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Abstract— The Crossing or Not-Crossing (C/NC) problem
is important to autonomous vehicles (AVs) for safe vehi-
cle/pedestrian interactions. However, this problem setup often
ignores pedestrians walking along the direction of the vehicles’
movement (LONG). To enhance the AVs’ awareness of pedes-
trian behavior, we make the first step towards extending the
C/NC to the C/NC/LONG problem and recognize them based
on single body pose. In contrast, previous C/NC state classifiers
depend on multiple poses or contextual information. Our
proposed shallow neural network classifier aims to recognize
these three states swiftly. We tested it on the JAAD dataset and
reported an average 81.23% accuracy.

I. INTRODUCTION

In 2017, there were 5,977 pedestrian deaths in USA that
were reported by the United States National Highway Traffic
Safety Administration (NHTSA). Among these fatalities,
5,890 pedestrians were killed by single or multiple motor
vehicles. When the accidents happened, 84.4% (4,529) of
victims were struck by the front of the vehicles [1]. Ac-
cording to these data, we believe that an approach to avoid
hitting pedestrians by the front of vehicles, which accounts
for the highest proportion of fatal vehicle-human accidents,
is critical for AVs.

Simply obeying traffic rules is not enough for AVs to
avoid vehicle-human accidents. Two mainstream classes of
methods to remedy this problem include prediction-based
and estimation-based methods. However, these methods have
some flaws, which may impact their potential for deploy-
ment.

Previous prediction-based research computes the pedestri-
ans’ incoming moving trajectory or predicts their crossing
intention based on previous trajectories [2] or velocities [3].
More recent research takes contextual elements [4] such as
weather conditions, time in the day, etc., into consideration
to improve performance. However, predicting pedestrians’
intention remains a challenging problem due to their arbitrary
upcoming motion [5]. They can decide to change moving
direction, stop crossing, etc., within a second. Moreover, they
are influenced by multiple internal and external factors. For
instance, arbitrary actions such as failure to yield right of
way, improper crossing of the roadway or the intersection,
darting or running into the road and failure to obey traffic
signs, signals, or officer commands led to 1,788 (29.9%),
1,268 (21.2%), 592 (9.9%), and 266 (4.5%) fatalities [1] in
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Fig. 1: Our focus: recognize crossing (C), not-crossing (NC)
and walking along the direction of vehicles’ movement
(LONG) based on single body pose within a short time. Note
that previous related works categorize both not-crossing and
parallel walking as NC.

2017. Thus, it is very difficult to predict pedestrian intention
based on prior data (trajectory, velocity, etc.) or contextual
information, which is unquantifiable and hard to identify,
within a short time window. In addition, most of these
approaches need significant computational power and work
offline, which limit their deployment on AVs as a real-time
safety mechanism.

Earlier estimation-based research [6]–[8] simply classifies
pedestrians’ action to cross and not-cross (C/NC). Crossing
indicates pedestrians’ movement that is lateral to vehicle, and
the rest belongs to not-crossing. This is a dangerous classi-
fication, especially when the vehicle turns at an intersection.
For instance, as Fig. 2 shows, before the vehicle turns right,
two pedestrians bounded by an orange box will be classified
as NC. However, in the middle of turning, they would be
classified in a C state by using the same criteria. This
ambiguity can lead to severe traffic accidents. (We extend the
categories from C/NC to C/NC/LONG in this work, which
allows AVs to sense pedestrian behavior in both parallel and
lateral directions to avoid this dilemma.) In addition, most
of these works make the estimation based on the appearance
of pedestrians. So, in low-light or severe weather conditions,
the performance will drastically deteriorate.

We believe that the state estimation is more promising
and applicable than intention prediction. Our reasons are the
following. Firstly, when vehicles move on roads, information
about the surroundings including pedestrians updates very
frequently and includes a lot of recent content. State esti-
mation can capture this varying information and can guide
the decision making more effectively. Moreover, intention
prediction is using a lot of subtle cues that often could not
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Fig. 2: The pedestrians inside the orange bounding boxes are classified as NC and C in the left and right figures.

capture the real actions or intentions of pedestrians. Finally,
intention is often inferred from limited in time information
that may not be representative of what the actual state of the
pedestrian movement is.

To make AVs interact with pedestrians more safely and
address the problems of the estimation type research (stated
before), we propose a neural network classifier performing
the C/NC/LONG task based on a single 2D body pose. The
idea is illustrated in Fig. 1. Since our network works with
AVs and is designed to avoid collisions, it is very sensitive
to running speed and computational resources. In fact, our
2D pose contains 36 floating point numbers. Due to these
two reasons, the network is very shallow and has a limited
number of parameters. By extending the previous approach to
C/NC/LONG problems, the AVs will have better awareness
of pedestrians’ moving/crossing states. Moreover, having
more classes enables a larger variety of vehicle control
and evasive actions. Dilemmas such as what is illustrated
in Fig. 2 could be addressed in a more comprehensive
way. For instance, as pedestrians in the orange bounding
boxes are labeled as LONG, the AVs can stop or decelerate
immediately to avoid collision once a right turn control is
initiated. However, with NC labels the vehicle will not stop
until the pedestrians move almost perpendicular to the front
of the vehicle if there is no other pre-collision sensing device.
Moreover, we replace the pedestrians’ appearance by the 2D
body pose since we believe it is a strong indicator of pedes-
trians motion state and current state-of-the-art algorithms
and sensors integrated on AVs are able to provide reliable
pedestrian detection, tracking, and pose estimation [9], [10]
data in various weather and light conditions to enable all-
time onboard operation. We believe the crossing state can
provide more detailed references for AVs to enable more
complex controls and reactions. For instance, pose estimators
provide tracking (e.g., Bounding Boxes (BB)) and 2D pose
data. If a BB is near or at the sidewalk with a C tag, then the
AV should stop to avoid potential collisions. But if the label
is NC or LONG, the AV can start or keep moving, which
will not affect traffic efficiency. In contrast, if a BB is at the
roadways, then no matter what label is associated with it,
the AV should immediately stop.

II. RELATED WORK

In this section, we mainly review prior research in the
area of predicting pedestrian behavior based on body pose
and C/NC classification.

The research in [11], [12] leverages the contour of pedes-
trians to predict their intentions. Moreover, posture [13], [14]
and body language [15] were also studied for the purpose
of predicting pedestrian intentions. The research in [16]–
[18] tends to approximate head and body orientation to esti-
mate pedestrian intentions. However, in [18] the experiments
showed that head detection did not provide useful data for
the C/NC task. The work in [19] combined lateral speed,
orientation, pose, and abstract scene information to feed them
to a neural network, which was able to predict impending
actions.

Most studies mentioned above focus on partial features
of the body pose. The work in [20] suggested that without
information about the pedestrians’ posture and body motion,
the detection of the pedestrians’ intention changes will be
delayed. The baseline evaluation of the JAAD dataset [4]
supported this conclusion. They compared C/NC task per-
formance between approaches with full body features and
appearance. They specifically focused on sub-appearance of
partial feature sets. The results suggested that the latter would
not help to improve C/NC task performance. In [21], instead
of appearance, they accumulate and update the full body pose
(i.e., skeleton key-points) and features over time by a sliding
time-window as input to their support vector machine (SVM)
classifier. They obtained best C/NC task performance on the
Daimler’s dataset [22]. Later they improved their method and
tested the approach on the JAAD dataset.

III. METHOD

In this section, we introduce the way to pre-process data
in III-A, the definition of C, NC and LONG states in
refsubsec:def and the structure of our neural network in III-
C.

A. Data Processing

The typical COCO format body pose has 18 key-points.
However, when pedestrians cross in front of the vehicle, one
of their arms is likely partially or fully invisible to the ego-
camera on the vehicle, so as key-points on the face. To
resolve this issue, we follow a similar pose preprocessing
procedure to the work described in [6]. A pruned pose
only contains the 9 most stable key-points1, which repre-
sent shoulders and legs (Fig. 3 shows relative positions of
these points on the human body). These key-points indicate

1Right & left shoulder, neck, right & left hip, right & left knee, right
& left ankle.
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Fig. 3: 9 most stable key-points.

essential action information including motion state (start
walking/ keep walking/ stop walking/ stand) and movement
orientation. To eliminate the negative influence caused by the
different pose scales, we translate and normalize them. First,
we set the pose center at the neck (assign (0, 0) to the neck
key point). Then, for each pose we respectively compute the
normalization factor n: n = max(pose.y)−min(pose.y) and
normalize the x, y coordinates. The pose.x represents all x
coordinates while the pose.y represents all the y coordinates
associated with the pose. In Fang’s work [6], they computed
396 features including distances, angle, etc. for their Support
Vector Machine (SVM) classifier. In contrast, we have the
neural network to extract and interpret features.

B. State Definition

Explicit definitions were made to divide the data into three
categories. A pedestrian will be classified as C state if the
pedestrian is crossing the road that the vehicles are using
regardless of the collision chance. The NC state includes all
the instances that the pedestrian’s position with respect to
the ground doesn’t change or change due to some in-place
actions such as loitering. For the LONG state, the pedestrian
and the vehicle move parallel within ± 5 degrees deviation.

C. Neural Network

As the first method perform C/NC/LONG classification
task, we provide a baseline method for future work to com-
pare. As we mentioned in the introduction section, the real-
time C/NC/LONG classification task is extremely sensitive
to time constraints and mobile platforms generally have
limited computational power. Thus, the baseline approach
only contains 2 hidden fully connected layers. The network
takes the x and y coordinates of the body pose as input
data and outputs the probability for each state. Considering
the very limited size of the input data (18 floating point
numbers), we have trust in the ability of extracting and
understanding features of our neural network despite the
limited number of parameters. The details of our network
are illustrated in Fig. 4.

IV. EXPERIMENTS

In order to evaluate the performance of our classifier and
create a pose annotation of the JAAD dataset, we use the
AlphaPose [10] as pose estimator, which is briefly introduced

Fig. 4: Structure of the C/NC/LONG Classifier.

in IV-A. Moreover, we describe the overall organization
of our dataset and training procedure in Sections IV-B
and IV-C. Then, the general performance including numeric
information and sample images is reported in Section IV-D.

A. Pose Estimation

AlphaPose is an advanced real-time pose estimator which
firstly achieved 70+ mAP (72.3 mAP) on the COCO dataset
and 80+ mAP (82.1 mAP) on the MPII dataset. We use it
to generate the COCO model body poses. We run the Win-
dows version PyTorch implementation of AlphaPose with
parameters: –conf 0.05, –nms 0.8, which are the confidence
thresholds for human detection.

B. Dataset

The JAAD (Joint Attention for Autonomous Driving) [4]
is a dataset that provides data including but not limited
to BBs. AlphaPose generates poses for qualified images
(width is greater than 60 pixels) cropped from the original
JAAD frames. We remove poses that have average confidence
scores lower than 0.6 and with key-points’ scores lower
than 0.5. Note that the average confidence score only takes
9 body key-points (Fig. 3) into account. In the end, after
inspection of them, we have 12,756 manual annotated and
auto-generated poses in total. Furthermore, since the JAAD
does not directly provide labels of C, NC, and LONG, we
map the behavioral label to them as follows. We term as
C the behavioral labels of walking, crossing, moving fast,
moving slow, slow down, speed up, and clear path when the
corresponding subject possesses an LAT label, which means
the pedestrian is crossing in front of the car. In contrast, if
the subject is labeled as LONG in JAAD, which indicates
the same behavior as our LONG label does, we term it to
this label set. And, stopped and standing labels belong to NC.
We also manually inspect and correct the label of each frame
following the definition mentioned in III-B. After mapping
and correction, we have 4,805 C, 4,096 LONG, and 3,855
NC labels in our pose dataset.

We take the first 10,544 (84%) images for training and the
rest (16%) for testing (the images are organized in the same
order as the original JAAD dataset). The dataset was split to
84:16 in order to maintain the balance of the samples from
each class in the training and testing sets. In addition, this
split ratio is also for generating a maximally independent
testing set. The two sets are disjoint in terms of video
sequences. The testing set contains zero frames from video
sequences with frames in the training set, and vice versa.
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Fig. 5: The first and second row show success and failure cases. Green text indicates the ground truth for each image and
red text indicates an erroneous prediction. If there is only green text under an image, it indicates a correct prediction.

In the testing set, there are 626 (28.3%) C, 862 (39.0%)
NC, and 724 (32.7%) LONG instances. Furthermore, in the
training set there are 4,179 (39.6%) C, 2,993 (28.4%) NC,
and 3,372 (32.0%) LONG instances.

C. Training

We use PyTorch [23] to build, train, and test our neu-
ral network with an NVIDIA GTX 1080 Ti. We use the
stochastic gradient descent (SGD) optimizer with an initial
learning rate of 2e-1 and a momentum of 0.5, a PyTorch
ReduceLROnPlateau scheduler with a 0.5 decay rate and 3
patience and a batch size of 128. In addition, we use cross-
entropy to evaluate loss. We trained our neural network in
50 epochs and it converged within 10 epochs. Note that our
model needs a high initial learning rate to converge and the
Adam optimizer is less likely to lead to convergence in our
experience. In addition, the size of this neural network is
2,378KB as a python pickle file without a computational
graph, which is easy to be deployed.

D. Classifier

We make independent and sequential tests to evaluate the
absolute and realistic performance of the classifier. However,
to the best of our information and knowledge (at the moment)
our classifier is the only work designed for the C/NC/LONG
task. Although it is possible to pool the classes of interest to
do the comparisons, we cannot simply pool C/NC sections
from our C/NC/LONG results. This is due to the fact that the
NC category of earlier works contains the LONG category
of our work (previous NC = our NC + LONG) as Fig. 1

TABLE I: Performance of the Classifier on the Testing Set.
Class Total Correct Accuracy

C 626 439 70.13%
NC 862 797 92.46%

LONG 724 561 77.48%
ALL 2212 1797 81.23%

indicates. So, even if we take all the LONG instances
out of the NC category of previous works, they are still
incomparable with our work since they are designed for
totally different tasks. In addition, although we reported
acceptable results, our neural network is a first step towards
a new set of algorithms that are applicable to this domain
and have much space for improvement (as expected). We
believe it is a good baseline experiment in this field and a
step for future broader investigations. Due to these reasons,
in this section we focus on reporting results and analyzing
potential reasons for the failure cases.

For the independent evaluation, Table I reports the overall
and category accuracy and Fig. 5 shows samples of success
and failure cases. We calculate the accuracy according to
the widely used definition: AC = C/T ∗ 100%, where AC,
C, and T stands for accuracy rate, total correct prediction,
and total poses tested, respectively. We achieved a 81.23%
general accuracy rate.

According to Table I, we can see that the model has better
performance on recognizing NC state poses. The reason
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Fig. 6: A typical TTE test sequence. The highlighted frame is the Time-To-Event (TTE) frame. The first and second line of
the bar under each frame represent ground-truth and estimation. Bars in green and red represent the C and NC states.

could be that the features of a standing pose are more stable
and obvious than C and LONG state poses since the former
are from static but the latter are from dynamic actions.
Furthermore, through observation of the NC failure cases
we notice that while standing, particularly close to curbside,
some of the subjects would pace in-situ or move legs without
exact purpose, such as in Fig. 5 B6, which makes their pose
similar to C or LONG state. Moreover, people’s unbalanced
and ready-to-walk standing poses (Fig. 5 B5 can also lead
to failed predictions). According to the error test results, we
find that a large portion of failed predictions are incorrectly
recognized C or LONG poses as NC states. The essential
reason could be that the pose is similar to the NC state when
the distance of legs is very close while walking as shown in
Figs. 5 (B1, B2, and B9).

In addition, we report the Time-To-Event (TTE) test. It
evaluates the classifier’s response time to a state change of
pedestrians, which partially reflects how early an AV starts
maneuvering to avoid collision. To simplify our description,
we introduce some related concepts and notation. The Time-
To-Event frame (TTEF) is the first frame after the change
of the pedestrian’s crossing state. For instance, in Fig. 6, the
subject’s state changes from NC to C. The first five frames
are in NC state and the last fifteen are in C state. So the
sixth frame is the TTE frame. The Response Frame (RF)
corresponds to the number of frames before (RF < 0) or after
(RF > 0) the classifier starts responding to state changes.
When the classifier responds to a state change and generates

no less than nine correct estimations, the result is considered
as a confident estimation (CE). Moreover, because there is
no previous research report on the TTE test, we indirectly
compare the response time of the classifier (CRT) with the
human driver’s response time (DRT). CRT is defined as
CRT = RF ∗ 1/FrameRate. The unit of CRT and DRT is
the second (s).

We apply the TTE test on 87 sequences, which are in
chronological order. As Fig. 6 shows, each sequence contains
20 frames (5 and 15 frames of them are before and after the
TTEF (TTEF belongs to the later states)). The corresponding
CRT space is from -1/6 to 1/2 s. Fig. 7 shows the general
result. In total, the classifier successfully recognized state
changes no later than 15 frames after the TTEF in 85
sequences. Another two late CEs happened in the 19 and
22 RF. The average and median RF (Events for which RF
> 15 are ignored) is 4.238 and 1, which is 0.141267 s and
0.03333 s in the CRT. As the chart shows, the classifier is
quite sensitive to state changes and even the latest CE has a
CRT of 0.3667 s.

It is non-negligible that this TTE evaluation is an offline
test since it does not take into account the latency introduced
by the pose estimator. During the process of creating the 2D
pose for the subjects, we process 15.4 frames per second
on average using AlphaPose with an GTX 1080 card. As
the JAAD dataset is described, its camera takes 30 or 60
frames per second for different videos. So, the advantage of
processing speed and timeliness of our method is heavily
dependent on and limited by the pose estimator.
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Fig. 7: The x-axis is the sample space of RF, the height of
each bar represents the number of occurrences of each RF.
On the x-axis in this graph the unit is the frame.

It is worth noting that the classifier even recognized the
state change before TTEF in 41 sequences. For instance,
one should look at the sequence in Fig. 6. We think the
reason is that the neural network is able to detect features
or preparatory poses, which are almost unperceivable to the
human (these appear when pedestrians decide to change
crossing states). It supports our opinion that the 2D pose
contains enough information to be a strong indicator of the
human’s crossing state. Moreover, our neural network has
also been proved to be powerful to extract and understand
features with limited numbers of parameters and shallow
layers.

V. CONCLUSIONS

In this paper, we extend the C/NC method for AVs
to the C/NC/LONG problem and propose a fast shallow
neural network classifier for this task. This paper contains
extensive validations of our method and reports independent
and sequential performance. Promising future work in this
area could involve resolving occasional error poses generated
by the pose estimator, extracting more robust features from
the human pose to improve the classifier’s performance, and
integrating this with other reliable traffic information to make
collision-avoidance systems more robust. Finally, we also
hope that future work can compare this type of an approach
with human-based systems in well-designed experiments.
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