANSAC uses
an inlier threshold to compute an association matrix, which
in turn computes weights for tracks. The inlier function is a
process of gating measurements and the paper uses a fixed
rectangular gate that works because of the linear model
assumption. However, the process of gating and building
a gate shape is not trivial for a non-linear, non-Gaussian
function as described in [17]. Rectangular and ellipsoidal
gates fail, and an irregularly shaped complex gate would
have to be approximated to implement R-RANSAC for our
problem.

Recent work in [18] examines tracking of vehicles con-
strained to simple road networks using vision sensors and
nested particle filters. Particles in this approach are con-
strained to the road, which makes convergence easier but also
places strong assumptions on target behavior. The measure-
ment likelihood model in [18] is assumed to be a mixture
of a Gaussian and uniform PDF, which oversimplifies the
complexities of the true RF and vision measurement like-
lihoods, and are thus far removed from the measurement
models described by this work. The computational cost of the
nested particle filter also scales as O(HMN), where H is the
number of history particles, N is the number of particles used
and M number of targets. From the simulations presented
in [18], approximately 10,000 particles are used per target,
which leads to a tremendous computational demand for
onboard sUAS implementation.

Relevant literature addressing the fusion of RF and vision
data for aerial target tracking is sparse. Ref. [19] imple-
mented vision and RFID fusion for tracking people using
mobile ground robots, which differ from aerial tracking and
introduce more flexibility in computation constraints. Ref.
[20] fused WiFi and surveillance camera measurements to
perform object tracking. Both the above mentioned refer-
ences used particle filters, however the sensors, implemen-
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tations, and robots used differ significantly from the current
problem. In Ref. [20] tracking is performed using informa-
tion from multiple stationary cameras in different locations
and the wireless signal strength values of multiple WiFi
access points, as compared to our application that involves
the use of a single camera, and a single RF receiver mounted
on a moving aircraft. Ref. [20] also ”hands over” information
about the subject being tracked, identifying it for the camera,
which is not the case in the specific scenario addressed in
this paper. [19] and [20] do not mention any computation
power constraints as these methods involve processing on
ground computers.

Thus, it is clear that there is a need for developing state es-
timation techniques that can handle RF and unlabeled vision
data association in clutter for the aerial tracking problem,
which requires reliable localization and target tracking. The
next section talks about filling this need, by outlining a novel
probabilistic model for unlabeled sensor fusion.

B. Target dynamics

The position state of the target at discrete time step k is
rk = [xk, yk]T . where xk is the Easting and yk Northing in
inertial coordinates. To simplify the initial development of
a rigorous tracking approach, it is assumed that the position
and orientation of the sUAS is known at all times and that the
sUAS flies at a constant altitude. Consequently, the velocity
state at time k is given by ṙk = [ẋk, ẏk]T , where ẋk and ẏk
are components of the target velocity in the East and North
direction. The state Rk is defined as Rk = [rTk , ṙ

T
k ]T . The

motion model is described as a function of the previous state
and noise.

Rk = fk(Rk−1, wk−1), (1)

This function does not necessarily have to be linear, but for
simplicity, the motion model assumes a random acceleration
noise model such that

Rk = Fk ·Rk−1 + wk−1, (2)

where wk−1 ∼ N (0, Qk−1) is the process noise at time k−1,
and for time step dt,

Fk =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 G =


dt2/2 0

0 dt2/2
dt 0
0 dt

 . (3)

The additive white Gaussian process noise vector wk−1

is zero mean and has covariance matrix Q = α · GGT ,
where α is the variance of the acceleration noise [1]. As
mentioned earlier, the target entity carrying the RF emitter
can change between OOIs, and this is hard to explicitly
account for in this target motion model. Hence, it is necessary
to solve the data association problem constantly, and there
is no relationship between the associations at different time
steps.

C. RF sensor description

Radio frequency (RF) receivers are useful because they
can receive signals from common electronic devices, and
tracking the RF signals helps track these devices. The region-
based non-linear RF sensor model that was previously de-
veloped in [1] is briefly described here. It is assumed that an
RF transmitter is placed in a mobile platform (e.g. a car) and
that it transmits at a known frequency, e.g. 2.4GHz for our
applications. The sUAS has an omni-directional antenna and
a directional antenna, tuned to receive at this frequency, and
each of these antennae give a Received Power (RP) measure-
ment. A detection measurement zk is derived by comparing
the difference between the two received power measurements
to a pre-defined, experimentally derived threshold τ such
that,

zk =

{
Detect (D) if ydirRP − yomni

RP > τ
No Detect (ND) otherwise (4)

The region, where ydirRP − yomni
RP > τ defines a cone, which

projected on to the ground is an ellipse, which we refer to
as the sensor ellipse. This is illustrated in Figs 1 and 3. The
total area of interest A, where the target could be present, is
divided into nr regions.

A =

nr⋃
r=1

Gk,r (5)

The probability of target detection can now be depicted as
a conditional probability P(zk|Rk,Gk,r). In this case, the
regions are defined as: the projected sensor ellipse, Gk,1;
region ahead of the sensor but not in the projected ellipse,
Gk,2; and region behind the ellipse Gk,3. The probability can
be reformulated as:

P(zk|Rk;Gk,r) =

{
βr if zk = D given rk ∈ Gk,r
1− βr if zk = ND given rk ∈ Gk,r

(6)

where βr represents the probability that the target is detected
by the sensor of aircraft when the target is in the region Gk,r.
The probabilities βr are determined experimentally from
multiple flight tests [1].

D. Vision Sensor description and sensor model

Vision sensors mounted on a sUAS provide high visual
awareness, making them a popular choice for tracking prob-
lems. The field of view of the camera is determined by the
sUAS position, orientation, and camera mounting angle. The
sUAS and the camera angle also determines whether the
target is in the camera frame. The projection of the camera
frame on to the inertial frame is referred to as Fin. The
aircraft (with both visual and RF sensors) sweeps over the
total surveillance area of interest to find and track the RF-
emitting target.

An offline trained neural network detection algorithm
detects objects of interest (OOIs) in the camera’s frame/field
of view. The OOIs are vehicles that could possibly carry
the RF transmitter. The camera detects vehicles in an image
frame and marks them with detection boxes. It does this
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for each frame, and a frame is captured at every time step,
leading to the observation Ok. Ok consists of B1

k, B2
k, ...

Bnk

k , where nk is the number of object bounding boxes
drawn over detected OOIs, and Bm

k is the mth detection
box at time k. The width and height of the bounding box is
determined by the size of the car in the image frame.

The camera can image multiple vehicles in the camera
frame, but the object detection system has no knowledge of
which detected vehicles the transmitter is in. Furthermore,
the OOI detector has no ‘memory’ of which objects it has
seen previously, as the emitter can move between OOIs –
i.e. Bm are all unlabeled. To compensate for this lack of in-
formation, a latent variable Lk will eventually be introduced
to model the identity of the true target among the detected
OOIs. By fusing RF and camera data to infer Lk along with
Rk, the sUAS can then differentiate and identify which OOI
box Bm

k in Ok (if any) is the true RF emitting target.
1) Observation model and information update: Detection

boxes exist in the image frame. However, the state Rk exists
in the inertial frame. Projecting the detection box from the
camera field of view at time k to the inertial frame gives
us the inertial projected region IPRk. To write out the
observation model, we convert all dependent variables into
inertial frame.

The observation Ok is a function of the number of boxes
detected at every time step nk,

Ok =

{
{B1

k, B
2
k....B

nk

k }, if nk > 0

{φTN , φFN}, if nk = 0
(7)

Here, φTN and φFN are used to differentiate between a true
negative and false negative when no objects were detected
in frame (nk = 0). A true negative refers to a measurement
where no objects are detected in the frame because, in
actuality, there were no OOIs in the frame. A false negative
refers to a measurement where no objects were detected in
a frame because the object detection algorithm did not pick
up any OOIs in the frame, despite there being at least one
actual OOI in the frame. The separation of true negatives and
false negatives allows us to account for negative information
updates [12]. That is, when the camera and the algorithm
find OOIs in a frame, the resulting bounding boxes can give
measurements that allow us to reduce tracking uncertainty.
However, when the detector does not pick up any OOIs in a
frame, the negative information provided to us by the visual
data must be fused efficiently and judiciously to perform a
probabilistic update on the target’s state uncertainty.

III. PROBABILISTIC MODEL FOR UNLABELED VISION
AND RF DATA FUSION

In this section, the formal probabilistic graphical model in
Fig. 2 for data association and fusion is first described. The
RF measurement is described by the zk block and the vision
measurement is described by the Ok block. Lk is the emitter
association variable for vision data at time k, which must be
inferred during process of fusing unlabeled vision and RF
data. Next, the process for fusing multi-sensor data through
Bayesian interference is described using a Sequential Monte

Fig. 2. Probabilistic model for data (shaded) and unknown (clear) variables.

Carlo (SMC) particle filter. The two sensors used in this
implementation are RF and vision sensors, but the graphical
model and SMC/particle filter approach can be extended
to any other non-linear, non-Gaussian sensor models. This
model and filtering method are tractable for onboard sUAS
implementation, and does not require a complex or nested
particle filter solution.

A. Emitter association variable, Lk

The latent variable Lk is introduced to identify the detec-
tion boxes (in the image frame) or detection regions (in the
inertial frame) observed by the detection and classification
system. It is conditionally dependent on the location of
the target and conveys what the data association hypothesis
should be. In other words, Lk identifies which (if any) of the
unlabeled OOI detection boxes from the vision data is the
actual RF emitting target. Lk can be represented by a one
hot vector encoding, where element Lk[j] = 1 means box j
is the true target and L(1 : nk) = 0 means that none of the
boxes is the true target. L(1 : nk) = φTN , φFN imply a true
and false negative.

Lk = {0, [1, 0, 0, ..], [0, 1, 0, 0, ...], φTN , φFN} (8)

The proper accounting of true and false negative measure-
ment events is essential to fusing negative information about
the state of the RF emitting target whenever it is not detected
in camera images.
Lk depends on the number of boxes detected in frame nk

and the position of the true target relative to Fin. This model
assumes the existence of misdetections. The probability of
misdetection PMD is

P (Lk = 0|rk in IPRk, nk > 0) = PMD (9)

The Conditional Probability Table (CPT) for P (Lk|rk, nk)
is given in Table I.

To perform an informed measurement update, from Eqn. 7,
we can see that the CPT of Bm

k is necessary. The conditional
probability table for P (Bm

k |rk, Lk), is given in Table II. Bm
k

takes the value of the center coordinates of the detection
box, and fixed box sizes are assumed for OOI simplicity.
The value of the image pixel noise covariance matrix Σ
is determined by the vision sensor specifications and the
environment the vision sensor operates in. In Table III-A,
U(image) is a uniform distribution over the image frame. If
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TABLE I
CONDITIONAL PROBABILITY TABLE FOR ASSOCIATION VARIABLE L

rk nk (# of OOI boxes) Lk P (Lk|rk, nk)

In IPRk > 0 {1, ..., nk} 1−PMD
nk

In IPRk >0 0 PMD

Not in IPRk >0 {1....nk} 0
Not in IPRk >0 0 1
Not in IPRk 0 φTN 0
Not in IPRk 0 φFN 1

In IPRk 0 φTN 0
In IPRk 0 φFN 1

TABLE II
CONDITIONAL PROBABILITY TABLE FOR DETECTION BOXES Bm

k

rk Lk P (Bm
k |rk, Lk)

∈ IPRk m N (H(xk)−Bm
k ,Σ)

∈ IPRk n ∈ L & n 6= m U(image)
/∈ IPRk m 0
/∈ IPRk n ∈ L & n 6= m U(image)

the area of the image frame is A, the value associated with
U(image) is 1/A.

B. Particle filter approximation

To localize and track the target, we must obtain the
posterior PDF of the RF emitter target state given the data
from the RF sensor and OOIs detected in the vision sensor
images. From the probabilistic graphical model and the
conditional dependencies described in Tables I and II, we
can see that finding the desired target state filtering posterior
requires solving an analytically intractable inference problem
in order to fuse information from multiple heterogeneous
data sources. Specifically, the posterior uncertainties for
Lk and target states are conditionally dependent given the
RF and OOI detector data, and thus cannot be treated in
isolation. In addition to the fact that the sensor models are
heavily non-linear and non-Gaussian, the necessity of further
extracting negative information from ‘no detection’ RF and
vision data (to aid in target acquisition when it goes out
of either visual or RF sensing range) makes this a hard
estimation problem [12].

An approximate inference algorithm must therefore be
applied, and a Sequential Monte Carlo Method is developed
here for its feasiblity of onboard implementation for a sUAS
and its ability to produce online state estimates for complex
non-Gaussian uncertainties [3] [4]. A particle filter is used
to perform state estimation for the augmented state with
position, velocity and the latent emitter association variable.
Consider a single target where the state of the ith particle at
time k is given by

Xi
k =

rikṙik
L

 (10)

The particle filter is a recursive Bayesian filter imple-
mentation based on Monte Carlo importance sampling sim-
ulations. The idea is to represent the posterior probability

density function by a set of random samples with associated
importance sampling weights, which allows for computation
of state estimates based on these samples and weights. The
posterior density at time k can be approximated in particle
form as:

p(X0:k|Z1:k) ≈
Ns∑
i=1

wi
kδ(X0:k −Xi

0:k), (11)

where δ(.) is the Dirac delta measure. It can be shown that
as Ns → ∞, the approximation allows us to approach the
true posterior density p(Xk|Z1:k) [2]

In this work, we assume a prior of the form p(X0) =
p(r0)p(ṙ0)p(L0), where p(r0) = U(A), p(ṙ0) =
U [−Vpred, Vpred] and p(L0) = U [0, nk + 1]. For k ≥
1,as RF and OOI detection observations become avail-
able, the samples are drawn from an importance density,
q(Xk|X0:k−1, Z1:k). The particles are then weighted by the
ratio of the importance density to the posterior distribution,
which simplifies to,

wi
k = wi

k−1 ×
p(Zk|Xi

k)p(Xi
k|Xi

k−1)

q(Xi
k|Xi

0:k−1, Z1:k)
(12)

where Zk = {zk;Ok} is the set of all available observations,
and zk and Ok measurements arrive at the same rate. For the
sequential importance resampling (SIR) ‘bootstrap’ particle
filter implementation, the importance sampling distribution
is picked such that q(Xi

k|Xi
0:k−1, Z1:k) = p(Xi

k|Xi
k−1) [2],

and so the weight update becomes

wi
k = wi

k−1 × p(Zk|Xi
k) (13)

The full derivation of the RF sensor likelihood p(zk|xik)
is documented in detail in our past paper [1]. Since Ok

is comprised of B1
k....B

Nk

k , each particle has to account
for all of the detection boxes (observations) that come
from the object detection algorithm. Since all detections are
independent,

p(Ok|Xi
k) =

nk∏
j=1

P (Bj
k|rk, Lk). (14)

The final particle weight update is thus

p(Zk|Xi
k) = p(Ok|Xi

k)× p(zk|Xi
k) (15)

The particle filter is modified by a sequential localize and
track technique to maintain performance with low number of
particles as per [1] Section IV, B, 3. Particles are resampled
when the expected sample size goes below 65% [2].

IV. SIMULATION RESULTS AND DISCUSSION

The following section compares the localization and track-
ing performance of the RF+vision fusion filter to a vision-
only particle filter representative of current state-of-the-art
technique on simulated data. This comparison demonstrates
the advantage of the fusion filter for tracking targets when
RF data are available. Performance is also assessed on the
fusion filter for various Ns values. This is used to inform
the selection of the number of particles to balance solution
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accuracy against computational load. Fig. 3 depicts the RF
and visual OOI detection sensor models using a snapshot
of a typical particle filter run. The simulation was run in a
python environment, with models described below.

To generate model-based ground truth simulations, the
RF data were simulated according to the sensing model
developed in [1]. OOI data with visual clutter were generated
according to a Poisson process with a random uniform
distribution over the image frame. The measurements from
the vision sensor and the RF are synchronized. The target
moves from the top to the bottom of the area of interest,
with a velocity of 10 m/s, with process noise described in
Section II B. The aircraft moves in a lawnmower pattern over
the target.

The metrics used for validation and comparison are: 1)
Root Mean Square Error (RMSE) for the target states; 2)
Association Correctness for the latent emitter association
variable (i.e. classification correctness for inferred types of
OOI box data); 3) Particle health (effective sample size); and
4) Convergence of filter error estimates, where convergence
occurs if (position and velocity) states are within 5 m and 1
m/s of the ground truth value. Each type of filter is run for
NMC = 10 Monte Carlo (MC) simulations, and the metrics
above are calculated for those simulations. The RMSE for
time step k is calculated by:

RMSEk =

√√√√ 1

NMC

NMC∑
c=1

RT
k,cRk,c. (16)

Here, Rk,c is the error at time step k for MC run c. The
average association correctness percent (ACP) at time step k
is:

ACPk =
1

NMC

NMC∑
c=1

∑Ns

s=1 δ(L
s
k,c, Ltrue,k,c)

Ns
× 100 (17)

The ACP for all time over all MC runs is:

ACP =

∑Nt

k=1ACPk

Nt
(18)

Fig. 3. Particle filter snapshot showing RF and camera data models.

where Ltrue,k is the true association at time step k, Nt is
the total number of time steps, and Li

k is the association
assigned to the ith particle at time step k. The particle health
is measured by the effective sample size (Neff ). The average
Neff at time k is:

Neff,k =
1

NMC

NMC∑
c=1

1

1 + var(wk,c)
, (19)

The Neff for all time over all MC runs is:

Neff =

∑Nt

k=1Neff,k

Nt
(20)

where wk is the unnormalized particle weight at time step k.

A. Comparison of vision-only and fused vision + RF tracking

In this section, we compare the RF+vision fusion filter,
to the vision-only filter, emulating the current state-of-the-
art. Both types of tracking filters are also individually run
with perfect association. Perfect association implies that the
Emitter Association Variable Lk has the value associated
with the true target, at all times. The Perfect Association
(PA) implementations of the vision-only filter and fusion
(vision+RF) filter shows the degree to which the data associ-
ation problem impacts filter performance, since the PA filters
provide high baselines for the best tracking results obtainable
for either sensing modality. All of the filters are run with
1500 particles (the reason for this number of particles is
discussed in the next subsection).

Fig 4 shows the RMSE errors in position and velocity
for the 4 types of filters in this section. The filter exhibits
two types of behavior, converging and diverging, and Table
III outlines the convergence rates for these filters. The
RMSE position errors for the vision only filter are high and

Fig. 4. RMSE error for vision only filters and fusion filters

TABLE III
CONVERGENCE RATE FOR DIFFERENT TYPES OF FILTERS FOR MC

SIMULATIONS

Type of filter Vis-only PA Vis-only Fusion PA Fusion
Percent of sims
that converged 40 % 90% 90% 100%
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Fig. 5. Correct association comparison for different types of filters

Fig. 6. Particle health for different types of filters

increasing with time, whereas the RMSE position errors for
the fusion filter are lower and within 15 m of the baseline.
The RMSE velocity error is the highest, consistently in
the vision only data filter case. The fusion filter’s RMSE
velocity errors are comparable and similar to the baseline
PA cases. Fig 5 shows that the fusion filter performs better
association than the vision only filter, with respect to the
median ACP. The vision only filter also has outliers with
lower ACPs, further indicating that the fusion filter associates
better than the vision only filter. Table III also shows that 90
% of the simulations converged vs. diverged for the fusion
filter as compared to 40% for the vision only filter. Fig. 6
shows consistently large Neff values, which demonstrates
a healthy, non-collapsing particle filter. The PA cases show
some outliers, but 95% of the outliers are above 35 %, which
implies low Neff but not degeneracy.

The results show that fusion of RF and vision-based
sensor data leads to significant improvements in the ability
of the aircraft to precisely localize and thus track moving
RF emitter ground targets. The RF sensor provides coarse
but consistent positive and negative information that helps
narrow down the uncertainty in visual OOI association
hypotheses over time. Likewise, the visual OOI detection
data provides more precise but sporadic localization infor-

mation for tracking target states once association hypothesis
uncertainties are addressed.

B. Assessment of number of particles

One of the challenges using a particle filter is the number
of particles, Ns. High Ns values lead to intractable and huge
computation loads. In this section, we identify the sensitivity
of the filter to particle size, as computation tends to scale with
particle size. Fig. 7 shows the RMSE position and velocity
errors over time for a fusion filter for different number of
particles. Table IV outlines the convergence rates for different
Ns values for the fusion filter. We see that the position error
for 500 and 1000 particle filters are high and increase over
time. However, for a 1500 particle filter the RMSE position
error drops over time, and stays within 15 m. The final
RMSE error for 1000 particles is higher than the error for 500
particles, but this might be because a larger number of MC
simulations are needed to fully capture the filter’s behavior.
The RMSE velocity plots show that the error is high for both
500 and 1000 particles, but reduces to under 1 m/s in 600
seconds for 1500 particles. We also see that as we increase
the number of particles, the filter converges more often, as
seen in IV thus reducing the error seen in RMSE plots.

From Fig. 8 we see that the ACP increases with higher
Ns values, implying better association with higher number
of particles. Fig 9 shows that the median of Neff , is about
the same for all 3 cases, and greater than 50% implying good
particle health.

The higher the number of particles in a particle filter, the
better the representation of the posterior distribution. [2].
Multi-dimensional state particle filters need enough particles
to sufficiently encompass the different behaviors of each
dimension and combinations of state variables. In this case,
1500 particles provided adequate estimation performance for

Fig. 7. Comparison of RMSE for the fusion filter with different Ns.

TABLE IV
CONVERGENCE RATE FOR MC SIMULATIONS

Number of particles 500 1000 1500
Percent of sims
that converged 50 % 70% 90%
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Fig. 8. Correct association comparison for different number of particles

Fig. 9. Particle health for different number of particles

a single target. In order to limit computation costs, for this
specific simulation, the number was not increased beyond
this point.

V. CONCLUSION AND FUTURE WORK

This paper introduced and validated the concept of a
novel RF and visual data fusion filter for aerial tracking of
a ground target. Developing reliable and robust estimation
architecture is important for target localization and tracking
in uncertain scenarios. A Bayesian model and approximate
state estimation techniques was developed to simultaneously
solve the data association and tracking/localization problem
for an RF-emitting target in the presence of unlabeled vision
data. Simulations validated the data association algorithm
and the utility of implementing a fusion filter as compared to
state-of-the-art vision-only tracking filters, and also showed
that a reasonable number of particles can be used for online
sUAS implementation. Although the exact details for the
number of samples to use will depend on the scenario, these
results gives us an idea of the order of the number of particles
needed to assess onboard sUAS computation costs.

Future work involves examining harder and more unpre-
dictable trajectories and behaviors for the target, including

periods of occlusion from sensors. We also are working on
onboard sUAS deployment for live flight experiments.
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[10] A. Al-Kaff, M. J. Gómez-Silva, F. Miguel Moreno, A. De La Escalera,
and J. M. Armingol, “An appearance-based tracking algorithm for
aerial search and rescue purposes,” Sensors (Switzerland), vol. 19,
no. 3, 2019.

[11] M. H. Lee and S. Yeom, “Detection and tracking of multiple moving
vehicles with a UAV,” International Journal of Fuzzy Logic and
Intelligent Systems, vol. 18, no. 3, pp. 182–189, 2018.

[12] K. Wyffels and M. Campbell, “Negative observations for multiple
hypothesis tracking of dynamic extended objects,” Proceedings of the
American Control Conference, pp. 642–647, 2014.

[13] I. Miller, M. Campbell, and D. Huttenlocher, “Obstacles Under Large
Viewpoint Changes,” vol. 27, no. 1, pp. 29–46, 2011.

[14] N. Ahmed, D. Casbeer, Y. Cao, and D. Kingston, “Multitarget lo-
calization on road networks with hidden Markov Rao-Blackwellized
particle filters,” Journal of Aerospace Information Systems, vol. 14,
no. 11, pp. 573–596, 2017.

[15] J. H. White, K. T. Salva, and R. W. Beard, “Extending Motion
Detection to Track Stopped Objects in Visual Multi-Target Tracking,”
Proceedings of the American Control Conference, vol. 2018-June, pp.
5825–5830, 2018.

[16] P. C. Niedfeldt, K. Ingersoll, and R. W. Beard, “Comparison and
Analysis of Recursive-RANSAC for Multiple Target Tracking,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 53, no. 1, pp.
461–476, 2017.

[17] T. Bailey, B. Upcroft, and H. Durrant-whyte, “Validation Gating
for Non-Linear Non-Gaussian Target Tracking,” 2006 Int’l Conf. on
Information Fusion (FUSION 2006), pp. 1–6, 2006.

[18] C. C. Bidstrup, J. J. Moore, C. K. Peterson, and R. W. Beard, “Tracking
multiple vehicles constrained to a road network from a UAV with
sparse visual measurements,” Proceedings of the American Control
Conference, vol. 2019-July, pp. 3817–3822, 2019.

[19] T. Germa, F. Lerasle, N. Ouadah, and V. Cadenat, “Vision and RFID
data fusion for tracking people in crowds by a mobile robot,” Computer
Vision and Image Understanding, vol. 114, no. 6, pp. 641–651, 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.cviu.2010.01.008

[20] T. Miyaki, T. Yamasaki, and K. Aizawa, “Multi-sensor fusion tracking
using visual information and Wi-Fi location estimation,” 2007 1st
ACM/IEEE International Conference on Distributed Smart Cameras,
ICDSC, pp. 275–282, 2007.

1636


