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Abstract— There have been significant advances in neural
networks for both 3D object detection using LiDAR and 2D
object detection using video. However, it has been surprisingly
difficult to train networks to effectively use both modalities in
a way that demonstrates gain over single-modality networks.
In this paper, we propose a novel Camera-LiDAR Object
Candidates (CLOCs) fusion network. CLOCs fusion provides
a low-complexity multi-modal fusion framework that signifi-
cantly improves the performance of single-modality detectors.
CLOCs operates on the combined output candidates before
Non-Maximum Suppression (NMS) of any 2D and any 3D
detector, and is trained to leverage their geometric and semantic
consistencies to produce more accurate final 3D and 2D detec-
tion results. Our experimental evaluation on the challenging
KITTI object detection benchmark, including 3D and bird’s
eye view metrics, shows significant improvements, especially at
long distance, over the state-of-the-art fusion based methods.
At time of submission, CLOCs ranks the highest among all the
fusion-based methods in the official KITTI leaderboard. We
will release our code upon acceptance.

I. INTRODUCTION

Autonomous driving systems need accurate 3D perception
of vehicles and other objects in their environment. Unlike 2D
visual detection, 3D-based object detection enables spatial
path planning for object avoidance and navigation. Compared
to 2D object detection, which has been well-studied [1], [2],
[3], [4], 3D object detection is more challenging with more
output parameters needed to specify 3D oriented bounding
boxes around targets. In addition, LiDAR methods [5], [6],
[7], [8], [9] are hampered by typically lower input data
resolution than video which has a large adverse impact on
accuracy at longer ranges. Fig. 1 illustrates the difficulty in
detecting vehicles from just a few points and no texture at
long range. Human annotators use both the camera images
together with the LiDAR point clouds to create the ground
truth bounding boxes [10]. This motivates multi-modal sen-
sor fusion as a way to improve single-modal methods.

While sensor fusion has potential to address the short-
comings of video-only and LiDAR-only detections, finding
an effective approach that improves on the state-of-the-art
single modality detectors has been difficult. This is illus-
trated in the official KITTI 3D object detection benchmark
leaderboard, where LiDAR-only based methods outperform
most of the fusion based methods. Fusion methods can be
divided into three broad classes: early fusion, deep fusion
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(a) LiDAR-only detector on #1 (b) Our CLOCs fusion on #1

(c) Image-only detector on #1 (d) CLOCs on #1 shown in img

(e) LiDAR-only detector on #2 shown in image

(f) Image-only detector on #2

(g) Our CLOCs fusion on #2 shown in image

Fig. 1: Example #1 of car detection from single modal-
ity methods: (a) LiDAR-only detector, and (c) image-only
detector, with our CLOCs fusion shown in (b) and (d). A
second example, #2, is shown below. Dashed red box shows
misses and solid red bounding box shows false positives. Our
proposed CLOCs fusion can correct both of these errors.

and late fusion, each with their own pros and cons. While
early and deep fusion have greatest potential to leverage cross
modality information, they suffer from sensitivity to data
alignment, often involve complicated architectures [11], [12],
[13], [14], and typically require pixel-level correspondences
of sensor data. On the other hand, late fusion systems are
much simpler to build as they incorporate pre-trained, single-
modality detectors without change, an only need association
at the detection level. Our late fusion approach uses much-
reduced thresholds for each sensor and combines detection
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candidates before Non-Maximum Suppression (NMS). By
leveraging cross-modality information, it can keep detection
candidates that would be mistakenly suppressed by single-
modality methods.

We propose Camera-LiDAR Object Candidates Fusion
(CLOCs) as a way to achieve improved accuracy for 3D
object detection. The proposed architecture delivers the fol-
lowing contributions:

• Versatility & Modularity: CLOCs uses any pair of
pre-trained 2D and 3D detectors without requiring re-
training, and hence, can be readily employed by any
relevant already-optimized detection approaches.

• Probabilistic-driven Learning-based Fusion: CLOCs
is designed to exploit the geometric and semantic con-
sistencies between 2D and 3D detections and automat-
ically learns probabilistic dependencies from training
data to perform fusion.

• Speed and Memory: CLOCs is fast, leveraging sparse
tensors with low memory footprint, which only adds
less than 3ms latency for processing each frame of data
on a desktop-level GPU.

• Detection Performance: CLOCs improves single-
modality detectors, including state-of-the-art detectors,
to achieve new performance levels. At time of submis-
sion, CLOCs ranks the highest among all the fusion
based methods in the official KITTI leaderboard.

The rest of the paper is organized as follows. We first
review related work in section 2. Then, we introduce the
motivation of our work and why we choose to fuse the
detection candidates in section 3. In section 4, we illus-
trate our Camera-LiDAR Object Candidates (CLOCs) Fusion
architecture and relevant details of our network. We report
and analyse our experimental results on the KITTI dataset
in section 5. In section 6, we conclude the paper.

II. RELATED WORK

The three main categories 3D object detection are based
on (1) 2D images, (2) 3D point clouds and (3) both images
and point clouds. Although 2D image-based methods are
attractive for not requiring LiDAR, there is a large gap in
3D performance between these methods and those leverag-
ing point clouds, and so here we focus on the latter two
categories.

A. 3D Detection Using 2D Images

Mousavian et al. [15] leverage the geometric constraints
between 2D and 3D bounding boxes to recover 3D informa-
tion. [16], [17] estimate 3D object information by calculating
the similarity between 3D objects and CAD models. [18]
and [19] explore using stereo images to generate dense point
cloud and conduct object detection using that cloud. These
image-based methods are promising, but when compared to
LiDAR-based techniques, they generate much less accurate
3D bounding boxes.

B. 3D Detection Using Point Cloud

Point-cloud techniques currently lead in popularity for
3D object detection. Compared to multi-modal fusion based
methods, single sensor setup avoids multi-sensor calibration
and synchronization issues. However, object detection per-
formance at longer distance is still relatively poor. Methods
vary by how they encode and learn features from raw point
cloud. [5] uses voxels to encode the raw point cloud, and
3D CNNs (Convolutonal Neural Networks) are applied to
learn voxel features for classification and bounding box
regression. SECOND [6] is the upgrade version of [5], since
raw LiDAR point cloud has very sparse data structure, it
uses sparse 3D CNNs which reduces the inference time
significantly. PointPillars [9] uses PointNets [7] in an encoder
that represents point clouds organized in vertical columns
(pillars) followed with a 2D CNN detection head to perform
3D object detection; it enables inference at 62 Hz; Compared
with one-stage methods discussed above, PointRCNN [8],
Fast PointRCNN [20] and STD [21] applies a two-stage
architecture that first generate 3D proposals in a bottom-
up manner and then refines these proposals in a second
stage. PV-RCNN [22] leverages the advantages of both 3D
voxel CNN and PointNet-based set abstraction to learn more
discriminative features. Besides, Part-A2 in [23] explores
predicting intra-object part locations (lower left, upper right,
etc.) in the first stage, and such part locations can assist
accurate 3D bounding box refinement in the second stage.

C. 3D Detection Using Multi-modal Fusion

We focus on camera-LiDAR fusion methods in this section
since this is the most common sensor setup for self-driving
cars. Frustum PointNet [24], Pointfusion [13] and Frustum
ConvNet [25] are the representatives of 2D driven 3D de-
tectors, which exploit mature 2D detectors to generate 2D
proposals and narrow down the 3D processing domain to
the corresponding cropped region in the image. But the 2D
image-based proposal generation might fail in some cases
that could only be observed from 3D space. MV3D [11] and
AVOD [12] project the raw point cloud into bird’s eye view
(BEV) to form a multi-channel BEV image. A deep fusion
based 2D CNN is used to extract features from this BEV
image as well as the front camera image for 3D bounding box
regression. The overall performance of these fusion based
methods is worse than LiDAR-only based methods. Possible
reasons include: First, transforming raw point cloud into
BEV image loses spatial information. Second, the crop and
resize operation used in these algorithms in order to fuse
feature vectors from different sensor modalities may destroy
the feature structure from each sensor. Camera images are
high-resolution dense data, while LiDAR point cloud are
low-resolution sparse data, fusing these two different types of
data structure is not trivial. Forcing feature vectors from 2D
images and 3D LiDAR point cloud to have the same size or
equal-length, then concatenating, aggregating or averaging
them could result in inaccurate correspondence between
these feature vectors and therefore is not the optimal way
for fusing features. In order to fuse features from different
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sensor modalities with better correspondence, MMF [26]
adopts continuous convolution [14] to build dense LiDAR
BEV feature maps and do point-wise feature fusion with
dense image feature maps. MMF is currently one of the best
public multi-modal fusion based 3D detector according to
the KITTI 3D/BEV object detection benchmark. However, it
is still 2∼4% worse in moderate level than the best LiDAR-
only based detectors in KITTI leaderboard.

III. MOTIVATION

A. 2D and 3D Object Detection

We first introduce the basic concepts of 2D and 3D object
detection used in this paper. 2D detection systems discussed
in this paper take RGB images as input, and output classified
2D axis-aligned bounding boxes with confidence scores, as
shown in Fig 2. 3D detection systems generate classified
oriented 3D bounding boxes with confidence scores, as
shown in Fig 2. In the KITTI dataset [10] only rotation in z
axis is considered (yaw angle), while rotations in x and y axis
is set to zero for simplicity. Using calibration parameters of
the camera and LiDAR, the 3D bounding box in the LiDAR
coordinate can be accurately projected into the image plane,
as shown in Fig 2.

Fig. 2: 2D and 3D object detection. An object that is correctly
detected by both a 2D and 3D detector will have highly
overlapped bounding boxes in the image plane.

B. Why Fusion of Detection Candidates

Fusion architectures can be categorized based on at what
point during their processing features from different modal-
ities are combined. Three general categories are (1) early
fusion which combines data at the input, (2) deep fusion
which has different networks for different modalities while
simultaneously combining intermediate features, and (3) late
fusion which processes each modality on a separate path and
fuses the outputs in the decision level.

Early fusion has the greatest opportunity for cross-modal
interaction, but at the same time inherent data differences
between modalities including alignment, representation, and
sparsity are not necessarily well-addressed by passing them
all through the same network.

Deep fusion addresses this issue by including separate
channels for different modalities while still combining fea-
tures during processing. This is the most complicated ap-
proach, and it is not easy to determine whether or not

the complexity actually leads to real improvements; simply
showing gain over single-modality methods is insufficient.

Late fusion has a significant advantage in training; single
modality algorithms can be trained using their own sensor
data. Hence, the multi-modal data does not need to be
synchronized or aligned with other modalities. Only the
final fusion step requires jointly aligned and labeled data.
Additionally, the detection candidate data that late fusion
operates on is compact and simple to encode for a network.
Since late fusion prunes rather than creates new detections,
it is important that the input detectors be tuned to maximize
their recall rate rather than their precision. In practice, this
implies that individual modalities (a) avoid the NMS stage,
which may mistakenly suppress true detections. and (b) keep
thresholds as low as possible.

In our late fusion framework, we incorporate all detection
candidates before NMS in the fusion step to maximize the
probability of extracting all potential correct detections. Our
approach is data-driven; we train a discriminative network
that receives as input the output scores and classifications
of individual detection candidates, as well as spatial descrip-
tions of the detection candidates. It learns from data how
best to combine input detection candidates for a final output
detection.

IV. CAMERA-LIDAR OBJECT CANDIDATES FUSION

A. Geometric and Semantic Consistencies

For a given frame of image and LiDAR data there may
be many detection candidates of with various confidences
in each modality from which we seek a single set of 3D
detections and scores. Fusing these detection candidates
requires an association between the different modalities (even
if the association is not unique). For this we build a geometric
association score and apply semantic consistency. These are
described in more detail as follows.
Geometric consistency An object that is correctly detected
by both a 2D and 3D detector will have an identical bounding
box in the image plane, see Fig 2, whereas false positives are
less likely to have identical bounding boxes. Small errors in
pose will result in a reduction of overlap. This motivates an
image-based Intersection over Union (IoU) of the 2D bound-
ing box and the bounding box of the projected corners of the
3D detection, to quantify geometric consistency between a
2D and a 3D detection.
Semantic consistency Detectors may output multiple
categories of objects, but we only associate detections of
the same category during fusion. We avoid thresholding
detections at this stage (or use very low thresholds), and
leave thresholding to the final output based on the final fused
score.

The two types of consistencies illustrated above is the
fundamental concept used in our fusion network.

B. Network Architecture

In this section we explain the preprocessing/encoding of
fused data, the fusion network architecture and the loss
function used for training.
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Fig. 3: CLOCs Fusion network architecture. First, individual 2D and 3D detection candidates are converted into a set of
consistent joint detection candidates (a sparse tensor, the blue box); Then a 2D CNN is used to process the non-empty
elements in the sparse input tensor; Finally, this processed tensor is mapped to the desired learning targets, a probability
score map, through maxpooling.

1) Sparse Input Tensor Representation: The goal of our
encoding step is to convert all individual 2D and 3D detection
candidates into a set of all consistent joint detection candi-
dates which can be fed into our fusion network. The general
output of a 2D object detector are a set of 2D bounding boxes
in the image plane and corresponding confident scores. For
k 2D detection candidates in one image can be defined as
follows:

P2D ={p2D
1 ,p2D

2 , ...p2D
k },

p2D
i ={[xi1, yi1, xi2, yi2] , s2Di }

(1)

P2D is the set of all k detection candidates in one image,
for ith detection p2D

i , xi1, yi1 and xi2, yi2 are the pixel
coordinates of the top left and bottom right corner points
from the 2D bounding box. s2Di is the confident score.

The output of 3D object detectors are 3D oriented bound-
ing boxes in LiDAR coordinate and confident scores. There
are multiple ways to encode the 3D bounding boxes, in
KITTI dataset [10], a 7-digit vector containing 3D dimension
(height, width and length), 3D location (x,y,z) and rotation
(yaw angle) is used. For n 3D detection candidates in one
LiDAR scan can be defined as follows:

P3D ={p3D
1 ,p3D

2 , ...p3D
n },

p3D
i ={[hi, wi, li, xi, yi, zi, θi] , s

3D
i }

(2)

where P3D is the set of all n detection candidates in one
LiDAR scan, for ith detection p3D

i , [hi, wi, li, xi, yi, zi, θi]
is the 7-digit vector for 3D bounding box. s3Di is the 3D
confident score. Note that we take 2D and 3D detections
without doing NMS, as discussed in the previous section,
some correct detections may be suppressed because of lim-
ited information from single sensor modality. Our proposed
fusion network would reevaluate all detection candidates
from both sensor modalities to make better predictions. For
k 2D detections and n 3D detections, we build a k × n× 4

tensor T, as shown in Fig 3. For each element Ti,j, there
are 4 channels denoted as follows:

Ti,j = {IoUi,j , s
2D
i , s3Dj , dj} (3)

where IoUi,j is the IoU between ith 2D detection and
jth projected 3D detection, s2Di and s3Dj are the confident
scores for ith 2D detection and jth 3D detection respectively.
dj represents the normalized distance between the jth 3D
bounding box and the LiDAR in xy plane. Elements Ti,j

with zero IoU are eliminated as they are geometrically
inconsistent.

The input tensor T is sparse because for each projected
3D detection, only few 2D detections intersect with it and so
most elements are empty. The fusion network only needs to
learn from these intersected examples. Because we take the
raw predictions before NMS, k and n are large numbers, for
SECOND [6], there are 70400 (200×176×2) predictions in
each frame. It would be impractical to do 1× 1 convolution
on a dense tensor with this shape. We propose an imple-
mentation architecture to utilize the sparsity of tensor T and
make the calculations much faster and feasible for large k
and n values. Only non-empty elements are delivered to the
fusion network for processing, shown in Fig. 3. As we would
discuss later, the indices of the non-empty elements (i, j) are
important for further calculations, therefore the indices of
these non-empty elements are saved in the cache, as shown
in the blue box in Fig. 3. Here noted that for projected
3D detection pj that has no 2D detection intersected, we
still fill the last element in jth column Tk,j in T with the
available 3D detection information and set IoUk,j and s2Dk
as -1. Because sometimes 3D detector could detect some
objects that 2D detector couldn’t and we do not want to
discard these 3D detections. Setting the IoU and s2D to -1
rather than 0 enables our network to distinguish this case
from other examples with very small IoU and s2D.
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TABLE I: Performance comparison of object detection with state-of-the-art camera-LiDAR fusion methods on car class of
KITTI test set (new 40 recall positions metric). CLOCs fusion improves the baselines and outperforms other state-of-the-art
fusion-based detectors. 3D and bird’s eye view detection are evaluated by Average Precision (AP)

Detector Input Data 3D AP (%) Bird’s Eye View AP (%)
easy moderate hard easy moderate hard

SECOND (baseline) [6] LiDAR 83.34 72.55 65.82 89.39 83.77 78.59
CLOCs SecCas

(SECOND+Cascad R-CNN) LiDAR+Img 86.38 78.45 72.45 91.16 88.23 82.63

Improvement
(CLOCs SecCas over SECOND) - +3.04 +5.90 +6.63 +1.77 +4.46 +4.04

PointRCNN (baseline) [8] LiDAR 86.23 75.81 68.99 92.51 86.52 81.39
CLOCs PointCas

(PointRCNN+Cascad R-CNN) LiDAR+Img 87.50 76.68 71.20 92.60 88.99 81.74

Improvement
(CLOCs PointCas over PointRCNN) - +1.27 +1.04 +2.21 +0.09 +2.47 +0.35

PV-RCNN (baseline) [22] LiDAR 87.45 80.28 76.21 91.91 88.13 85.41
CLOCs PVCas

(PV-RCNN+Cascad R-CNN) LiDAR+Img 88.94 80.67 77.15 93.05 89.80 86.57

Improvement
(CLOCs PVCas over PV-RCNN) - +1.49 +0.39 +0.94 +1.14 +1.67 +1.17

F-PointNet [24] LiDAR+Img 82.19 69.79 60.59 91.17 84.67 74.77
AVOD-FPN [12] LiDAR+Img 83.07 71.76 65.73 90.99 84.82 79.62
F-ConvNet [25] LiDAR+Img 87.36 76.39 66.69 91.51 85.84 76.11

UberATG-MMF [26] LiDAR+Img 88.40 77.43 70.22 93.67 88.21 81.99
UberATG-ContFuse [14] LiDAR+Img 83.68 68.78 61.67 94.07 85.35 75.88

C. Network Details

The fusion network is a set of 1×1 2D convolution layers.
We use Conv2D(cin, cout,k, s) to represent an 2 dimensional
convolution operator where cin and cout are the number
of input and output channels, k and s are the kernel size
vector and stride respectively. We employ four convolution
layers sequentially as Conv2D(4, 18, (1,1), 1), Conv2D(18,
36, (1,1), 1), Conv2D(36, 36, (1,1), 1) and Conv2D(36, 1,
(1,1), 1), which yields a tensor of size 1 × p × 1 shown
in Fig. 3, where p is the number of non-empty elements in
the input tensor T. Note that for the first three convolution
layers, after each convolution layer applied, ReLU [27] is
used. Since we have saved the indices of these non-empty
elements (i, j), as shown in Fig. 3 now we could build a
tensor Tout of shape k × n × 1 by filling p outputs based
on the indices (i, j) and putting negative infinity elsewhere.
Finally, this tensor is mapped to the desired learning targets,
a probability score map of size 1 × n, through maxpooling
in the first dimension.

D. Loss

We use a cross entropy entropy loss for target classifi-
cation, modified by the focal loss in [4] with parameters
α = 0.25 and γ = 2 to address the large class imbalance
between targets and background.

E. Training

The fusion network is trained using stochastic gradient
descent (SGD). We use the Adam optimizer with an initial
learning rate of 3 * 10−3 and decay the learning rate by a
factor of 0.8 for 15 epochs.

V. EXPERIMENTAL RESULTS

In this section we present our experimental setup and
results, including dataset, platform, performance results and

analyses. For all experiments, we focus on the car class since
it has the most training and testing samples in the KITTI [10]
dataset.

A. Dataset

Our fusion system is evaluated on the challenging 3D
object detection benchmark KITTI dataset [10] which has
both LiDAR point clouds and camera images. There are
7481 training samples and 7518 testing samples. Ground
truth labels are only available for training samples. For
the evaluation of testing samples, one needs to submit the
detection results to KITTI server. For experimental studies,
we follow the convention in [28] to split the original training
samples into 3712 training samples and 3769 validation
samples. We compare our method with sate-of-the-art multi-
modal fusion methods of 3D object detection on official test
split of KITTI as well as validation split.

B. 2D/3D Detector Setup

We apply our fusion network for a combination of different
2D and 3D detectors to demonstrate the flexibility of our
proposed pipeline. The 2D detectors we used are: RRC
[29], MS-CNN [30] and Cascade R-CNN [31]. The 3D
detectors we incorporated are: SECOND [6], PointPillars
[9], PointRCNN [8] and PV-RCNN [22]. While not the
top performers within the KITTI leaderboard, we have se-
lected these methods as they are the best currently-available
open-source detectors. Our experiments show that CLOCs
improves the performance of these detectors significantly.
At the time of submission, CLOCs fusion of PV-RCNN
with Cascade R-CNN, is ranked number 4 on KITTI 3D
detection leaderboard, number 6 on Bird Eye View detection
leaderboard, number 1 on 2D detection leaderboard, and
outperforms all other fusion methods.
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TABLE II: 3D and bird’s eye view performance of fusion
with different combinations of 2D/3D detectors through
CLOCs on car class of KITTI validation set (new 40 recall
positions metric). Our CLOCs fusion methods outperform
the baseline methods.

Detector 3D AP (%) Bird’s Eye View AP (%)
easy moderate hard easy moderate hard

SECOND (baseline) 90.97 79.94 77.09 95.61 89.54 86.96
SECOND+RRC 92.69 82.69 78.20 96.53 92.78 87.74

SECOND+MSCNN 92.37 82.36 78.23 96.34 92.59 87.81
SECOND+C-RCNN* 92.35 82.73 78.10 96.34 92.57 89.36
PointPillars (baseline) 87.37 76.17 72.88 92.40 87.79 86.39

PointPillars+RRC 88.48 78.50 75.13 93.53 88.87 87.09
PointPillars+MSCNN 89.22 77.05 73.16 92.80 88.46 87.26

PointPillars+C-RCNN* 89.95 78.99 73.27 93.77 88.27 87.34
PointRCNN (baseline) 92.54 82.16 77.88 95.58 88.78 86.34

PointRCNN+RRC 92.67 84.75 81.82 95.98 90.80 87.96
PointRCNN+MSCNN 92.64 83.26 79.88 95.60 90.05 87.05

PointRCNN+C-RCNN* 93.09 84.09 80.73 96.13 90.19 87.26
PV-RCNN (baseline) 92.10 84.36 82.48 93.02 90.33 88.53

PV-RCNN+RRC 92.82 85.59 83.00 93.65 92.40 90.19
PV-RCNN+MSCNN 92.66 83.89 83.29 93.50 91.63 89.42

PV-RCNN+C-RCNN* 92.78 85.94 83.25 93.48 91.98 89.48

*C-RCNN is Cascade R-CNN.

C. Evaluation Results

We evaluate the detection results on the KITTI test server.
The IoU threshold for car is 0.7. All the instances are
classified into three difficulty levels: easy, moderate and
hard, based on their 2D bounding boxes’ height, occlusion
level and truncation level. Since KITTI has some restrictions
on the number of submissions, we only show the results
evaluated on the official KITTI test server from three fusion
combinations of 2D and 3D detectors, which are SECOND
[6] and Cascade R-CNN [31], written as CLOCs SecCas,
PointRCNN [8] and Cascade R-CNN, as CLOCs PointCas,
PV-RCNN [22] and Cascade R-CNN, as CLOCs PVCas.
All the other combinations are evaluated on the validation
set. Table I shows the performance of our fusion method on
the KITTI test set through server submission. Our methods
outperform all multi-modal fusion based works in moderate
and hard level at the time of submission. Note that the official
open-source code of PV-RCNN performs slightly worse than
the private one owned by the PV-RCNN authors shown
on the KITTI leaderboard, and our CLOCs PVCas result
is based on the open-source PV-RCNN. The baseline PV-
RCNN in Table I refers to the open-source PV-RCNN. As

TABLE III: 3D and bird’s eye view performance of fusion
on pedestrian class of KITTI validation set (using new 40
recall positions). Our CLOCs fusion methods outperform the
corresponding baseline methods

Detector 3D AP (%) Bird’s Eye View AP (%)
easy moderate hard easy moderate hard

SECOND (baseline) 58.01 51.88 47.05 61.97 56.77 51.27
SECOND+MSCNN 62.54 56.76 52.26 69.35 63.47 58.93

PointPillars (baseline) 58.38 51.42 45.20 66.97 59.45 53.42
PointPillars+MSCNN 60.33 54.17 46.42 69.29 63.00 54.80

TABLE IV: Performance of fusion on cyclist class of KITTI
validation set (new 40 recall positions). Our CLOCs fusion
methods outperform the corresponding baseline methods

Detector 3D AP (%) Bird’s Eye View AP (%)
easy moderate hard easy moderate hard

SECOND (baseline) 78.50 56.74 52.83 81.91 59.36 55.53
SECOND+MSCNN 85.47 59.47 55.00 88.96 63.40 59.81

PointPillars (baseline) 82.31 59.33 55.25 84.65 61.39 57.28
PointPillars+MSCNN 90.26 64.84 59.59 92.64 67.97 62.31

(a) 3D detection (b) Bird’s eye view detection

Fig. 4: Average Precision (AP) based on distance.
CLOCs SecCas, CLOCs PointCas and their corresponding
baselines SECOND and PointRCNN are shown in this figure.
Our CLOCs outperforms the baseline by a large margin
especially in long distance (40 ∼ 50m).

shown in Table I, compared to baseline methods SECOND,
PointRCNN and PV-RCNN, fusion with Cascade R-CNN
through our fusion network increases the performance in 3D
and BEV object detection by a large margin.

We evaluate the performance of all the combinations of 2D
and 3D detectors on car class of KITTI validation set, the
results are shown in Table II. Compared to the corresponding
baseline 3D detectors, our fusion methods have better perfor-
mance in 3D and BEV detection benchmark. These results
demonstrate the effectiveness as well as the flexibility of our
fusion approach.

Table III and Table IV show the 3D and BEV evaluation
results of pedestrian and cyclist on KITTI validation set.
The IoU threshold for pedestrian and cyclist is 0.5. Here
for 3D detectors, only SECOND [6] and PointPillars [9]
publish their training configurations for class pedestrian and
cyclist; for 2D detectors, only MSCNN [30] does. Therefore,
we only show the evaluation results based on SECOND,
PointPillars and MSCNN. As shown in Table III and Table
IV, our fusion method improves the detection performance
by a large margin.

Fig. 4 shows the average precision (AP) on KITTI valida-
tion set in different distance ranges. The distance is defined
as the Euclidean distance in xy plane between objects and
LiDAR. The blue bars are the APs for SECOND detector,
the orange bars represent APs for our CLOCs SecCas. The
yellow and purple bars show the APs of PointRCNN and
CLOCs PointCas respectively. As shown in Fig. 4, APs for
CLOCs is higher than the corresponding baselines in all
distance ranges on both 3D and BEV detection benchmarks.
The largest improvement is in 40 ∼ 50m. This is because the
point clouds in long distance are too sparse for LiDAR-only
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Fig. 5: Qualitative results of our CLOCs on KITTI test set compared to SECOND [6]. Red and blue bounding boxes are
false and missed detections from SECOND respectively that are corrected by our CLOCs. Green bounding boxes are correct
detections. The upper row in each image is the 3D detection projected to image, the others are 3D detections in LiDAR
point clouds.

TABLE V: Performance of CLOCs with PointRCNN using
different score scales on car class of KITTI validation
set. Because the sigmoid score from PointRCNN poorly
approximates probability of a target (or precision), using it
for fusion could result in worse performance.

Type of Scores 3D AP (%) Bird’s Eye View AP (%)
easy moderate hard easy moderate hard

log score 93.09 84.09 80.73 96.13 90.19 87.26
sigmoid score 91.64 82.96 79.13 95.33 89.70 86.36

corrected sigmoid score 92.83 83.73 80.12 95.88 90.19 87.08
corrected log score 92.88 83.92 80.22 96.07 89.93 87.21

detectors such as SECOND and PointRCNN, while CLOCs
could utilize 2D detections to improve the performance.

Fig. 5 shows some qualitative results of our proposed fu-
sion method on the KITTI [10] test set. Red bounding boxes
represent wrong detections (false positives) from SECOND
that are deleted by our CLOCs, blue bounding boxes stand
for missed detections from SECOND that are corrected by
our CLOCs, green bounding boxes are correct detections.

D. Score Scales

There are two common output scores for detectors: the
first is a real number approximating the log likelihood ratio
between target and clutter, and the second is a sigmoid
transformation of this onto the range 0 to 1, so approximating
a probability of target. We compare use of these in CLOCs in
Table V and find improved performance using the log like-
lihood score. The primary reason for the poor performance
for the normalized score is that it poorly approximates a
probability of target (or precision). Using this score forces
the fusion network to learn a non-linear correction, whereas
the equivalent log likelihood score discrepancy is a simple
offset that can easily corrected by the fusion layer. If we

instead use a fitted sigmoid to obtain better probabilistic
outputs from the PointRCNN, then fusion works equally well
with either input. In general we believe it is simpler to use a
log likelihood output for each single-modality detector and
fuse these.

E. Ablation Study

We evaluate the contribution of each channel and focal
loss in our fusion pipeline. The four channel includes: IoU
between 2D detections and projected 3D detections (IoU ),
2D confident score (s2D), 3D confident score (s3D) and
normalized distance (d) between 3D bounding box and the
LiDAR in xy plane. The results are shown in Table VI.
IoU , as the measure of geometric consistency, is crucial

to the fusion network. Without IoU , the association between
2D and 3D detections would be ambiguous and further lead
to degrade performance. 2D confident score indicates the
certainty of 2D detections, which could provide useful clues
for the fusion. 3D confident score (s3D) plays the most
important role among the four channels, because CLOCs
generates new confident scores to all 3D detection candidates
through fusion in which original 3D scores are highly im-
portant evidences. Closer objects usually are easier detected
because there are more hits from LiDAR, the normalized
distance (d) could be a useful indicator for this. Because
there is a large imbalance between positives and negatives
among the detection candidates, focal loss could address this
issue and improve the detection accuracy.

VI. CONCLUSIONS

In this paper, we propose Camera-LiDAR Object Can-
didates Fusion (CLOCs), as a fast and simple way to
improve performance of just about any 2D and 3D object
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TABLE VI: The contribution of each channel and focal
loss in our CLOCs fusion pipeline. The results are on
the moderate level car class of KITTI val split with AP
calculated by 40 recall positions. SECOND and Cascade R-
CNN are fused in this experiment, so the baseline model is
SECOND

IoU s2D s3D d focal loss 3D AP BEV AP

79.94 89.54
X X X X 78.95 88.43

X X X X 80.96 90.32
X X X X 38.64 47.16
X X X X 81.96 91.90
X X X X 81.01 92.17
X X X X X 82.73 92.57

detectors when both LiDAR and camera data are available.
CLOCs exploits the geometric and semantic consistencies
between 2D and 3D detections and automatically learns
fusion parameters. The experiments show that our fusion
method outperforms previous state-of-the-art methods by a
large margin on the challenging 3D detection benchmark
of KITTI dataset, especially in long distance detection. As
such, CLOCs provides a baseline for other types of fusion
including early and deep fusion.
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