
Learning High-Level Policies for Model Predictive Control

Yunlong Song, Davide Scaramuzza

Abstract— The combination of policy search and deep neural
networks holds the promise of automating a variety of decision-
making tasks. Model Predictive Control (MPC) provides robust
solutions to robot control tasks by making use of a dynamical
model of the system and solving an optimization problem
online over a short planning horizon. In this work, we leverage
probabilistic decision-making approaches and the generaliza-
tion capability of artificial neural networks to the powerful
online optimization by learning a deep high-level policy for the
MPC (High-MPC). Conditioning on robot’s local observations,
the trained neural network policy is capable of adaptively
selecting high-level decision variables for the low-level MPC
controller, which then generates optimal control commands for
the robot. First, we formulate the search of high-level decision
variables for MPC as a policy search problem, specifically, a
probabilistic inference problem. The problem can be solved in
a closed-form solution. Second, we propose a self-supervised
learning algorithm for learning a neural network high-level
policy, which is useful for online hyperparameter adaptations in
highly dynamic environments. We demonstrate the importance
of incorporating the online adaption into autonomous robots
by using the proposed method to solve a challenging control
problem, where the task is to control a simulated quadrotor to
fly through a swinging gate. We show that our approach can
handle situations that are difficult for standard MPC.

Code: https://github.com/uzh-rpg/high_mpc

I. INTRODUCTION

Model Predictive Control (MPC) [1], [2] is a powerful ap-
proach for dealing with complex systems with the capability
of handling multiple inputs and outputs. MPC has become
increasingly popular for robot control due to its robustness to
model errors and its capability of incorporating actions limits
and solving optimizations online. However, many popular
MPC algorithms [3], [1], [4] rely on tools from constrained
optimization, which means that convexification, such as a
quadratic formulation of the cost function, and approxima-
tions of the dynamics are required [5]. The requirement of
solving constrained optimization online limits the usage of
MPC for dealing with high-dimensional states and complex
cost formulation.

Model-free Reinforcement Learning (RL) offers the
promise of automatically learning hard-to-engineer policies
for complex tasks [6], [7], [8]. In particular, in combination

The authors are with the Robotics and Perception Group, Dep. of
Informatics, University of Zurich, and Dep. of Neuroinformatics, University
of Zurich and ETH Zurich, Switzerland. http://rpg.ifi.uzh.ch.
This research was supported by the National Centre of Competence in
Research (NCCR) Robotics through the Swiss National Science Foundation,
the SNSF-ERC Starting Grant, and the European Union’s Horizon 2020
Research and Innovation program through the AERIAL-CORE project
(H2020-2019-871479).

Deep High-Level Policy

Model Predictive Control

Optimization

Dynamics

Observation

State

Reference Action

High-Level
Decision
Variables

Fig. 1. An overview of our approach for online adaptations of model
predictive control using a learned deep high-level policy. The neural network
policy is trained using self-supervised learning (Algorithm 2).

with deep neural networks, deep RL [9], [10], [11] opti-
mizes policies that are capable of mapping high-dimensional
sensory inputs directly to control commands. However, the
learning of deep neural network policies is highly data-
inefficient and suffers from poor generalization. In addition,
these methods typically provide little safety or stability
guarantees for the system, which is particularly problematic
when working with physical robots.

Instead of learning end-to-end control policies that map
observations directly to robot’s control commands, we con-
sider the problem of learning a high-level policy, where the
policy chooses task-dependent decision variables for a low-
level MPC controller. The MPC takes the decision variables
as inputs and generates optimal control commands that are
eventually executed on the robot. The policy parameters we
are trying to learn can be hyperparameters that are hard-to-
identify by human experts or a compact representation of
high-dimensional states (see SectionIV).

Contributions: In this work, we leverage intelligent
decision-making approaches to the powerful model predic-
tive control. First, we formulate the search of high-level
decision variables for MPC as a probabilistic policy search
problem. We make use of a weighted maximum likelihood
approach [7] for learning the policy parameters, since it
allows a closed-form solution for the policy update. Second,
we propose a novel self-supervised learning algorithm for
learning a neural network high-level policy. Conditioning on
the robot’s observation in a rapidly changing environment,
the trained policy is capable of adaptively selecting decision
variables for MPC. We demonstrate the effectiveness of our
approach, which incorporates a learned High-level policy
into a MPC (High-MPC), by solving a challenging task of
controlling a quadrotor to fly through a fast swinging gate.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7629

II. RELATED WORK

The study of combining machine learning or reinforcement
learning with model predictive control has been conducted
in learning-based control.

Sampling-based MPC are discussed in [5], [12], in which
the MPC optimizations are capable of handling complex
cost criteria and making use of learned neural networks for
dynamics modelling. A crucial requirement for the sampling-
based MPC is to generate a large number of samples in
real time, where the sampling is generally performed in
parallel using graphics processing units (GPUs). Hence, it
is computationally expensive to run sampling-based MPC
in real time. These methods generally focus on learning
dynamics for tasks where a dynamical model of the robots
or its environment is difficult to derive analytically, such as
aggressive autonomous driving around a dirt track [5].

MPC-guided policy search [13], [14], [15] are methods
that study the problems of learning a deep neural network
control policy using an MPC as the teacher, and hence,
they transform policy search into a supervised learning
fashion. The trained end-to-end control policy can forgo the
need for explicit state estimation and directly map sensor
observations to actions. MPC-guided policy search has been
demonstrated to be more data efficient than standard model-
free reinforcement learning. However, it suffers from the
problem of poor generalizations and stability.

Supervised learning for MPC [16], [17], [18], [19] has
been studied in the literature. In [16], [19], the authors
proposed to combine a CNN-based high-level policy with a
low-level MPC controller to solve the problem of navigating
a quadrotor to pass through multiple gates. The trained
policy predicts three-dimensional poses of the gate’s center
from image observations, and then, the MPC outputs control
commands for the quadrotor such that it navigates to the
predicted waypoints. Similarly, the method in [17] tackles an
aggressive high-speed autonomous driving problem by using
a CNN-based policy to predict a cost map of the track, which
is then directly used for online trajectory optimization. Here,
the deep neural network policies are trained using supervised
learning, which requires ground-truth labels.

III. BACKGROUND

A. Model Predictive Control

We consider the problem of controlling an nonlinear
deterministic dynamical system whose dynamics is defined
by a differential equation ẋt = f(xt,ut), where xt ∈ Rn

is the state vector, ut ∈ Rm is a vector of the control
command, and ẋt ∈ Rn is the derivative of current state.
In model predictive control, we approximate the actual
continuous time differential equation using a set of discrete
time integration xh+1 = xh + dt ∗ f̂(xh,uh), with dt as
the time interval between consecutive states and f̂ as an
approximated dynamical model.

At every time step t, the system is in state xt. MPC takes
the current state xt and a vector of additional references p as
input. MPC produces a sequence of optimal system states and

control commands τ = {(x1,u1), · · · , (xH−1,uH−1),xH}
by solving an optimization online, using a mulitple-shooting
scheme. The first control command is applied to the system,
after which the optimization problem is solved again in the
next state. MPC requires minimizing a quadratic cost over a
fixed time horizon H at each control time step by solving a
constrained optimization:

min
u1:H ,x1:H

J =

H∑
h=1

c(xh,uh,p, z)

subject to g(x,u) = 0, h(x,u) ≤ 0

xh+1 = xh + dt ∗ f̂(xh,uh), x1 = xinit
(1)

where g(x,u) represents equality constraints and h(x,u)
represents inequality constraints. Here, p is a vector of
reference states that are normally determined by a path
planner and are directly related to the task goal. We represent
a vector of high-level variables as z, which has to be defined
in advance by human experts, or learned using our policy
search algorithm (Sec. IV).

B. Episode-based Policy Search

We summarize episode-based policy search by following
the derivation from [8]. Unlike step-based policy search [11],
[20], which explores in the action space by adding ex-
ploration noise directly to the executed actions, episode-
based policy search perturbs the parameters of a low-level
controller in parameter space [8]. This kind of exploration
is normally added in the beginning of an episode and a
reward function is used to evaluate the quality of trajectories
that are generated by sampled parameters. A list of episode-
based policy search algorithms have been discussed in litera-
ture [7], [21], [22], [8]. We focus on a probabilistic model in
which the search of high-level parameters for the low-level
controller is treated as a probabilistic inference problem. A
visualization of the inference problem is given in Fig 2, the
graphical model is inspired by [8].

Fig. 2. Graphical model for learning a high-level policy πθ for MPC.

We make use of an MPC as the low-level controller where
the decision variables in MPC is represented as a vector of
unknown variables z. We define a reward function as R(τ),
which is used to evaluate the goodness of the MPC solution
τ with respect to the given task. The goal of policy search
is to find the optimal policy π(θ∗) such that it automatically
selects the high-level variables z for the MPC. Therefore,
it is equivalent to maximize an expectation of the reward
signal. Here, the reward function is different from the cost
function optimized by the MPC, but directly related to the
task goal.

To formulate the policy search as a latent variable infer-
ence problem, similar to [8], we introduce a binary “reward

7630

event” as the observation, denoted as E = 1. Maximizing
the reward signal implies maximizing the probability of
this “reward event”. This leads to the following maximum
likelihood problem [8]:

max
θ

log pθ(E = 1) = log

∫
τ

p(E|τ)pθ(τ)dτ , (2)

which can be solved efficiently using Monte-Carlo
Expectation-Maximization (MC-EM) [6], [23]. MC-EM al-
gorithms find the maximum likelihood solution for the log
marginal-likelihood (2) by introducing a variational distribu-
tion q(τ), and then, decompose the marginal log-likelihood
into two terms:

log pθ(E = 1) = Lθ(q(τ)) + KL(q(τ)||pθ(τ |E)) (3)

where Lθ(q(τ)) is the lower bound of log pθ(Z = 1).
The MC-EM algorithm is an iterative method alternates

between performing an Expectation (E) step and a Maximiza-
tion (M) step. In the expectation step, we minimize the Kull-
back–Leibler (KL) divergence KL(q(τ)||pθ(τ |E)), which
is equivalent to setting q(τ) = pθ(τ |E) ∝ p(E|τ)pθ(τ).
In the maximization, we use the sampled distributions for
estimating the complete-data log-likelihood by maximizing
the following weighted maximum likelihood objective:

θ∗ = argmax
θ

{∑
i

d[i] log π(z[i];θ)

}
(4)

where d[i] = p(E|τ [i]) is an improper probability distribu-
tion for the trajectory τ [i]. The trajectory τ [i] is collected
by solving an MPC optimization problem using z[i]. The
solution for updating the policy parameters θ has a closed-
form expression.

IV. METHODOLOGY

A. Problem Formulation

We make use of a Gaussian distribution πθ ∼ N (µ,Σ) to
model the high-level policy, where µ is the mean vector, Σ
is a covariance matrix, and hence, θ = {µ,Σ} represents all
policy parameters. We design a model predictive control with
a vector of unknown decision variables z to be specified. The
variables are directly related to the goal of a task and have to
be specified in advance before MPC solves the optimization
problem. MPC produces a trajectory τ that consists of a
sequence of optimal system states and control commands
(s,u). The cost function is defined by the variables and
additional references states, such as a target position or a
planned trajectory.

We define a reward function R(τ) which evaluates the
goodness of the predicted trajectory τ with respect to the task
goal. The design of this reward function is more flexible than
the cost function optimized by MPC, which allows us to work
with complex reward criteria, such as exponential reward,
discrete reward, and even sparse reward. For example, we
can compute the reward by counting the total number of non-
collision states in the predicted trajectory. Maximizing this
reward can hence find the optimal collision free trajectory.

B. Probabilistic Policy Search for MPC

We first focus on solving the problem of learning a high-
level policy πθ that does not depend on robot’s observations,
where our goal is to find an optimal policy which maximizes
the expected reward of predicted trajectories denoted as τ .
We used a weighted maximum likelihood algorithm to solve
the maximum likelihood estimation problem, where maxi-
mizing the reward is equivalent to maximizing the probability
of the binary “event”, denoted as pθ(E|τ) (Section III).

The maximization problem corresponds to weighted max-
imum likelihood estimation of πθ where each sample τ [i]

is weighted by d[i] = p(E|τ). To transform the reward
signal R(τ [i]) of a sampled trajectory τ [i] into a probability
distribution d[i], we use the exponential transformation [8]:

d[i] = exp
{
βR(τ [i])

}
(5)

where the parameter β ∈ R+ denotes the inverse temperature
of the soft-max distribution, higher value of β implies more
greedy policy update. A comparison of using different β for
the policy update is shown in Fig. 3. A complete episode-
based policy search for learning a high-level policy in MPC
is given in Algorithm 1.

Algorithm 1: Probabilistic Policy Search for MPC

Input: πθ(µ,Σ), N,MPC,x0,p
While not converged

Sample variables: z[i] ∼ πθ(z|µ,Σ)i=1...N

Sample trajectories: τ [i] = MPC.solve(x0, z
[i],p)

Expectation:
d[i] = exp

{
βR(τ [i])

}
Maximization:
µ =

(∑N
i=1 d

[i]z[i]
)
/
(∑N

i=1 d
[i]
)

Σ =
(∑N

i=1 d
[i](z[i] − µ)(z[i] − µ)T

)
/Y

Y =
(
(
∑N

i=1 d
[i])2 −

∑N
i=1(d

[i])2
)
/
(∑N

i=1 d
[i]
)

→ θnew = [µ,Σ]
Output: Learned high-level policy πθ(µ∗,Σ∗)

We represent our policy πθ using a normal distribution
with randomly initialized policy parameters θ. We consider
the robot at a fixed state x0, which does not change during
the learning. At the beginning of each training iteration, we
randomly sample a list of parameters of length N from the
current policy distribution πθ and evaluate the parameters
via a predefined reward function R(τ), where τ [i] are the
trajectories predicted by solving the MPC with sampled
variables z[i].

In the Expectation step, we transform the computed reward
signal R(τ) into a non-negative weight d[i] (improper prob-
ability distribution) via the exponential transformation (5).
In the Maximization step, we update the policy parameters
by optimizing the weighted maximum likelihood objec-
tive (4), where the policy parameter, both the mean and
the covariance, are updated using a closed-form expression.

7631

We repeat this process until the expectation of sampled
reward converges. Here, p is a vector of auxiliary variables.
After training (during policy evaluation), we simply take the
mean vector of the Gaussian policy as the optimal decision
variables for the MPC. Therefore, z = µ∗ is the optimal
MPC decision variables found by our approach.

C. Learning A Deep High-Level Policy

We extend Algorithm 1 of learning a high-level policy to
learning a deep neural network high-level policy, where the
trained neural network policy is capable of selecting adaptive
decision variables for the MPC given different observations
of the robot. Such properties are potentially useful for the
robot to adapt its behavior online in a highly dynamic
environment. For example, it is important to use an adaptive
control scheme for mobile robots since the robot’s dynamics
and its surrounding environment changes frequently.

First, we characterize an observation vector of the robot
as o, where the observation can be either high-dimensional
sensory inputs, such as images, or low-dimensional states,
such as the robot’s pose. Second, we define a general-purpose
neural network denoted as fΦ, with Φ being the network
weights to be optimized. We train the deep neural network
policy by combining the episode-based policy search (Al-
gorithm 1) with a self-supervised learning approach. Our
algorithm of learning a deep high-level policy is summarized
in Algorithm 2.

Algorithm 2: Learning A Deep High-Level Policy

Input: fΦ,D = {}, Algorithm 1
Data collection (repeat)

Randomly reset the system: xt,ot,pt, t = 0
While not done:
(zt = µ

∗)← Algorithm 1 (x0 = xt,pt)
Data collection: D ← D ∪ {ot, zt}
MPC optimization: u∗

t = MPC.solve(xt, zt,pt)
System transition: xt ← f(xt,u

∗
t)

Policy learning
Φnew = argminΦ ‖fΦ(ot)− zt‖2

Output: Learned deep high-level policy fΦ∗

We divide the learning process into two stages: 1) data
collection, 2) policy learning. In the data collection stage,
we randomly initialize the robot in a state xt and find the
optimal decision variables z∗t via Algorithm 1. We aggregate
our dataset by D ← D ∪ (ot, z

∗
t), where ot is the current

observation of the robot. An sequence of optimal control
actions u∗

t are computed by solving the MPC optimization,
given the current state xt of the robot and the learned
variable z∗t . The first control command is applied to the
system, subsequently, the robot transitions to the next state.
Incrementally, we collect a set of data that consists of a
variety of observation-optimal-variables pairs (ot, z

∗
t). In the

policy learning stage, we optimize the neural network by
minimizing the mean-squared-error between the labels z∗t

and the prediction of the network fΦ(ot), using stochastic
gradient descent.

V. EXPERIMENTS

A. Problem Formulation
1) Passing Through a Fast Moving Gate: To demonstrate

the effectiveness of our approach, we aim at solving a
challenging control problem. Our task is to maneuver a
quadrotor to pass through the center of a swinging gate
that hangs from the ceiling via a cable. We assume that
the gate oscillates in a same two-dimensional plane (Fig. 5).
Thus, we model the motion of the gate as a simple pen-
dulum. Such a quadrotor control problem can be solved
via a traditional modular planning-tracking pipeline, where
an explicit trajectory generator, such as a minimum snap
trajectory [24] or motion primitives [25] is combined with
a low-level controller. To forgo the need for an explicit
trajectory generator, we intend to solve this problem using
our proposed High-MPC, where we make use of a high-level
policy to adaptively select a decision variable for a low-level
MPC controller. Our approach automatically find an optimal
trajectory for flying through the gate by solving an adaptive
MPC optimization online,

Quadrotor Dynamics: We model the quadrotor as a
rigid body controlled by four motors. We use the quadrotor
dynamics proposed in [25]:

ṗWB = vWB

v̇WB = qWB � c− g

q̇WB =
1

2
Λ(ωB) · qWB

where pWB = [xq, yq, zq]
T and vWB = [vq,x, vq,y, vq,z]

T

are the position and velocity of the quadrotor in the
world frame W . We use a unit quaternion qWB =
[qq,w, qq,x, qq,y, qq,z]

T to represent the orientation of the
quadrotor and use ωB = [ωx, ωy, ωz]

T to denote the body
rates (roll, pitch, and yaw respectively) in the body frame B.
Here, g = [0, 0,−gz]T with gz = 9.81m/s2 is the gravity
vector, and Λ(ωB) is a skew-symmetric matrix. Finally,
c = [0, 0, c]T is the mass-normalized thrust vector. We use
a state vector xq = [pWB ,vWB ,qWB] and an action vector
uq = [c, ωx, ωy, ωz] to denote the quadrotor’s states and
control commands separately.

Pendulum Dynamics: We use a simple pendulum which
is modeled as a bob of mass mp attached to the end of a
massless cord L. The cord is hinged at a fixed pivot point
denoted as PWP = [xf , yf , zf]. The pendulum is subject
to three forces: the gravity, the tension force exerted by the
cord upon the bob, and a damping force due to friction and
air drag. The damping force is proportional to the angular
velocity θ̇ and denoted as fd = −b ∗ θ̇, where b ∈ R+ is
a damping factor. Hence, we use the following dynamical
model

θ̇ = θv

θ̇v = −gz
L

sin(θ)− b

mp
θ̇

7632

to simulate the motion of our gate, where θ is the angle dis-
placement with respect to the vertical direction. We constrain
the pendulum’s motion in the y−z plane, where x = xf and
vx = 0. A Cartesian coordinate representation of the pendu-
lum in the world frame W can be obtained from the pen-
dulum’s angle displacement θ with respect to PWP and L.
We can represent the state of the gate’s center using the state
vector xp = [xp, yp, zp, vp,x, vp,y, vp,z, qp,w, qp,x, qp,y, qp,z].

Model Predictive Control: We solve the problem of
passing through the swinging gate using non-linear model
predictive control. We make use of discrete time models,
where a list of quadrotor states xq,h,∀h ∈ [0, H] and control
commands uq,h,∀h ∈ [0, H−1] are sampled with a discrete
time step dt. We define the objective L as a sum over three
different cost components: a goal cost Lg, a tracking cost Ltr,
and an action regularization cost Lu. Thus, we solve the
following constrained optimization problem:

min
uq,xq

Lg(xq,H , rg) +

H−1∑
h=0

Ltr(xq,h, rh, ttra) + Lu(uh)

= δTg,HQgδg,H +

H−1∑
h=0

δTtr,hQtr(ttra, h)δtr,h + δTu,hQuδu,h

s.t. : cmin ≤ c ≤ cmax

− ωmax ≤ ωB ≤ ωmax

where δtr,h = (xq,h − rh) are differences between the
vehicle’s states xq,h and reference states rh at the stage h,
and δg,H = (xq,H − rg) defines the difference between
the vehicle’s terminal state xq,H and a hovering state rg.
Here, δu,h = (uh − ur) is a regularization for pre-
dicted control commands uh, where the reference command
ur = [gz, 0, 0, 0] is the command required for hovering
the quadrotor. The control commands are constrained by
cmin, cmax,ωmax ∈ R+.

Cost Functions: In MPC, we minimize a sum of quadratic
cost functions over the receding horizon T using a sequential
quadratic program (SQP). We design quadratic cost functions
using positive definite diagonal matrices Qg, Qtr(ttra, h),
and Qu. In particular, both Qg and Qu are time-invariant
matrices. Here, Qg defines the importance of reaching to
a hovering state rg at the end of the horizon and Qu corre-
sponds to the importance of taking the control commands that
are not diverging too much from the reference command ur.

Since the gate is swinging in the y − z plane, in order
to pass through the gate, the quadrotor has to fly forward
in the x direction and simultaneously minimize its distance
to the center of the gate in both y and z axes. Hence, the
quadrotor has to track the pendulum’s motion in both axes
when it approaches to the gate. To do so, we use a time-
varying cost matrix Qtr(φ, h), which is defined as:

Qtr(ttra, h) = Qtr, max ∗ exp (−α ∗ (h ∗ dt − ttra)2) (6)

where the exponential function defines the temporal impor-
tance for each states xq , and α ∈ R+ defines the temporal
spread of states in terms of tracking the pendulum’s motion.
Here, ttra ∈ [0, 2T] is a time variable that defines the best

traversal time for the quadrotor, having T < ttra < 2T
helps the quadrotor go to the hovering point after passing
through the gate. Hence, for states xq that are close to the
ttra, we have Qtr(ttra, h) ≈ (Qtr, max ∗ 1), which means that
these states should strictly follow the pendulum in y and
z. However, for states that are faraway from ttra, we have
Qtr(ttra, h) ≈ (Qtr, max ∗ 0), which indicates that it is not
necessary for these states to follow the pendulum’s motion.
Here, Qtr, max defines the maximum weight that should be
assigned for tracking the pendulum. Without considering
the importance of each state at different time stages, e.g.,
weighting the tracking loss δtr,h in all time stages using the
same constant cost matrix, the quadrotor flies trajectories that
would oscillate around the forward axis (see Fig. 6).

Therefore, a key requirement for our MPC to solve the
problem is to obtain the optimal traversal time ttra in advance.
A similar problem was discussed in [26], where a time
variable at which a desired static waypoint should be reached
by a quadrotor was determined by human experts. In our
case, the time variables are more difficult to obtain, especially
when we consider adapting the variable online.

B. Learning Traversal Time

We first consider the scenario where the quadrotor always
starts from the same initial hovering state with [xq, yq, zq] =
[−1, 0, 2] and the pendulum is hinged at a fixed pivot point
[xf , yf , zf] = [2, 0, 3] with cord length L = 2 meter (m).
The pendulum’s initial angle and angular velocity are [θ, θ̇] =
[π/2, 0] (in radians). We define a hovering state [xg, yg, zg] =
[4, 0, 2] as a goal state for the quadrotor to hover after passing
through the gate. Given the dynamics of the vehicle and the
pendulum, we want to plan a trajectory in the future time
horizon T = 2 seconds, such that the produced quadrotor
trajectory τ intersects the center of the gate at the traversal
time ttra.

We learn the decision variable ttra using Algorithm 1 (Sec-
tion IV), where ttra is modeled as a high-level policy and is
represented using a Gaussian distribution ttra ∼ π(µ, σ). We
first sample a list of t[i]opt, i ∈ [0 · · ·N − 1] of size N , and
then, collect a vector of predicted trajectories τ [i] by solving
N MPC optimizations. We evaluate the sampled trajectories
τ using the following reward function:

R(τ) = −
∑
j

(‖xq,j−xp,j‖+‖yq,j−yp,j‖+‖zq,j−zp,j‖)

where j ∈ [(j∗−5) · · · (j∗+4)] correspond to 10 time stages
that are close to the time stage determined by the samples t[i]tra
via j∗ = int(ttra/dt). Maximizing this reward signal indicates
that the high-level policy π(µ, σ) tends to sample ttra that
allows the MPC to plan a trajectory that has a minimum
distance between the quadrotor’s state xq and the center of
the gate xp during the traversal. This reward is maximized
by solving the weighted maximum likelihood objective (4)
using Algorithm 1.

1) High-Level Policy Training: Fig. 3 shows the learning
progress of the high-level policy. The learning of such a high-
level policy is extremely data-efficient and stable, where the

7633

policy converges in only a few trials. For example, the policy
is converged after around 6 training iterations when using
β = 3.0, where in total 6×30 trajectories (equivalent to 180
MPC optimizations) were sampled. We use CasADi [27],
which is an open-source tool for nonlinear optimization and
algorithmic differentiation, for our MPC implementation. We
use a discretization time step of dt = 0.04s and a prediction
horizon of T = 2s. On average, each MPC optimization
takes around 0.03s on a standard laptop.

Fig. 3. This figure shows the learning progress of the high-level policy.
Top: Averaged rewards using different β over 7 runs of each, where
policies are randomly initialized with different random seeds. Bottom: A
visualization of policy distributions and sampled ttra during training. The
policy converges to an optimal solution after around 6 iterations.

2) Traverse Trajectory Planning: Fig. 4 shows a compar-
ison between the planned trajectory using our High-MPC
(along with an optimized decision variable ttra = 1.25
seconds) and the solution from a standard MPC. The standard
MPC minimizes the same cost function with a constant cost
matrix Qtr = Qtr, max for all states and does not use the
exponential weighting scheme. As a result, both methods
are capable of planning trajectories that pass through the
swinging gate, where absolute position errors at the traversal
point in the y − z plane are 0.24 meters for High-MPC and
0.30 meters for the standard MPC, respectively. Nevertheless,
the control actions (the total thrust and body rates) produced
by High-MPC are better for real-world deployment since
the inputs reach their limit for lower amount of time,
leaving more control authority to counteract disturbance. Our
approach only tries to follow the pendulum’s motion in y and
z directions at the time stages closed to the learned traversal
time ttra.

C. Learning Adaptive Traversal Time

Learning a single high-level policy without taking the
robot’s observation into account is only useful for selecting
time-invariant variables or for planning a one-shot trajectory,
where the dynamics are perfectly modeled. This, however, is
generally not the case. For example, our task requires the

Fig. 4. A comparison of planned trajectories between our High-MPC (with
trained t∗tra = 1.25 (s)) and a standard MPC. The vertical line indicates the
passing moment. Our High-MPC is better for real-world deployment since
the produced actions are much smoother than the standard MPC and reach
the limit for lower amount of time.

MPC to constantly update its prediction based on the the ve-
hicle’s state with respect to that of the dynamic gate. Hence,
we also want to find a high-level policy which is capable of
adaptively selecting the time variable t∗tra depending on the
robot’s observation.

1) Deep High-Level Policy Training: To do so, we make
use of a multilayer perceptron (MLP) to generalize the t∗tra
to different contexts ot. We represent ot as an observation
of the vehicle using ot = xq,t − xp,t, which represents the
difference between the vehicle’s state xq,t and the pendu-
lum’s state xp,t at time step t. We use Algorithm 2 (Section
IV), where we combine the learning of an optimal high-
level policy online with a supervised learning approach to
train the MLP. We first randomly initialize the system, which
means we use random initial states for the quadrotor, and
drop the pendulum from random angles; then, we find the
optimal traversal time t∗tra at this state. We solve the MPC
optimization using t∗tra and apply the optimal control action
to a simulated quadrotor. We repeat this process again at
each simulation time step until the quadrotor flies through
the gate or it reaches the maximum simulation steps. In
total, we collect 40,000 samples that consist of observation-
traversal-time pairs (ot, ttra). It takes a single core CPU
several hours to collect the data, however, the total sampling
time can be significantly reduced using parallel processing or
multithreading. We use Tensorflow [28] to implement the a
fully-connected MLP with two hidden layers of 32 units, and
ReLU nonlinearities. The training of network weights takes
less than 5 minutes on a notebook with a Nvidia Quadro
P1000 graphics card.

2) Passing Through a Fast Moving Gate via High-MPC:
We evaluate the effectiveness of our High-MPC by control-
ling a simulated quadrotor to pass through a fast swing gate,
where the quadrotor and the pendulum are randomly initial-
ized in different states. Based on the state of the quadrotor,
the motion of the pendulum (including 2s of predicted
pendulum motion in the future), and the predicted traversal
time, our High-MPC simultaneously plans a trajectory and

7634

Fig. 5. Demonstrations of our High-MPC for flying through a swinging gate. The initial states of the quadrotor and the pendulum are randomly initialized.
In the 3D plots, the initial states of the pendulum are indicated by the grey color, and the black gates show the moment when the quadrotor is intersecting
in the gate. The color bars on the right side specify the quadrotor speed in the x direction. The grey dash lines are planned trajectory by our MPC and
colored dots are traveled trajectories. The quadrotor’s body frame is indicated by [xq , yq , zq]. The 2D plots show travelled trajectories of the quadrotor
and the pendulum.

Fig. 6. Comparisons between our High-MPC (left) and a standard
MPC (right), where initial states of the system are the same for both
methods. Top: the swinging gate is released from θ = 1.57 (rad). Bottom:
the swinging gate is released from θ = −1.57 (rad).

controls the vehicle to pass through the gate. Fig. 5 shows
six random examples of the quadrotor successfully flying
through the swinging gate.

In addition, we compared the performance of our High-
MPC to a standard MPC (Fig. 6), where the standard MPC
optimizes a cost function without considering the temporal
importance of difference states in tracking the pendulum
motion. The standard MPC failed to pass through the gate
and results in trajectories that are oscillating about the
forward direction (x axis).

VI. DISCUSSION AND CONCLUSION

In this work, we introduced the idea of formulating
the design of hard-to-engineer decision variables in MPC
as a probabilistic inference problem, which can be solved
efficiently using an EM-based policy search algorithm. We
combined self-supervised learning with the policy search
method to train a high-level neural network policy. After
training, the policy is capable of adaptively making online
decisions for the MPC. We demonstrated the success of
our approach by combining a trained MLP policy with a
MPC to solve a challenging control problem, where the
task is to maneuver a quadrotor to fly through the center

7635

of a fast-moving gate. We compared our approach (High-
MPC) to a standard MPC and showed that ours achieve more
robust results, and hence, it is more promising to deploy our
method on real robots, thanks to the online decision variable
adaptation scheme realized by the deep high-level policy.
Besides, our approach has the advantage of tightly coupling
planning and optimal control together, and hence, forgo the
need for an explicit trajectory planner.

Nevertheless, our approach has limitations such as it
requires multiple MPC optimizations in-the-training-loop in
order to find optimal variables. It is possible to learn a vector
of high-dimensional decision variables and more complex
neural network policies, however, the sample complexity will
increase by a large margin. To fully exploit the potential of
automatically learning high-level policies for optimal control,
we hope that our work sparks more researchers’ interests
in this domain to derive new algorithms and opens up
opportunities for solving more complex robotic problems,
such as real-world robot navigation in a complex dynamic
environment. To test the scalability and generalization of
our High-MPC, in the near future we intend to deploy the
algorithm on a real robot system.

REFERENCES

[1] J. Rawlings and D. Mayne, Model Predictive Control: Theory
and Design. Nob Hill Pub., 2009. [Online]. Available: https:
//books.google.ch/books?id=3 rfQQAACAAJ

[2] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[3] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
Aware Model Predictive Control for Quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2018, pp. 1–8.

[4] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear MPC
for trajectory tracking applied to rotary wing micro aerial vehicles,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463–3469, 2017.

[5] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1714–1721.

[6] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

[7] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 745–750.

[8] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends R© in Robotics, vol. 2,
no. 1–2, pp. 1–142, 2013.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a Quadro-
tor With Reinforcement Learning,” IEEE Robotics and Automation
Letters, vol. 2, no. 4, pp. 2096–2103, Oct 2017.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 1861–1870. [Online]. Available:
http://proceedings.mlr.press/v80/haarnoja18b.html

[12] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), May 2016, pp. 1433–1440.

[13] S. Levine and V. Koltun, “Guided Policy Search,” in Proceedings
of the 30th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, S. Dasgupta
and D. McAllester, Eds., vol. 28, no. 3. Atlanta, Georgia,
USA: PMLR, 17–19 Jun 2013, pp. 1–9. [Online]. Available:
http://proceedings.mlr.press/v28/levine13.html

[14] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with MPC-guided policy
search,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 528–535.

[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[16] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza, “Beauty and the Beast: Optimal
Methods Meet Learning for Drone Racing,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019, pp. 690–
696.

[17] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M.
Rehg, “Aggressive Deep Driving: Combining Convolutional Neural
Networks and Model Predictive Control,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 133–142. [Online]. Available:
http://proceedings.mlr.press/v78/drews17a.html

[18] G. Kahn, P. Abbeel, and S. Levine, “BADGR: An Autonomous
Self-Supervised Learning-Based Navigation System,” arXiv preprint
arXiv:2002.05700, 2020.

[19] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep Drone Racing: From Simulation to Re-
ality With Domain Randomization,” IEEE Transactions on Robotics,
vol. 36, no. 1, pp. 1–14, Feb 2020.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[21] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” arXiv preprint arXiv:1206.4621, 2012.

[22] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical
Relative Entropy Policy Search,” Journal of Machine Learning
Research, vol. 17, no. 93, pp. 1–50, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-188.html

[23] N. Vlassis and M. Toussaint, “Model-free reinforcement learning as
mixture learning,” in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009, pp. 1081–1088.

[24] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 2520–2525.

[25] M. W. Mueller, M. Hehn, and R. D’Andrea, “A Computationally
Efficient Motion Primitive for Quadrocopter Trajectory Generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, Dec
2015.

[26] M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in 2016 IEEE inter-
national conference on robotics and automation (ICRA). IEEE, 2016,
pp. 1398–1404.

[27] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “CasADi:
a software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, 07 2018.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

7636

