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Abstract— Control and localization of deformable linear
objects (DLOs) require models to handle their deformation.
This paper proposes an approach to automatically generate a
model from available visual sensor information. Based on point
cloud data obtained from a 3D stereo camera, the kinematics
of a multibody model formulation are derived. The approach
aims to balance the tradeoff between computational complexity
and model accuracy. This is achieved with a geometric error
criterion that reduces the introduced degrees of freedom (DOF)
of the model to a necessary minimum, representing the con-
tinuous shape with as few bodies as possible. The approach
is evaluated analytically and validated with an experimental
scenario of DLO manipulation.

I. INTRODUCTION

Whether in industrial manufacturing processes, medical
applications or in everyday life, deformable linear objects
(DLOs) such as cables, wires, or hoses, are a very important
class of objects, frequently encountered in our environment.
Potential applications for robotic handling of DLOs include
wire harness assembly for electronic devices, cable rout-
ing in switch cabinets, mounting of wire harnesses in the
automotive industry, or even surgical assistance. However,
implementing robotic manipulation for such tasks is difficult
to achieve [1], [2].

This can be attributed to the deformation behaviour of
DLOs. When a robot manipulates a DLO it deforms as
exemplary shown in Fig. 1, which makes the automation
of manipulation tasks highly challenging. Interactions and
contacts with the object result in deformations that change
the shape, vary the physical properties and lead to occlusions
complicating the design of stable control algorithms or robust
state estimators. Therefore, many approaches rely on models
to capture the deformation behaviour in order to support the
robotic system with additional information about the physical
properties of the manipulated object during handling.

A commonly used approach is discretizing the DLO into
several rigid segments interconnected by joints to reduce the
infinite-dimensional configuration space of the continuous
DLO to a distinct set of degrees of freedom (DOF) [3], [4].
Such a multibody representation of the DLO is a simplified
approximation of the real world, but it allows to consider the
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Fig. 1: Example of a robot manipulating a DLO. The scene
is observed by a 3D stereo camera.

kinematics, dynamics and penetration constraints the object
is subjected to during manipulation [5].

While many approaches have considered to improve the
model’s accuracy by estimation of dynamics parameters,
not much attention has been given to the identification of
the underlying kinematics. However, the kinematics play an
important role for model based approaches on control and
tracking of DLO with regards to accuracy and efficiency.
Depending on the introduced number of DOF the accuracy
rises, but so does the computational complexity. Therefore,
the number of joints and segment lengths of the discretization
need to be considered. Within this paper, we introduce a
novel approach to derive a kinematics formulation from
sensor data acquired during manipulation.

II. STATE OF THE ART

One of the earliest approaches addressing robotic manip-
ulation of DLO is presented in [6]. This work was later
extended for grasping point determination [7] and position
control [8]. These early approaches introduce the idea to
combine of a model of the DLO with visual information
obtained from a camera. Despite this idea proved effective
for certain applications, the approaches remain limited to a
two-dimensional (2D) configuration space where the DLO is
constrained to move in a plane.

Since then, many model-based control approaches for
robotic manipulation of DLO emerged. They yield the advan-
tage to provide additional information about the geometrical
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and physical properties of the manipulated object, which can
be used for planning and control of the manipulation [9].
In practical applications these models are combined with
available measurement data to track the deformation [10].
However, this requires well parametrized models to allow
for robust state estimation.

Previous research addressed this problem by using param-
eter estimation schemes, aiming to adapt the model to the
task by sensor data. Offline estimation of model parameters
by measuring only the interaction between the robot and the
manipulated object was proposed by [11] and [12]. In [13] a
controller is presented that relies on an adaptive deformation
model where the parameters are estimated online during
manipulation. The approach avoids the identification of the
underlying geometrical or physical relations by only using
visual detectable feature points of the object. Yet, this an
approach neglects information about the physical properties
of the manipulated DLO and its environment, making pre-
liminary planning of manipulation steps infeasible, limiting
the approach to find only locally optimal trajectories during
manipulation. [14] have shown that multibody models are
a suitable choice for planning and control of DLO ma-
nipulation because they are capable to capture geometrical
as well as physical properties. They successfully control a
dynamic movement of a DLO by planning a trajectory based
on the model information. However, their approach remains
restricted to a 2D scenario where the DLO is freely hanging
in front of a camera. Practical problems such as collisions
or contact with the environment are neglected.

Early works, such as [15] and [16], show the significance
of considering contact when manipulating DLOs and provide
an understanding of how geometrical information of the
DLO can be used to infer on contact situations with visual
information. But, when a three-dimensional (3D) configu-
ration space of the DLO is allowed, occlusion becomes
a major problem because obtaining an unambiguous rep-
resentation of the DLO’s shape from visual data tends to
be difficult. [17] reconstruct the geometry of a DLO from
point cloud data under self-occlusion. Using Iterative Closest
Point (ICP) they combine several point clouds from a stereo
camera taken from different perspectives and then estimate
the central axis of the DLO with geometrical point-chain
model. However, their model does not consider physical
properties. Approaches that also include physical information
have been presented in [5], [18], [19]. These approaches rely
on multibody simulations and match the observed point cloud
data with the simulation with a probability based registration
method. This allows to track the geometry of the DLO
with an especially high robustness against disrupted sensor
data. Yet, their focus is on the registration method, while
the required multibody model is to be defined manually
without closer consideration of the underlying kinematics.
But considering the kinematics is crucial as each introduced
DOF has to be registered to the measured data and, hence,
increases the computational complexity.

III. MODEL GENERATION

The objective of the proposed model generation concept
is to allow robotic systems to identify a suitable kinematic
multibody description of a DLO autonomously during ma-
nipulation. This means to choose the number and loca-
tion of the DOF such that the deformation behaviour of
the manipulated DLO is captured accurately enough while
maintaining as much computational efficiency as possible.
The concept to achieve this trade-off is shown in Fig. 2.
It consists of two main components: 1) a skeletonization
algorithm to obtain a continuous representation y of the
DLO from a acquired point cloud Pac and 2) a discretization
step to obtain a multibody representation while limiting the
introduced geometrical error with an error criterion.

A. Representation of the Deformable Linear Object

The DLO can be represented by a line given by the
geometric center for each infinitesimal thin cross-section of
the DLO. We call this the skeleton line and model it as a
continuous spatial curve in Euclidean space f(s) : R 7→ R3

with local coordinate s ∈ [0, 1], running along the length
L of the DLO. The curve can be described with a local
FrenetSerret frame as

R(s) =
[
f ′(s) f ′′(s) f ′(s)× f ′′(s)

]
,

where f ′(s) is the tangent to f(s), and f ′′(s) is an orthog-
onal vector to f ′(s) pointing to the center of the osculating
circle to f(s).

Our goal is to obtain a geometric approximation of the
continuous skeleton line by representing it as multibody
model. The model’s kinematics are therefore described as a
kinematic chain consisting of a number of n rigid segments
of length li interconnected by n + 1 flexible joints (start
and end point are regarded as joints as well). Following the
notation of [20], the kinematics for this model are then given
by i = 1, 2, ..., n homogeneous transformations

TW
i =

[
RW

i rW
i

0T 1

]
, (1)

where RW
i is the rotation between the two coordinate sys-

tems and rW
i is the respective translation from the origin

of the world coordinate system to the body-fixed coordinate
system at the center of each segment.

The origin of each segments local coordinate system can
directly be expressed in the joint coordinates, as

rW
i = xi +

1

2
(xi+1 − xi) . (2)

Since this representation is fully described by the xyz-
positions of the joints xi, we are interested in obtaining these
joint coordinates from the continuous skeleton line f(s).

However, the skeleton line is only accessible indirectly by
available sensor data which are given as a point cloud of
the surface of the observed DLO. This set of points is thus
described as

Pac = {p1,p2, ...,pM},∈ RMx3. (3)
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Fig. 2: Overview of the concept of the model generation.

Please note, that for model generation an absolute perspective
on the DLO is necessary. This assumes the point cloud is a
sufficiently dense representation of the DLO containing the
whole object.

B. Point Cloud Preprocessing

The obtained point cloud Pac represents the surface of
the DLO, while our desired representation is given by center
of the object’s cross-section. Therefore, the acquired point
cloud is projected onto the center of the DLO.

For the projection the points of Pac are projected by the
radius r of the DLO along their surface normals ni to obtain
the projected point cloud

Pp = {pp :pp,i = pm,i − rni}. (4)

The set of surface normals N ∈ RMx3 can be obtained
by least-squares fitting of a local plane using the k nearest
neighbors of each point [21], or by using all neighbours
within a certain radius [22]. For DLO with sufficiently small
radius the projection step can be neglected, as the observed
point cloud is already close to the center of the cross-section.

The projected point cloud data Pp can not directly be used
to estimate the continuous skeleton line as the point cloud
is usually not ordered, so there is no mapping between the
obtained points and the local coordinate s of the skeleton
line. Hence, the point cloud needs to be sorted to get the
values of the skeleton line coordinate s corresponding with
the projected points pp ∈ Pp.

To approximately sort the points, a subset within the
Euclidean distance rn around an arbitrary chosen initial point
p0 ∈ Pp is chosen as

Pϵ(p0) = {p ∈ Pp : ∥p0 − p∥ ≤ rn}. (5)

A fast search of the neighbours around p0 is achieved by
organizing the points in an efficient structure as e.g. k-d tree.

For a sufficiently large search radius (larger than the di-
ameter DDLO of the DLO: rn > DDLO) the selected subset
Pϵ(p0) has a local direction vector d that approximates the
tangent of the continuous formulation f ′(s). To find the
local direction in a least-squares sense we formulate it as
the minimizing argument of

d = argmin
d

∑
i

(⟨ni,d⟩)2 = argmin
d

⟨Nd,Nd⟩

= argmin
d

∥Nd∥, (6)

s. t. ⟨d,d⟩ = 1,

where ni ∈ Nϵ(p0) and N is the matrix of stacked local
normal vectors whose i-th row is given by {N}i = nT

i .
The solution is obtained with a singular value decompo-

sition (SVD) of the matrix of local normals N as

N = USV T,

where the column of V corresponding to the smallest sin-
gular value solves Equation 6 according to the min-max
principle. The topological order of the point clouds is then
obtained by estimating a set Ss of local material coordinates
ss, sorting the points along the length of the DLO. The
ss coordinates are estimated by projecting any point pi ∈
Pϵ(p0) onto its locally neighbouring line ls = p0 + d
as shown in Fig. 3. The sorting procedure iterates in both
directions of the DLO by choosing the point within a search
radius rn with the most positive and most negative coordinate
value ss,E as new starting point p0. The result is a set of
points Ps, which are sorted along the length of the skeleton
line, yielding a approximation ss of the corresponding s-
coordinate values of the points.

p0

pi

p0 + d(ss − ss,0)

sp

selected points Pϵ(p0)used points Pp unused points

∥p0 − p∥ = rn
skeleton line

s

surface normals

Fig. 3: Approximation of the order of points along a coor-
dinate ss. Starting from point p0, all points within search
radius rn are projected on a line whose direction d is
determined perpendicular to the estimated surface normals.

C. Skeletonization

The set of sorted point cloud data Ps is used to identify the
skeleton line f(s). The skeleton line is build from weighted
sum of N basis functions as

y = f(W , s) =

N∑
j=1

{W }Tj ϕj(s), (7)

where W ∈ RN×3 row-wise contains the weights in each
spatial direction for each basis function ϕj(s).
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A basis Φ = {Φ : {Φ}j = ϕj(s), j ∈ 1, 2, ..., N}
can generally be obtained with any orthogonal function
space, e.g. with sinusoidal basis functions as in [7]. We
use radial basis function (RBF) due to the proven property
that a weighted sum of RBFs is able to approximate any
C1 continuous function on a compact subset with arbitrary
precision [23], [24]. Specifically, inverse quadratic functions
defined as

ϕj(s, µj , τ) =
1

1 + τ2∥s− µj∥2
: R× R 7→ R3, (8)

are used, where the width τ of each basis is fixed and the
centers µj are evenly spaced along the material coordinate
s ∈ [0, 1].

This allows to find the skeleton line, defined by the M
measured points pp,i ∈ Ps, by choosing the weights W so
that they minimize the squared error

W = arg min
W ,si

1

2

M∑
i=1

⟨ei, ei⟩

= argmin
W ,s

1

2

M∑
i=1

∥pp,i − f(W , si)∥22. (9)

However, the coordinates si, which correspond to measured
points pp,i, are generally unknown. Hence, the squared
error depends not only on the weights W but also on the
corresponding local coordinates si of every measurement
point.

Under the assumption that the sorting yields good esti-
mates for the corresponding location in material coordinates
s, we are free to use the estimated ss values and set si = ss.
This relation holds a mapping of inputs and measured outputs
(si,pp,i), i = 1, 2, ...,M , such that the weights W remain
the only unknowns. Now the skeletonization can be solved
by a linear regression.

With known si Equation 7 becomes linear in its weights.
We can formulate a feature matrix by evaluating the basis Φ
at all estimated si

Φs =
[
Φ(s1) . . . Φ(sM )

]T
=

 ϕ1(s1) . . . ϕn(s1)
...

. . .
...

ϕ1(sM ) . . . ϕn(sM )

 ∈ RM×N

and a measurement vector {Y }i = pT
p,i with columns

Y{x,y,z} for each Cartesian direction.
Then the regression reads

Wc = argmin
Wc

1

2
∥ΦsWc − Yc∥22 + β∥Wc∥22, (10)

for c ∈ {x, y, z} with β as parameter for L2-regularization
of the weights to avoid overfitting [25]. We choose β to
minimize the variance of the residuals. The solution of
Equation 10 can then be given analytically in its closed form
as

Wc = (ΦT
s Φs + βIN )−1ΦT

s Yc, c ∈ {x, y, z}. (11)

Substituting the calculated weights in Equation 7 yields a
continuous representation of the DLO obtained from the
measured point cloud data.

D. Geometric Error Criterion

To substitute the continuous representation of a DLO with
serially connected rigid segments, the skeleton line has to
be approximated with a piecewise-linear approximation. We
require all segments to be of equal length to preserve the
homogeneous deformation behaviour along the length of
the DLO in the derived kinematics. Allowing segments of
different length would imply a varying kinematic rigidity
and, hence, contradict the assumption that the properties,
such as stiffness or second moment of inertia, do not vary
along the DLO’s one-dimensional entity. The only exception
is the length of the last element to compensate for the
deviation of lengths between the continuous and piecewise-
linear representation.

The piecewise-linear representation g(u) with local coor-
dinate u consists of the union of n piecewise-linear functions
gi. It is expressed as

g(u) =

n∪
i=1

gi(u), u ∈ [0, 1], i = 1, 2, ..., n , (12)

with

gi(u) = xi + (u− ui)
L∑

∥xi+1 − xi∥
(xi+1 − xi) (13)

and

ui =

i∑
j=1

∥xj+1 − xj∥
L∑ . (14)

Here, i denotes the number of the segment, ui are the joint
coordinates expressed in the local coordinate and L∑ =∑n

i=1 ∥xi+1 − xi∥ is the length of the piecewise-linear
approximation. This representation is solely dependent on
the xyz-positions of the joint coordinates xi in Euclidean
space. Hence, to find g(u) to approximate f(s), the xi have
to be determined.

The geometrical error introduced by approximating the
skeleton line with a piecwise-linear representation can be
expressed as

eg = ∥f(s)− g(u)∥. (15)

Note that corresponding s and u are not trivial to define.
Therefore, we demand the joint coordinates xi to lie on

f(s) and assume that the skeleton line has constant curvature
between to consecutive joint coordinates. This yields a worst
case estimation of the occurring geometrical error which
can then be measured as the maximum Euclidean distance
perpendicularly from the center of the linear segment to the
skeleton line, as depicted in Fig. 4. The error then depends
on the local curvature of the skeleton line

κ =
1

rκ
=

∥f ′(s)× f ′′(s)∥
∥f ′(s)∥3

, (16)
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which is the reciprocal of the radius rκ of the local osculation
circle to f(s) and the length of the linear segment li. This
geometric relation can be reformulated as a criterion for
the maximum allowed segment length given for a maximum
geometrical error.

lmax(eg,max, rκ) = 2
√
r2κ − (eg,max − rκ)2. (17)

If the maximum bending curvature of a DLO is known a
priori, the relation can be used to calculate the maximum
allowed segment length in advance. Note, that a maximum
segment length is desired, because it yields an approximation
with fewer segments reducing the DOF of the multibody
model representation and yielding lower computation times.

rκ

eg

li

Fig. 4: Error criterion for the segmentation. A 2D representa-
tion of a segment of the skeleton line and the corresponding
osculating circle.

E. Joint Coordinate Estimation

Given the maximum segment length, the joint positions xi

can be determined. Recall that the segments are required to
have the same length, but the last segment is excluded from
this requirement as described above. This allows to ensure
similar start and end points for both representations.

The joint coordinates are calculated with an iterative
procedure. Since, we require the joint coordinates xi to lie
on f(s) resulting in n geometric constraints

xi = f(si), (18)

starting with x0 = f(s0). From the maximum segment
length lmax it is required that xi+1 and xi have the Euclidean
distance lmax, leading to

∥xi+1 − xi∥ = ∥f(si+1)− f(si)∥ = lmax. (19)

Finding the points that meet this requirement means to find
the si+1 which satisfies Equation 19. This can be thought
of as detecting the intersection of a sphere with radius lmax

around the joint xi with f(s) as shown in Fig. 5a. Locally,
there should be only two solutions that satisfy Equation 19
yielding f(si+1) and f(si−1) for all i ∈ [1, n − 1]. But
depending on the global configuration of the DLO, it can
intersect the sphere several times, resulting in even more
solutions s̃i+1, as demonstrated in Fig. 5b. To address this
problem we choose si+1 as the minimum of the set of
all found solutions to Equation 19 while also excluding all
previous solutions s ≤ si. Hence, we propagate along s by

si+1 = argmin
s

{s ∈ (si, 1] : ∥f(s)− f(si)∥ = lmax} ,
(20)

ensuring that the si+1, corresponding to the appropriate joint
coordinate xi+1, is found. The search for a new si+1 is
repeated as long as we find new solutions for si+1 ≤ 1.
In case there are no other solutions found except si−1, the
end of the DLO’s skeleton line has been reached, and the
last joint can be set to xn+1 = f(1). The desired joint
coordinates are then given by substituting all found solutions
si into Equation 18. The number of joint coordinates directly
specifies the required number of segments to build the
kinematics model. Substituting the found joint coordinates
xi into Equation 1 and Equation 2 results in the sought
kinematics description.

xi

xi−1xi−2

xi+1

li

(a) Finding the new joint coordinate xi+1 by finding intersections
with a circle of radius li,max around the previous joint coordinate
xi.

xi

f(si+1)

f(s̃i+1,1)

f(s̃i+1,2)

li

(b) Finding multiple solutions for the (i+1)-th joint

Fig. 5: 2D representation of the iterative procedure to find
new joint coordinates.

IV. EVALUATION

The evaluation of the concept is twofold. An analytical
evaluation of the skeletonization and a validation of the
model generation step. Both need an error metric that allows
to quantify the occurring geometrical errors.

A. Error Metric

Several metrics can be considered for measuring geometric
errors between different representations of DLOs, such as
partial curve mapping, area between curves, discrete Fréchet
distance, dynamic time warping (DTW), or curve length
objective functions. Please refer to [26] for a detailed expla-
nation. We base our evaluation on the metric of DTW, which
we extend for the purpose of evaluation in 3D Euclidean
space and therefore call modified dynamic time warping
(MDTW).

DTW is a technique popular in pattern and speech recog-
nition to determine the similarity of recorded signals. For a
detailed overview refer to [27]. The definition of MDTW is
given as follows: Assume two curves v and q of different
lengths. We discretize the curves in H and G sample points
v(si) and q(sj), i = 1, 2, ..., H and j = 1, 2..., G. Then, we
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find a mapping wl = (si,l, sj,l) with l = 1, 2, ..., G between
v(si) and q(sj) such that the cumulative Euclidean distance
dcml is minimized according to

dcml(wl) = min

K∑
l=1

∥q(sj,l)− v(si,l)∥, (21)

where K is the number of tuples, which is called the length
of the warping path.

The minimization is done in a two-step process by calcu-
lating the cumulative Euclidean distance for all tuples (si, sj)
in a cost matrix at first and then backtracking through the cost
matrix to obtain the mapping wl. The mapping wl then de-
termines the correspondence of all points v(si,l) and q(sj,l).
The modified error metric between two corresponding points
is then defined as

eMDTW,l = ∥v(si,l)− q(sj,l)∥. (22)

Fig. 6 shows a graphical example of the introduced MDTW
error metric.
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Fig. 6: Error metric defined by modified dynamic time
warping (MDTW). The error is measured between points
minimizing the cumulative distance between two curves.

To obtain an absolute measure quantifying the error
over the whole length of the DLO, we use the statistical
mean µ = 1

K

∑K
i=1 eMDTW and standard deviation σ =

1√
K−1

∑K
i=1

√
(eMDTW − µ)2.

B. Analytical evaluation of skeletonization

Within the analytical evaluation the performance of the
skeletonization is evaluated based on virtual generated point
cloud data, which are obtained from predefined analytical
skeleton lines. Three different configurations of skeleton
lines yg are created. We refer to these configurations as bent,
straight and helical. The analytical functions corresponding
to these configurations are given in Table I. From these

TABLE I: Functions used for the analytical evaluation.

Config Function

bent yg(s) = (sin(πs), 2 cos(πs)− 1, 0)T

straight yg(s) = (−0.3s+ 0.55, s− 1, 0)T

helical yg(s) = ( 1
2
sin(3πs) + 1

2
, 1
2
sin(3πs) + 1

2
, 1
2
s− 1)T
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(a) Bent configuration for the analytical evaluation.
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(b) Straight configuration for the analytical evaluation.
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(c) Helical configuration for the analytical evaluation.

Fig. 7: Different generated configurations used for the ana-
lytical evaluation.

skeleton lines, point clouds Pg with M = 5000 data points
are generated under the assumption of a DLO diameter
dDLO = 40mm. A graphical representation of the config-
urations is provided in Fig. 7. To each generated point cloud
a skeleton line is fitted using the skeletonization with N = 21
basis functions, k = N/4 and β = 10−2 as L2 regularization
parameter for the linear regression.

The accuracy of the skeletonization is measured by com-
paring the previously defined function yg with the obtained
skeleton line using the MDTW error metric. The results are
summarized in Table II. We interpret the results with respect

TABLE II: Error between the analytical skeleton line and the
obtained skeleton line by linear regression by discretizing
1000 sample points on each skeleton line.

Configuration bent straight helical

µ of MDTW in mm 2.42 1.66 1.99

σ of MDTW in mm 2.22 3.63 1.89
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to SI-units to remain referable to a practical application and
to maintain comparability with the following experimental
validation. We read an error of 10−3 = 1mm.

Over all configurations, the maximum mean is 2.42mm
and the maximum standard deviation is 3.63mm. Note that
the MDTW error hereby includes errors in length as well as
errors in lateral displacement. Most of the error in our ana-
lytical evaluation can be attributed to an underestimation of
the skeleton line’s length by the linear regression. We noted
that the straight configuration could not be approximated
as well by as the two other configurations by the chosen
RBF. This is displayed by the comparatively high standard
deviation for this configuration. The occurring mean error
can be attributed by a significant amount to incorrect point
cloud projection due to errors in surface normal estimation.
A refined preprocessing by additional removal of outliers in
the projected point cloud could benefit the accuracy of the
estimation.

C. Experimental validation

The setup for the experimental validation consists of a Mi-
crosoft Xbox 360 Kinect V1 for 3D point cloud acquisition,
which is mounted about 80 cm above the DLO. A vacuum
hose with 40 mm diameter and 1.70 m length is used as
test object. The model generation is performed in MATLAB
on an Intel Core i7-6600U CPU with 2.60GHz and 12GB
RAM. Refer to Fig. 1 for a depiction of the setup.

To experimentally evaluate the concept, we perform all
individual steps of the model generation according to Fig. 2
in a practical manipulation scenario. The reference DLO is
positioned by the robotic manipulator in front of the 3D
camera such that the sensor has an absolute perspective on
the DLO. Starting from the image acquisition the Kinect
takes an image of the scene and provides a point cloud.
From the point cloud of the scene the DLO is extracted via
background subtraction and the point cloud is downsampled
to M = 5000 points. The downsampled point cloud is given
as input Pac to the implemented multibody model generation
framework. The generation is run with a maximum geometric
error of emax = 10mm. Table III summarizes the input
parameters and results of the experiment. For the linear
regression the same parameters as in the previous analytical
evaluation are used.

From the provided input information, the static configu-
ration of the reference DLO is reconstructed. Fig. 8 shows
the result of the model generation process. While Fig. 8a
displays the obtained skeleton line, which is extended to a
volumetric representation by projecting cross-sections of the
radius r of the DLO along its length, Fig. 8b contains the
equivalent, automatically generated multibody approximation
consisting of n = 16 segments with li = 10.59 cm length.
The multibody model representation is superimposed with
the input point cloud data for reference.

To analyze the geometric error introduced by the segmen-
tation the continuous representation f(s) is compared to the
piecewise-linear approximation g(u) by MDTW. The results
are depicted in Fig. 9, showing eMDTW over the material

TABLE III: Parameters and results of the experimental
automated model generation.

Parameter Symbol Value Unit

Input parameters

DLO length LDLO 1.7 m
DLO diameter DDLO 40 mm

maximum geom. error emax 10 mm
size of point cloud M 5 · 103 -

sorting search radius rn 160 mm

Results

number of segments n 16 -
segment length li 10.59 cm

length of multibody model L∑ 1.65 m

coordinate s. As expected, the absolute error remains below
the specified error maximum emax over the whole length of
the skeleton line. eMDTW approaches the allowed maximum
only at the area around sκ,max = 0.33, where the DLO has
the highest curvature.

V. CONCLUSION

The practical evaluation shows that the proposed method
is able to generate a multibody kinematics description from
point cloud data without prior knowledge of the object. By
approximately sorting the point cloud data along the DLO
coordinate, a linear regression problem results and allows
to efficiently extract the skeleton line. The proposed model
generation takes physical properties into account by using
the curvature of the DLO for the calculation of appropriate
segment lengths to determine the resulting DOF of the
model. With a practical experiment it could be shown,
that the obtained kinematics model is able to represent the
deformed DLO’s geometrical shape within the specified error
bounds. A current drawback of the proposed concept is that
it requires a high quality data set of the DLO. Disrupted or
highly noisy sensor data can lead to errors in the skeleton
line estimation and subsequently to a incomplete model
representation. Therefore, future works aims to strengthen
the robustness of the model generation process. Furthermore,
the generated model can be used to predict the physical
deformation behaviour of DLOs for manipulation planning
and control by adding dynamics parameters such as masses
and inertia.
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