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Abstract— Tactile sensing is inherently contact based. To use
tactile data, robots need to make contact with the surface of
an object. This is inefficient in applications where an agent
needs to make a decision between multiple alternatives that
depend the physical properties of the contact location. We
propose a method to get tactile data in a non-invasive manner.
The proposed method estimates the output of a tactile sensor
from the depth data of the surface of the object based on past
experiences. An experience dataset is built by allowing the
robot to interact with various objects, collecting tactile data
and the corresponding object surface depth data. We use the
experience dataset to train a neural network to estimate the
tactile output from depth data alone. We use GelSight tactile
sensors, an image-based sensor, to generate images that capture
detailed surface features at the contact location. We train a
network with a dataset containing 578 tactile-image to depth-
map correspondences. Given a depth-map of the surface of an
object, the network outputs an estimate of the response of the
tactile sensor, should it make a contact with the object. We
evaluate the method with structural similarity index matrix
(SSIM), a similarity metric between two images commonly
used in image processing community. We present experimental
results that show the proposed method outperforms a baseline
that uses random images with statistical significance getting an
SSIM score of 0.84 ± 0.0056 and 0.80 ± 0.0036, respectively.

I. INTRODUCTION

Perception of object properties such as texture, roughness
and slipperiness require an agent to make contact with the
environment. Humans use their tactile sensors to perceive
finger-object contact properties [1]. With sufficient expe-
rience, however, humans are also able to perceive such
properties from visual perception alone [2], [3], albeit, a
rough qualitative estimate of a certain physical property [4],
for example, the object surface appears to be smooth and
slippery. Estimates of contact properties of an object such
as roughness and slipperiness can help an agent, in advance,
to decide how to interact with the object without making
contact with the object.

The proposed method can be applied to any problem
where knowledge of physical properties of the point of
contact is needed when making a decision, for example, a
legged robot can use the method to plan where to plant its
feet to avoid a slippery surface. Another application is in
grasp planning. To successfully grasp an object, often, robots
need to make multiple contacts with the object to determine a
suitable contact location for a stable grasp. Grasping objects
that involve multiple contact attempts to generate the tactile
data is time consuming and inefficient for the robot. The
proposed method can be used during planning to make better
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Fig. 1. Illustrates a schematic view of the proposed system. The system
consists of a depth sensor to sense the structure of the surface of the object.
To estimate the tactile sensor output, a region-of-interest, equal to the size
of the tactile sensor is selected as the input of an encoder-decoder based
neural network. The neural network estimates the output the tactile sensors
would have produced if a contact with the object was established.

informed grasps. It can increase the efficiency of dexterous
robots and help them gracefully manipulate objects in their
environment. Other applications include haptic rendering
where it can be used by blind persons to perceive their
surroundings [5].

In this paper we propose a novel idea that uses depth
data of the surface of an object to estimate the tactile
output, which, can be used by an agent to estimate physical
properties of the object. As illustrated in Fig. 1, the system
consists of a depth sensor to sense the structure of the
surface of the object of interest. In order to estimate the
tactile output, a region-of-interest1, equal to the size of the
tactile sensor is selected. The data from the depth sensor
in the region-of-interest is used as the input of an encoder-
decoder neural network. The neural network estimates the
output the tactile sensor would have produced if a contact
with the object was established. In other words, the neural
network imagines how the tactile sensor will be excited
without making any contact with the object.

II. BACKGROUND

Tactile perception consists of two components: the ar-
tificial tactile sensors and the artificial intelligence to in-
terpret the tactile sensor data. Many physical phenomena
have been used to create artificial tactile sensors. These
include capacitive [7], peizoresistive [8], optical [9]–[11],

1The region-of-interest can be given by a planner, for example, a grasp
synthesizer [6] can propose a number of possible grasp locations. It can
use tactile sensor estimates to select a better grasp location based on the
object’s surface features.
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and magnetic [12]. Tactile sensors that have been success-
fully commercialized include BioTac [13] and GelSight [11]
sensors. BioTacs are inspired by human mechanoreceptors
that are capable of sensing vibrations and contact forces.
GelSight sensors, on the other hand, are image based. It uses
an elastomer and a camera to encode the shape of a contact
surface in the form of an image.

Early work in tactile perception demonstrated that, in
principle, tactile sensor signals can be used to differenti-
ate materials [14], [15]. Machine learning has been used
to fuse vision and tactile sensory information to improve
the accuracy of 3-D object recognition [16], differentiate
between objects found commonly in a shopping bag [17],
detect slip [18], [19], and classify materials [20], [21].

Robotic manipulation is a common task that can benefit
from tactile sensing. In order to manipulate an object, the
robot needs to plan a grasp configuration that satisfies a set
of criteria relevant for the grasping task [6], this is referred
to as grasp synthesis. Analytical and data-driven approaches
have been used to solve the problem of grasp synthesis.
Data driven approaches sample grasp candidates and use a
metric to rank them [6]. Mahler et al. [22] propose a network
that learns policies to successfully grasp objects in a heap,
for a given set of grippers, by training in simulation on
synthetic depth data. The authors show that using domain
randomization it is possible to transfer the learned policy
to a robot. However, the method does not take into account
the effect of the contact interaction between the manipulator
and the object surface, which may be critical for a successful
grasp.

Recently, Calandra et al. [23] showed that including
tactile sensors as additional information can improve over
vision only based grasping methods. However, their method
requires a contact with the object to generate the tactile
sensor data so that the model can predict the stability of the
chosen contact location, often, leading to a re-grasp action.
The method proposed in this paper, by estimating the tactile
output, can eliminate the gripper-object contact required to
acquire tactile sensor data. Thereby, making it possible to
account for the tactile sensor output without making a contact
with the object surface and select a better informed grasp
location.

Hogan et al. [24] propose a tactile-based grasp quality
metric. They also propose a re-grasping method that uses the
tactile sensor output from the initial contact and use rigid
body transformation to simulate tactile sensor output and
select a re-grasp location that maximizes the grasp quality
metric. The rigid body transformation is not based on the
sensed structure of the object, it is a translation of the initial
contact tactile data, which may not correspond to the object
shape.

A closely related work is presented by Takahashi and
Tan [25]. The authors propose an encoder-decoder network
to learn latent features that map RGB images to tactile data.
The mapping is learned by training the network with RGB
images of an object as the input and tactile sensor signals of
an interaction with the object as the output. After training, the

authors propose, use of the latent features to correlate object
images to object properties. The authors present experimental
results in which tactile data is generated by stroking objects
with varying textures and rigidity, and recording an RGB
image of the object. The authors show that in the latent space
objects are arranged according to friction and rigidity.

Similar to Takahashi and Tan [25], Li et al. [26] propose an
encoder-decoder network approach to estimate tactile sensor
output. The authors use GelSight tactile sensors, which we
also use for our experiments. The input to the network is
an RGB image of the entire scene, a reference tactile sensor
output and two frames before and after the contact event.
The authors present results of a study that used Amazon
Mechanical Turk. Human subjects were presented with the
ground truth tactile videos and the predicted tactile results
along with the vision input. The subjects were asked which
tactile video corresponds better to the input vision signal.
The authors report that participants identified 46% of the
predicted videos to correspond to the input signal for objects
in the training set. In case of novel objects, they report 38%
of predicted videos were identified to correspond to the input
signal.

The method presented in this paper is different from
Takahashi and Tan [25] in sensing and the way we interpret
the sensor data. We focus on estimating tactile sensor output,
which is different from Takahashi and Tan [25] who explic-
itly refrain from inferring the tactile sensor output. Takahashi
and Tan [25], and Li et al. [26] use RGB images as input.
We use a different sensing modality as the input for our
network. We use depth sensor data instead of RGB images.
Depth sensor data captures surface structures that directly
affect the tactile sensor output.

III. METHODOLOGY

We present a method that estimates the output of a tactile
sensor from depth sensor data of the surface of an object.
The intuition behind the method is that a depth sensor
captures essential object-surface features that can be used to
estimate the output of a tactile sensor. We postulate that it is
possible to learn a neural network model that leverages past
experience to estimate the tactile sensor output. As illustrated
in Fig. 1, the input to the algorithm is depth sensor data
and a region-of-interest. The network outputs an estimate
of the tactile sensor output, which, for the tactile sensors
used in this paper is an image. Therefore, to train such
network we need: a depth-map for the region-of-interest, and
the corresponding tactile sensor output. In this section we
first give a brief description of the sensors (Section III-A),
then explain how we generate the depth-map for a given
tactile-object contact (Section III-B). This is followed by a
description of the encoder-decoder network used to model
the tactile experience (Section III-C).

A. Sensors

We use two Microsoft Kinect-V2 sensors to get depth data
on the surface of the object. The tactile data is generated by
GelSight [11] tactile sensors. GelSight sensors are optical
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Fig. 2. Illustration of depth-map construction. (a) Object point cloud in the
finger’s frame of reference. (b) Extracted point cloud of the object surface
that is in contact with the tactile sensors. The white lines indicate the bins
for depth-map generation. (c) The resulting depth-map after binning. Note:
the bins in this example are only for illustration purposes. They do not
represent the actual bins used.

sensors, unlike other tactile sensors that sense forces and
vibrations, a GelSight sensor consists of an elastomer cov-
ered with a reflective coating membrane. When the elastomer
makes contact with an object surface, the membrane distorts
to take on the shape of the surface of the object. A camera
is used to record the image of the membrane, which encodes
the shape and features of the contact surface. We use these
two sensors to generate data for training the neural network.

B. Tactile-Object Contact Surface Depth-Map Generation

We use two Kinect-V2 sensors to get RGB-D data of
the environment. Two sensors help to cover a lager area
and reduce occlusion. This helps the robot to autonomously
sample the object surface. However, two depth sensors are
not sufficient to capture the entire object. To ensure that
each tactile image has a corresponding complete depth data,
we used complete object point clouds provided with the
Yale-CMU-Berkeley (YCB) dataset [27]. In this section we
describe how we build a surface depth-map for each tactile-
object contact. Please refer to the accompanied video for a
visual illustration of the process.

1) Object Segmentation: The first step is to segment the
object of interest. Any algorithm can be used to segment
the object. We used Euclidean clustering algorithm [28] to
segment the object of interest. We crop the point cloud to
remove other objects, e.g., objects outside the work space
of the robot. We also remove planar surfaces. The filtered
point could is used as the input of the Euclidean clustering
algorithm, which gives us a single object cluster.

2) Registration with Pre-Captured Point Cloud: Once we
have the object point cloud, then we register a pre-captured
point cloud of the object to get a complete point cloud
for the object. As described earlier, we use the complete
object point clouds that come with the YCB dataset. We
used sample consensus alignment algorithm [29] to get an
initial coarse alignment. Then, we used the iterative closest
point algorithm [30] to register the YCB point cloud with
the point cloud of the segmented object.

3) Object-Tactile Contact Surface Depth-Map: Once the
registration of the complete point cloud of the object de-
scribed in the previous step is complete, the robot approaches

Fig. 3. Illustrations of encoder-decoder architecture. (a): An encoder-
decoder network. (b): A U-Net encoder-decoder network with skip con-
nections. Skip connections help to shuttle low level information of an input
from encoder to decoder.

the object to make contact with the object at a region-
of-interest to collect tactile sensor output. We extract a
point cloud patch for the region-of-interest using robot’s
kinematics. We use this point cloud patch to construct the
depth-map.

Figure 2 illustrates how a depth-map is generated from the
object point cloud. First, the point cloud data is transformed
to the tactile sensor’s frame of reference with the origin at
the center of the tactile sensor. As shown in the Fig. 2 (a),
the x−z plane is parallel to the surface of the tactile sensor,
the y-axis corresponds to the distance of the object from the
surface of the tactile sensor. That is, a point on the surface
of the tactile sensor will have a y value of zero, a value of
greater than zero means the point is not making contact with
the surface of the tactile sensor. Similarly, a point with value
less than zero indicates that it has made an indentation in the
tactile sensor’s elastomer.

The first step is to filter a volume (x, y, z) of point cloud
that corresponds to the contact area between the object and
the tactile sensor. To construct the depth-map, we divide
the x − z plane into m × k bins, indicated by the white
dashed lines in Fig. 2 (b). The value of each bin is set to
the minimum y value of points in that bin’s (x , z) range.
Figure 2(C) shows a depth-map after binning the cloud patch
into 100× 100 bins.

C. Network Architecture

We adapt our network architecture from [31]. We use
conditional generative adversarial networks (cGAN) [32]
to model the tactile sensor output estimator. Generative
adversarial networks [33] consist of a generator network,
G, and a discriminator network, D. The discriminator tries
to learn a loss that can distinguish whether a given input
is real or fake. On the other hand, the generator tries to
learn how to minimize this loss for fake input. Conditional
GANs are a form of GANs where the discriminator network
is conditioned with an input. So, it can learn conditional
generative models. This makes cGANs suitable for our
problem, where we condition on an input depth-map and
generate the corresponding tactile image. The objective of
GAN can be described as:
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LcGAN (G,D) = Ex,y[logD(x, y)]+

Ex,z[1− logD(x, logG(x, z))],
(1)

where x, y and z are network input, label and random
noise respectively. G tries to minimize this objective against
an adversarial D that tries to maximize it, i.e.

G∗ = argmin
G

max
D

LcGAN (G,D). (2)

We use L1 loss as described in [31] rather ran L2 loss
because it encourages less blurring.

LL1(G) = Ex,y,z[||y −G(x, z)||1]. (3)

Hence, our final network objective is:

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G). (4)

where λ is the learning rate.
The generator is based on the U-Net [34], an encoder-

decoder with skip connections as shown in Figure 3(b).
Using the encoder-decoder based network (Figure 3(a)) for
a generator is well-known. In this type of network, we
progressively downsample our input until a bottleneck layer.
Later, we try to upsample the data from a bottleneck layer.
So, there is a chance of losing information while going from
the high dimensional space (input) to a low dimensional
space (bottleneck layer). U-Net includes skip connections in
between each layer i and layer n − i, where n is the total
number of layers. Skip connection concatenates information
from layer i to layer n − i. This helps to shuttle low
level information of an input from encoder to decoder. We
use same discriminator as a PatchGAN [35]. It penalizes
structure in terms of patches. This helps the network to
learn a structural loss. It outputs whether the given image is
real or fake by averaging responses for all the patches. All
modules of the generator and discriminator use convolution-
BatchNorm-ReLu [36].

IV. EXPERIMENTAL SETUP

To train and test a model for the proposed tactile sensor
estimator we used the experimental setup in Figure 4. It
consists of a 7-DoF Sawyer robot by Rethink Robotics.
The robot is equipped with a Weiss two-finger parallel jaw
gripper. A GelSight [37] sensor is mounted on each finger of
the robot. Two Kinect-V2 sensors are used to produce depth
data.

We used three objects (Fig. 5) from the YCB Object and
Model Set [27] to build the tactile experience dataset. A
total of 289 grasps were performed on the objects. With
two fingers, resulted in a dataset of 578 (tactile, depth-map)
correspondences. The dataset was split into 70%, 15% and
15% for training, validation and testing, respectively.

In the following section we describe the data collection
process, then in Section IV-B we explain how we train the
neural network.

Fig. 4. Experimental Setup. It consists of 7-DoF Sawyer robot. The robot is
equipped with a Weiss gripper: two-finger parallel jaw gripper. A GelSight
sensor is mounted on each finger of the robot. Two Kinect-V2 sensors are
used to produce depth data.

Fig. 5. Objects used for the data collection.

A. Data collection Process

The data collection process is illustrated in Fig. 6. During
data collection, the object is rigidly attached to the table.
This ensures that the object does not shift when the robot
makes contact with it2. Then the robot samples the surface
of the object at random locations.

Algorithm 1 describes the data collection process. The
input to the process is the point cloud from the depth sensors
and the object model, that is the complete point cloud from
the YCB dataset. The output is a dataset, D, of (tactile-image,
depth-map) couples. That is, for each tactile image from a
contact with the surface of the object, the process generates
the corresponding depth-map.

For each object, first, the object point cloud is segmented
(described in Section III-B.1). The next step is to register
the object model to the current state of the object (described
in Section III-B.2). Once the robot has the registered model,
it selects a random location (x, y, z, θ) to sample the object
surface. The (x, y, z) is calculated by adding a random value
to the centroid of the object point cloud. The orientation,
θx, θy , are fixed such that the palm of the gripper is parallel
to the table surface. Only θz , of the gripper is changed. The
contact force is set to a constant value.

When the robot makes contact with the object, a volume,
(xc, yc, zc), of the point cloud at the contact location is
extracted for each finger. The dimensions of the contact-
volume are determined by the size of the surface of the
tactile sensor, (xt, yt), and the depth of the surface elastomer
(zt). We use the robot’s kinematics to determine the contact
location. In practice, we noticed that inaccuracies in the

2This is only required during data collection. At run-time the object can
be placed freely.
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Fig. 6. Data collection overview: (a) System setup (b) Object segmentation (c) Registering complete point cloud model of the object (d) Random grasp
(e) Extracted point cloud patches (f) Generated depth-maps (top) and tactile sensors output (bottom).

Algorithm 1: Tactile Experience Data Collection
Input: depth data, object model
Output: dataset(tactile-image, depth-map)

1: for object in selected objects do
2: object ← segmentObject(depth)
3: registered-model ← registerObject(object, model)
4: for grasp in total grasps do
5: (x, y, z, θ)← randomGrasp(object)
6: contact-volume ← extractPatch(registered-model)
7: depth-map ← generateDepth(contact-volume)
8: add dataset(tactile-image, depth-map)
9: end for

10: end for
11: return dataset

calibration of the robot with the external cameras resulted
in a systematic shift in the point cloud with respect to the
calculated contact position. Since the error is systematic,
taking a larger patch than the size of the tactile sensor will
give a learning algorithm sufficient information to account
for the systematic error.

The point cloud in the contact-volume for each finger
is converted into a depth-map using the method described
in Section III-B.3. The tactile experience database is then
updated with the recorded GelSight images and the corre-
sponding depth-map. The process is repeated for each object.

B. Training the Network

As illustrated in Fig. 7, we use the depth-map and the Gel-
Sight images to train the conditional generative adversarial
network (cGAN) described in Section III-C.

The input to the network is a 100 × 100 image both for
the depth-map and the GelSight image. The model is trained
using a 70 × 70 PatchGAN architecture as the discrimina-
tor. We used mini-batch Stochastic Gradient Descent with
Adam solver [38]. We used a learning rate of 0.0002 and
momentum parameters β1 = 0.5, β2 = 0.999.

V. RESULTS

A. Qualitative Results

Figure 8 shows the result of estimating a tactile output
from depth-maps. In the first column we present a color

Fig. 7. Training overview. As shown in figure we provide depth-map
as an input to our generator and get estimated tactile image as an output.
Discriminator also takes in depth-map and tactile image as an input and
outputs whether given tactile image is real or not.

image of the object to aid in visualizing the surface. The
second column is the input to the network, followed by the
ground truth tactile image. The last column is the estimate
of the network. Visually we can see that the estimated tactile
output captures the key features of the object, such as ridges,
and surface patterns.

To further analyse the results, we used OpenCV’s template
matching, which searches an input image for areas that
are similar to a given template image. A match is found
by sliding the template image across the input image and
a similarity metric is calculated. We used the normalized
correlation coefficient as the similarity metric. The templates
were defined by a human (the authors of this paper) to select
a bounding box that captures interesting features (deformed
area in GelSight images) of the ground-truth tactile image.
In Fig. 8 the blue bounding boxes show the template and the
red bounding boxes show the result of template matching.
In some cases, for example, in the ninth example it is not
easy to see a correspondence between the ground truth and
the estimate. However, in the context of template matching,
it is easy to see that the estimate captures important features
of the tactile image.

B. Quantitative Results

Structural similarity matrix (SSIM) [39] is a metric to
quantify perceived image quality. It is commonly used in
image processing to evaluate the quality of processed images.
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Fig. 8. Qualitative results on test data. First column: object used for
data collection. Second column: input to the network – a depth-map. Third
column: ground truth tactile image with a selected template (blue bounding
box). Fourth column: estimated tactile sensor output with the template
matching result (red bounding box).

Fig. 9. Quantitative results. Left bar shows average SSIM score for the
baseline. Right bar shows average SSIM score for our method – between
ground truth images and the estimated tactile images.

We used SSIM to quantify the quality of the estimated tactile
images. It takes two inputs: the ground truth image, and
the estimated image. A sliding window approach is used
to calculate the similarity metric. For each window in both
images, SSIM considers luminance, contrast and structural
value. SSIM score ranges between 0 to 1. A score of 1 means
two images are perfectly structurally similar while score of 0
means that two images have no structural similarity. A study
by Flynn et al. [40] shows that humans can not perceive
the difference between a distorted image and a real image
at the SSIM score approaches 0.95. We calculated SSIM
scores between ground truth images and the estimated tactile
images. We compare the SSIM scores with a baseline SSIM
score.

The baseline score is calculated by taking an average
SSIM score between an estimated tactile image and 15
randomly selected ground truth images from the database.
That is, for each estimated tactile image, 15 random images
were selected and an average SSIM score was calculated.
Figure 9 shows the result of this analysis. Using our trained
model, the average SSIM score between the estimated image
and the ground truth is 0.84 ± 0.0056, compared to the
baseline which achieves an average score of 0.80 ± 0.0036.
The results suggest that our model outperforms the baseline
with statistical significance.

C. Effect of Depth Sensor Resolution

We also studied the effect of depth sensor resolution on the
tactile estimate. We reduced the depth sensor resolution of
our point clouds by downsampling the object’s point cloud.
We used the voxelgrid filter from the point cloud library,
which downsamples a point cloud by using a centroid of
all points present in a voxel as an approximation. Figure 10
shows an example of estimated tactile sensor outputs using
depth-maps from different point cloud densities. Table I
shows the SSIM scores for the tactile estimates on point
clouds with different densities. The results suggest that a
reduction in the point cloud density has negligible adverse
effect on the tactile estimate.
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Fig. 10. Figures a–e show in the top row the depth-maps generated from
different point cloud densities. Point cloud densities are 1, 10, 20, 40 and
80 points/cm3 from left to right, respectively. In the bottom row are the
corresponding estimates of the GelSight sensor output produced by our
method. Figure f shows the ground truth GelSight output.

TABLE I
SSIM SCORES AS A FUNCTION OF POINT CLOUD DENSITY

Cloud density (points/cm3) SSIM ± std error
1 0.8238 ± 0.0052
10 0.8278 ± 0.0057
20 0.8478 ± 0.0056
40 0.8480 ± 0.0056
80 0.8476 ± 0.0057

VI. CONCLUSION AND FUTURE WORK

We presented a method that estimates the output of a
tactile sensor from depth sensor data. The novelty of this
work lies in the way we use depth sensor data to estimate
tactile sensor output. A neural network based on conditional
GANs is trained with a dataset containing couples of contact-
surface depth-map and the corresponding tactile sensor out-
put. At run-time, given a depth-map of a region-of-interest,
the network produces an estimate of the tactile sensor output
should it make contact with the environment at the region-
of-interest. Advantage of using depth data is twofold: first,
depth sensor data captures surface structures that directly
affect the tactile sensor output. Second, depth data is robust
to lighting changes compared to RGB images.

We presented qualitative and quantitative results that sug-
gest the proposed method can estimate tactile sensor output
from the depth data. We also presented results of a study
that suggests reduction of point cloud density has negligible
adverse affect on the quality of the tactile sensor estimates.

An interesting future direction is to study whether inclu-
sion of RGB data and auditory information to complement
the depth data will lead to an improved estimate of the tactile
sensor output.

In future, we would like to increase the number of objects.
We would also like to study the effectiveness of the tactile
estimates for tasks such as classifying objects. Another area
that can benefit from the system is grasp synthesis. We would
like to explore application of the proposed method to rank
grasps such that a robotic system can grasp an object in a
single attempt, eliminating the need to sample the surface
for a better grasp location.
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