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Abstract— A high-quality free-motion rendering is one of
the most vital traits to achieve an immersive human-robot
interaction. Rendering free-motion is notably challenging for
rehabilitation exoskeletons due to their relatively high weight
and powerful actuators required for strength training and sup-
port. In the presence of dynamic human movements, accurate
feedback linearization of the robot’s dynamics is necessary to
allow for a linear synthesis of interaction wrench controllers.
Hence, we introduce a virtual model controller that uses two 6-
DoF force sensors to control the interaction wrenches of a multi-
DoF torque-controlled exoskeleton over the joint accelerations
and inverse dynamics. Furthermore, we propose a disturbance
observer for controlling the joint acceleration to diminish the
influence of modeling errors on the inverse dynamics. To
provide a high-bandwidth, low-bias estimation of the system’s
acceleration, we introduce a bias-observer which fuses the
information from joint encoders and seven low priced IMUs.
We have validated the performance of our proposed control
structure on the shoulder and arm exoskeleton ANYexo. The
experimental comparison of the controllers shows a reduction
of the felt inertia and maximum reflected joint torque by a
factor of more than three compared to state of the art. The
controllers’ robustness w.r.t. a model mismatch is validated.
The experiments show that the closed-loop acceleration control
improves the tracking, particularly at joints with low inertia.
The proposed controllers’ performance sets a new benchmark
in haptic transparency for comparable devices and should be
transferable to other applications.

I. INTRODUCTION

Physical human-robot interaction gained significance dur-
ing the last years propelled by the increased fusion of robots
into the human’s workplace. Many of these devices render
haptic environments to the user. While robots dedicated to
this task perform reasonably well, more universal devices
often struggle to achieve the desired rendering fidelity. An
epitome of this challenge is rehabilitation robots.

On the one hand, these devices should provide high-quality
free motion (transparency) to avoid interfering with the
patients’ movements while supporting them [1]. On the other
hand, they need high torque actuation to allow for strength
training, dynamic assessments [2], and to assist severely
affected patients [3]. Limited transparency is acceptable for
the first steps in therapy of severely affected patients [4],
[5]. However, state-of-the-art devices strive to make robot-
assisted therapy useful also for patients able to perform more
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Fig. 1. The kinematic structure of the robot with the shoulder girdle
joints (SG): protraction/retraction (GPR) and elevation/depression (GED);
the glenohumeral joints (GH): GHA, GHB, and GHC; elbow joint (EFE);
fixed passive link length adjustments di; contact points upper arm (UA) and
forearm (FA) with attached coordinate systems [6].

agile movements [6].
With these powerful and thus, bulky devices it is challeng-

ing to render haptic transparency for dynamic movements.
First, often high transmission ratio gears are installed to
achieve the required joint torques at reasonable weight and
footprint. This design choice leads to increased joint friction
and high reflected motor inertia at the joint [7]. Many
state-of-the-art robots address this concern by series elastic
actuation [2], [6], [8], [9]. Second, the mechanical impedance
at the interaction point is comparatively large. Therefore, the
non-linear dynamics should be compensated to control the
device accurately. For trailing of fast human motions, vig-
orous control actions are required. Noise on the interaction
force measurement, the actuator bandwidth, and controller
sampling frequency limit the controller bandwidth. Hence
advanced control designs have been proposed to improve the
performance [10], [11]. Some devices have been developed
with remote actuation to reduce the moving mass [12], [13].
However, due to the transmission, the bandwidth is further
restricted, and additional non-linear friction is caused.

In this paper, we present a method to tackle the challenge
mentioned above through a virtual model controller (VMC)
using inverse dynamics (ID) for feedback linearization. We
elaborate on the advantage of using the measured interaction
wrench state for the linearization instead of the desired
wrench when interacting with a soft, unknown impedance.
To compensate errors in the ID model, we propose a closed-
loop acceleration controller. This control method uses a
multi-sensor signal with direct acceleration measurement as
feedback. Further, we investigate the method’s performance
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on the series elastic actuated exoskeleton ANYexo shown in
Fig. 1.

II. SYSTEM DESCRIPTION

The hardware we use in this paper is a 6-DoF torque-
controlled shoulder and arm exoskeleton designed as a
research platform for methods concerning neural rehabili-
tation [6]. The device was developed with a focus on an
extensive range of motion (ROM) and particularly activities
that involve interaction with other parts of the user’s body.
Additional emphasis was put on swift motions to prevent
limitation of speed recovery, as described in [6]. However,
methods proposed in this paper should be transferable to any
other torque controlled haptic device.

The device has two actuated DoF at the shoulder girdle
(SG), three at the glenohumeral joint (GH), and one at the
elbow, as shown in Fig. 1. There are two physical interaction
points between user and robot: one at the upper arm (UA)
and one at the forearm close to the wrist (FA).

Six series elastic actuators drive the robot. A forerunner
version of these drives was presented in [14]. The version
used for the experiments provides 40 N m peak torque at
a bandwidth of 60 Hz at 3 N m amplitude and a resolution
smaller than 0.1 N m. The maximum joint speed is 12 rad/s.

At both interaction points (UA/FA), there are 6-DoF force-
torque sensors (Rokubi Mini 1.1 by Bota Systems) mounted.
They provide force and torque measurements in a range of
±1000 N and ±8 N m in the x-direction and ±500 N and
±5 N m in the yz-plane with less than 0.02 % noise. The
integrated IMUs attached to the shell of the drives and the
force-torque sensors provide inertial acceleration and angular
velocities. Their properties are identified in section VI-A.

The controllers, state estimation, and the model description
are updated at 800 Hz by a ROS and C++ based software
stack. Control PC, actuators, and sensors communicate over
an EtherCAT bus. The low-level torque controller for the
SEA runs at 2.5 kHz on the integrated electronics of the
drive.

A. Dynamics
The system of the human interacting with the robot is

described in generalized coordinates by

Mi(qi)q̈i + hi(qi, q̇i) + gi(qi) = J>C,i(qi)λC + τi, (1)

where i ∈ {R,H}. Indices R and H denote the robot and hu-
man system respectively, q are the generalized coordinates,
M is the mass matrix, h the centrifugal and Coriolis terms,
g the gravitation terms, JC the stacked spatial Jacobian of the
interaction points, τ the joint torques, and λC the interaction
wrench. For the high level control design, the actuators can
be considered as perfect torque or position source within the
bandwidths typical for humans that is around 7 Hz [6], [15].
Therefore, we assume

τ [k + 1] = Πctrl(qR[k], q̇R[k], q̈R[k],λC,meas[k]), (2)

where Πctrl is the control policy defining the target joint
torque for the actuators and λC,meas is the measured inter-
action wrench.

The human H part of equation (1) is unknown regarding
the parameters of the system dynamics as well as its exact
state. The equations of motion (EoM) for R and H are
only coupled over λC. Therefore, we can model the human
dynamics as unknown disturbance dH on the interaction
wrench λC. Therefore

λC = f̂C(qR, q̇R, q̈R,dH), (3)

where f̂C is the unknown function describing the interaction
depending on the relative motion of the interaction points.

B. Optimization Framework

We use a hierarchical null-space projection based opti-
mization (HOC) as a standard on our hardware to manage
safety relevant constraints and other tasks on different pri-
orities [6], [16]. This method typically uses the following
optimization vector ξ = (q̈, τ ,λC).

The tasks T are then defined as linear equality Tp : Apξ =
bp or inequality Tp : Dpξ ≤ cp constraints at priority p,
where small p means high priority. The equations of motion
(1) and physical constraints should be defined on the first
priority as a solution deviating from physics is never valid.
The second priority can be used to define safety constraints
and the lower priorities to set therapy relevant tasks, and
regularization [6]. The next sections will discuss how to set
the tasks for the HOC to track interaction wrenches.

III. ENVIRONMENT ANALYSIS

The optimal choice for an interaction force control method
is highly dependent on the hardware and expected environ-
ment. Admittance controllers are generally used for systems
that are primarily position-controlled (e.g., hydraulic actu-
ated devices), Impedance controllers are used for systems
with low impedance (e.g., pneumatics, SEA), and torque-
controlled systems often use only feedforward control [17],
[18], [19]. In this section, we explain why an admittance con-
troller can be a better fit for a torque-controlled system in the
presence of an environment with unknown low impedance,
e.g., a human arm.

A. Environments with Known Impedance

Torque controlled robots offer a fairly easy method to
control interaction wrenches towards a fixed environment
(e.g., hard floor). In this case, all active contact DoF C
can be assumed motionless ẋC , ẍC = O. This constraint
allows projecting the EoM into the support consistent space.
This assumption for fixed contact points is eligible for, e.g.,
legged robots, as they mostly assume a fixed and rigid floor
[16], [11]. Also, for systems where the impedance of the
environment at the interaction points is well known, the same
method can be used. There the expected acceleration of the
interaction point ẍC,exp under the desired load λC,des can be
estimated and compensated for by setting the equality task

JC q̈ = ẍC,exp − J̇C q̇. (4)

This task assures that all solutions of the HOC are chosen
within the null-space of the support consistency constraint
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(4). As next priority, the HOC receives the desired interaction
wrench λC = λC,des as an equality task and as last priority
the regularization q̈ = 0. If no other tasks are defined, the
optimal joint torque τ ∗ to achieve the desired interaction
wrench λC derives from equation (1)

τ ∗ = Mq̈∗ + h+ g − J>C λC,des, (5)

where q̈∗ is the generalized acceleration resulting from the
HOC. As we assumed perfect torque sources for our model,
the desired interaction wrench would instantaneously be
established. This means that on the non-perfect hardware the
interaction wrench controlling task is converted to a joint
torque control task without any loss in accuracy. Whereas
the joint torque control performance is only dependent on
the actuation system.

B. Environments with Unknown Impedance

For systems that interact with a mostly unknown environ-
ment like a human arm, it is not possible to estimate ẍC,exp.
Without or with an inaccurate constraint (4) the torques from
equation (5) do not establish the desired interaction wrench
as the environment reacts unexpectedly to the robot’s action.
Consequently a deviation of the robot’s acceleration from q̈∗

occurs. Employing linear control synthesis for the interaction
wrench tracking is sub-optimal due to the cross-coupling in
the robot’s wrench-acceleration dynamics.

IV. CONTROL APPROACH

As the model of the robot dynamics is significantly more
accurate than the model of the environment, we suggest
using all available information to define the robot’s EoM
as accurately as possible. Thereby at least the robot behaves
as expected, even when coupled to a completely unknown
environment. Furthermore, linear controller design is eligible
as the feedback linearization is valid. Hence, we set the
equality task λC = λC,mes at the same priority as the EoM.
This results in the best possible estimate of the real system
dynamics at the time of the measurement. For rather low
impedance environments as a human arm, this guess is also
more accurate during the whole control cycle (i.e. after
1.25 ms) than assuming λC = λC,des. Thus the feedback
linearization is as accurate as possible and only limited
by the accuracy of the robot model and interaction force
measurement. Hence, the system should track a desired
accelerations task q̈ = q̈des precisely as long as none of
the safety constraints are active. In this case, the optimum
joint torque is expressed by

τ ∗ = Mq̈des + h+ g − J>C λC,mes. (6)

Hence, we are looking for an admittance controller with
desired accelerations as output.

A. Wrench Controller

In this paper, we demonstrate this strategy with a straight
forward and easy to tune virtual mass controller (VMC).
A good guess for the unknown environment’s admittance is
that it behaves as decoupled one-dimensional systems with

a mass that is attached to the robot via a spring-damper
force element. Hence, accelerating the interaction points in
the direction of the interaction wrench error λC,err = λC,mes−
λC,des will diminish the same. Large acceleration gains im-
prove the tracking performance. However, a stable controller
design is limited by the robots dynamics, actuation, and
communication delay. The idea of the VMC is to schedule
the acceleration gains so that the desired accelerations q̈des
mimic a desired virtual admittance under the influence of the
residual interaction wrench error λC,err. We want to control
a 12-DoF interaction wrench with six or less DoF of the
exoskeleton. Therefore, we do not have full controllability
over λC,err. Hence, we define the VMC in the generalized
coordinates where the controllable part of the interaction
wrench is mapped to the joint space. We propose to chose
the virtual admittance so that it behaves like a down-scaled
reflected inertia of the real robot system Mvirt = αMsys.
Where α is a tuning parameter. The robot’s gravitational,
centrifugal, and Coriolis terms can be compensated entirely
without stability issues, as shown in [6]. Therefore, these
terms are not included in the virtual admittance. The HOC
obtains the desired joint accelerations q̈des as an equality task

q̈des = M−1
virt J

>
C λC,err =

1

α
M−1

sys J
>
C λC,err. (7)

Due to the memoryless structure of the controller, this
method is not prone to windup if a higher priority task is
active on a subset of the controlled DoF. Hence, this free-
motion controller can always be defined as a task of priority
pVMC. If other haptic interactions i should be modelled they
can be added with a higher priority pi < pVMC. In this case,
the haptic interaction i is rendered on its DoF while the VMC
still controls the rest of the device’s DoF.

To give an intuition about the feeling of this controller,
we can investigate the admittance at joint level

q̈sys = M−1
sys J

>
C

(
1

α
λC,err + ∆λC

)
, (8)

where ∆λC = (λC,R − λC,mes) is the difference between
the delay afflicted, measured interaction wrench λC,mes and
the continuous interaction force of the real system λC,R.
Assuming a small delay and accurate measurement, this term
gets negligible. Then the system behaves as a down-scaled
impedance in the presence of λC,err.

B. Acceleration Tracking Controller

The inverse dynamics (ID) for joint torque control are
known to be sensitive to modeling errors. Hence, pure joint
torque control finds its application in robots with closed
kinematic chains, e.g., legged robots [16] or open kinematic
chains with large inertia compared to the torque inaccuracy.
The distal parts of open kinematic chains usually have a
small inertia. Therefore, they are often position and velocity
controlled in addition to the feedforward torque. In our case,
we have a hybrid system. The robot itself is an open kine-
matic chain. While during therapy, there is always a human
arm attached that closes the kinematic chain. We control the
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Fig. 2. Control diagram of the virtual mass controller (VMC) with closed loop acceleration control and sensor fusion based acceleration estimation (AcE).
The assumed sensor noise for the force-torque sensors (F/T-S), encoder (ENC), and inertial measurement units (IMU) is indicated as gaussian noise. The
lowpass filter (LPF) for λmes is a butter worth filter. The filters for the other sensor signals contained in the AcE. The real system is built from links
with finite stiffness. Hence, the IMUs measure the accelerations of the compliant body dynamics (CBD) ẍIMU,i and not the accelerations equivalent to the
mapped joint acceleration ˆ̈xIMU,i = JCq̈sys + J̇Cq̇sys.

interaction forces over the robot accelerations and assume
the human arm to be of rather low impedance. Therefore
we expect that the open kinematic chain characteristics of
the arm could have a negative influence on the acceleration
control. We want to avoid to control all or a subset of the
joints in position-control, as we intend to keep the benefits of
torque control. Therefore we suggest using an acceleration
tracking controller to lower the error.

1) Controller Synthesis: We use a 2-DoF Internal Model
Controller structure for the controller [20]. This controller
design includes the plant’s model P̂ and allows separate
tuning of reference tracking Qr and disturbance rejection
Qd, as shown in Fig. 2. The HOC computes the optimum
generalized acceleration q̈∗ as well as optimum actuation
torques τ ∗. Without the acceleration tracking controller we
use the torques from HOC directly as torque commands for
the actuators τcmd = τ ∗. If we want to correct for errors
dm of the modeled plant, τ ∗ has to be augmented by the
term that compensates for the disturbance resulting in τcorr.
As mentioned before, we can assume perfect torque sources
in the bandwidth of humans. We assume that τcorr does
not contain higher frequency content. Therefore the plant P
including the ID can be modelled as pure delay P̂ = e−Tss,
were Ts is the sampling time.

To assume perfect torque sources without loss of accuracy,
Qr and Qd need a cutoff frequency lower than the actuator
bandwidth. This requirement is feasible, as the human band-
width is much lower. Reference and disturbance tracking
controllers are synthesized as H2 Optimal Controller for
ramp references and disturbances as the model errors are
mostly continuous (see [20]). Hence, we assume the model
disturbance to be of type d̂M = 1/s2. Applying the methods
in [20] to our assumptions results in following control
synthesis

P̂ = e−Tss ≈ −s+ 2/Ts
s+ 2/Ts

Q̃i = (d̂M )−1{P̂−1d̂M}∗ = Tss+ 1

(9)

The operator {·}∗ omits all terms of the operand’s par-
tial fraction expansion that contain the poles of P̂−1. For
causality, the controller needs a filter Fi that yields a proper
controller Qi = Q̃iFi for i ∈ {d, r}. Further, (1− P̂Qi)dM
must be stable to reject disturbances asymptotically. The
filters Fi are synthesized according to [20]

Fi =
ak−1s

k−1 + . . .+ a1 + a0
(Λis+ 1)m+k−1 =

2Λis+ 1

(Λis+ 1)2
, i ∈ {d, r},

(10)
where m = 1 and k = 2 as the controller has a zero-pole
excess of 1 and dM has double poles at the origin. The time
constants Λd and Λr for disturbance rejection and reference
tracking respectively can be tuned independently.

2) Acceleration Estimation: The quality of the accel-
eration estimation restricts the maximum performance of
the acceleration tracking. Typically a system acceleration
estimate q̈diff is derived by double differentiation of the joint
position measurements. A low pass filter with a low cutoff
frequency and a large delay has to be used to attenuate the
dominant noise of the signal resulting in ˆ̈qdiff. We strive for
prompt correction of acceleration errors, hence this delay is
not acceptable. Therefore, we use the integrated IMUs to
measure the system acceleration directly. First, the measured
gravitational acceleration of the IMU signals is compensated.
Then, the linear accelerations are fused to an estimate of the
generalized accelerations using least squares.

ẍIMUi,noG = ẍIMUi −RIMUiIg

ˆ̈qIMU = J+
IMU(ẍIMU,noG − J̇ q̇),

(11)

whereRIMUiI is the rotation from inertial coordinates to IMU
frame, g is the gravity vector, and JIMU and ẍIMU are the
stacked Jacobian respectively acceleration measurements of
all IMUs.

Inaccuracies of IMU pose and calibration can lead to
severe artifacts of the gravity in the acceleration measure-
ment. Therefore, ˆ̈qIMU is not qualified as control feedback.
However, if we merge the information of the delayed (tdelay),
bias-free ˆ̈qdiff and the high bandwidth, bias polluted ˆ̈qIMU we
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generate an eligible signal. The bias of the latter signal can
be estimated by the former which allows compensation

ˆ̈qbias(t) = ˆ̈qIMU(t− tdelay)− ˆ̈qdiff(t). (12)

The high frequency content of the estimated bias ˆ̈qbias is
attenuated with a butterworth filter. The resulting signal
ˆ̈qbias,fil is used to compensate the bias

ˆ̈qmerge = ˆ̈qIMU − ˆ̈qbias,fil. (13)

A further butterworth filter is used to prune the merge
estimate from undesired high frequency content.

V. EXPERIMENTS

In this section, we discuss the general procedure for the
experiments, while section VI contains specific information.
We plan a shoulder synergy controller for the shoulder
girdle movement GPR and GED in the future. Therefore,
they are locked mechanically for all experiments to avoid
interference. Before every experiment with a new parameter
set or controller, the software measures and calibrates the
F/T-sensors bias to avoid any effect of sensor drift.

After the first couple of experiments, we observed that
eigenmodes of the base structure are excited by the strong
reaction forces at the attachment point of the arm. To avoid
a restriction of the performance by the base’s flexibility, we
use lashing straps to brace the aluminum beam structure to
the floor and ceiling.

A. Acceleration Tracking

For these experiments, we moved the robot to a central po-
sition of the RoM. Sinusoidal signals of different amplitudes
and frequencies set the reference. All joints use the same
controller with individually tuned parameters. The controller
is started from a static system by a button on a handheld
device.

Stick friction is a challenge for acceleration tracking as the
dynamics are entirely different than for the moving system.
On the one hand, the system should overcome the stick
friction as quickly as possible when acceleration is desired.
On the other hand, the disturbance estimation should not
wind up on acceleration measurement errors when no motion
is requested. Therefore, we use a case differentiation to
switch between suitable controller parameters.

B. Interaction Force Control

For all experiments λC,des = 0 is used. During each
experiment, one of the authors excited the device by grasping
it at the two contact points. This is not the typical way
of interaction with an exoskeleton. However, it is easier
to achieve repeatable interaction characteristics fC , as the
alignment of human and robot joints is avoided. Furthermore,
experiments for parameter tuning can be performed quicker
and with less required safety precautions. The presented
methods should be transferable to any robot interaction with
low impedance environments. Therefore the used type of
excitation is as representative as wearing the device like an
exoskeleton.

For each controller, we excited the robot as versatile as
possible to check the performance. We included collisions
with the mechanical end stops to check the stability of the
controller. However, the data used to compare the controller
is from a repeated movement, which excites all joints without
touching the endstops. The movement can be described as
a punch from the hip to a point in front of the chest at
the height of the shoulders with internal rotation of the
shoulder. The test subject repeated this motion while trying to
maintain the speed and trajectory throughout all experiments.
However, small deviations of the execution are not restricting
the validity of the comparison as all metrics are normalized
w.r.t. the excitation. The attached video1 shows examples of
the excitation.

VI. RESULTS

The performed experiments and presented results should
give an insight into the sensors’ characteristics as well as
demonstrate and compare the performance of the control
methods.

A. Instrumentation Characteristics

The interaction force sensors are calibrated before every
experiment. Therefore we assume the bias µFT = 0. The
variance on the sensor signal was measured over 6s while
the device is active but static resulting in following model
of the disturbance dFT,force,x = N (0, 0.011), dFT,force,yz =
N (0, 0.019), dFT,torque,x = N (0, 9e − 7), and dFT,torque,yz =
N (0, 8e− 6). The signal is approximately white noise up to
100 Hz where the power falls off until 250 Hz to be constant
up to 400 Hz.

The variance in linear acceleration magnitude is in av-
erage σ2

IMU = 3.6× 10−4 m s−4 without large variation
between the sensors. The bias ranges between |µIMU,GED| =
0.258 m s−2 and |µIMU,GHA| = 0.035 m s−2. Correcting for
the linear acceleration magnitude bias only would not solve
the problem as the IMU axes have an individual scaling
error. Furthermore, angular offsets of the IMU mounting
of more than 1.5◦ are expected. Calibration of all axes
would be a non-negligible effort. Therefore we introduced
the acceleration estimation method using the online bias
adaption.

B. Acceleration Estimation

Fig. 3a) illustrates the main mechanics of the AcE. On the
big scope, we can observe how the estimated offset corrects
for the configuration dependent bias of ˆ̈qIMU resulting in an
accurate estimation of the acceleration. As ground truth we
use the smoothed (non-causal gaussian filter) ˆ̈qdiff,smo. The
detail view shows how the bias estimation regulates the static
offset, which would be devastating for controls.

To demonstrate the performance of the estimation Fig. 3b)
shows the estimated signals compared to the ground truth
signal. The estimated acceleration describes the acceleration
of the compliant body dynamics lumped to the general-
ized coordinates, while the ground truth shows only the

1https://youtu.be/zvz8x3bI8K8
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Fig. 3. a) The plot shows the behavior of the acceleration estimation
variables during external excitation. The smoothed double-differentiated
joint position q̈diff,smo is used as a reference. Note that the oscillations in
the estimated signal are physical compliant body oscillations and not noise.
b) shows joint acceleration estimation state of all used joints during a multi-
DoF movement and the integrated joint velocities q̇int =
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acceleration of the joints. Hence, the continuum mechanics
of the links are missing in the ground truth, which could
explain the momentaneous differences. In the integrated
ˆ̈qmerge, these differences should not lead to drift, as the
compliant body dynamics are only oscillations around the
rigid body dynamics. The black signals in Fig. 3b) show the
integrated velocity compared to the measured after more than
15 s run time. There is no drift, proving the method to be
valid.

C. Acceleration Tracking

Joint EFE is the most critical one regarding inverse dy-
namics as its output is attached to a low inertia. Therefore
dynamic and static friction are large compared to the torques
needed for acceleration. Fig. 4a) and b) show the effect of
an active joint acceleration control with Λr = 0.01 and
Λd = 0.09. While the joint does not move without accel-
eration control, it follows the desired trajectory well with
active control. The influence of the stick friction handling is
particularly distinct.

The estimated disturbance for EFE, GHB, and GHC in
4b)-c) shows completely different characteristics. The dis-
turbance is specific to the actuator, the six-DoF joint load,
and even the internal temperature. The estimation indicates
how complex a model would have to be to calibrate the
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Fig. 4. The four plots show the tracking performance w.r.t. a sinusoidal
reference acceleration q̈ref. Plot a) shows the performance without active
ATC and b) with ATC for the same reference trajectory on the EFE joint.
Plots b), c), and d) show the tracking controller state on different joints.

disturbance offline.

D. Interaction Force Tracking

The open-loop controller (FF) described in equation (5)
with q̈∗ = 0 and λC,des = 0 is used as a baseline. In
the publication about the hardware [6], we compared the
performance of the device against the state of the art [10].
The results of [6] indicate, that the controller achieves haptic
transparency that is on par with the state of the art and is
potentially superior for dynamic movements.

We evaluate the performance of the controller with differ-
ent metrics that should represent transparency as accurately
as possible for a wide variety of excitations. The test subject
cannot excite the robot the same in each experiment run.
Therefore, all metrics are as independent of the excitation
as possible. As such normalized metrics were missing in the
state-of-the-art [10], we introduced new ones.

Inertia Ratio IR describes the ratio of felt inertia at one
joint to the reflected inertia of the physical system at the
same joint. Thus, small numbers indicate accurate wrench
tracking.

IRi =
mvirt

msys
=
SiJ

>
C λC,mes

SiMq̈C,mes
(14)

where Si is the selection vector of DoF i. Both denominator
and nominator of the equations (14) are smoothed. IRi,mean
is the mean over time for DoF i. IRmean is the mean of all
IRi,mean.

Inertia Ratio Span ∆IR indicates the consistency of
virtual mass rendering.

∆IR = max
i

(IRi,mean)−min
i

(IRi,mean). (15)
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TABLE I
COMPARISON OF INTERACTION WRENCH CONTROL METHODS. FEED

FORWARD COMPENSATION (FF) OF THE DYNAMICS. VIRTUAL MASS

CONTROL (VMC) WITHOUT CLOSED LOOP ACCELERATION TRACKING

AND (VM+ATC) WITH ACCELERATION TRACKING CONTROLLER. ALL

DATA IS AVERAGED FROM CONTINUOUS SAMPLES OF AT LEAST 10 s. † :
THIS IS THE MEAN OF JOINTS GHA, GHB, AND GHC.

Method FF VMC VMC VM+ATC VM+ATC VM+ATC
α - 0.7 0.6 0.7 0.7 0.6
Λr - - - 0.01 0.01 0.01
Λd - - - 0.14 0.19 0.14
IRmean,GH

† 1.51 0.51 0.51 0.52 0.52 0.49
IRmean 1.76 0.59 0.58 0.56 0.57 0.52
∆IRmean 1.13 0.34 0.34 0.24 0.27 0.19
T Rmean 1.12 0.46 0.46 0.45 0.47 0.41
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Fig. 5. The average inertia ratio at a certain joint acceleration and joint
speed is plotted in this figure for all controlled joints.

Peak Torque Ratio T R describes the ratio peak interaction
torque to the peak expected interaction torque.

T Ri =
max(τvirt)

max(τsys)
=

max(SiJ
>
C λC,mes)

max(SiMq̈mes)
. (16)

1) Scalar Excitation-Normalized Metrics: In Table I these
scalar metrics are compared for the different methods using
control parameters that have shown best performance during
systematic tuning. We can observe that our proposed con-
trollers VMC and VM+ATC reduce the inertia ratio IR by
a factor of three compared to the baseline controller FF. The
variation of the inertia ratio ∆IR is lowered by a factor of
six for the best method. The peak torque ratio is also reduced
by more than a factor of two by all proposed methods.
Hence, the proposed controllers are superior to the baseline.
The VM+ATC controllers seem to perform slightly better in
reducing the ∆IR. However, in the IR metric, there is no
relevant difference observable.

2) Velocity and Acceleration Sensitivity: To render an
intuitive feeling of free space, it is vital to see if the system
behaves consistently over the full bandwidth of accelerations.
Figure 5 shows the average IRmean at different accelerations.
The rendered impedance is quite consistent. A clear drop in
IRmean,GHC is observable for higher accelerations as well
as a peak around 2.3 rad s−1. This can be explained by a
very low amount of data at this velocity and acceleration in
our experiments. Hence, these deviations might be a specific
artifact of the chosen excitation.

TABLE II
PERFORMANCE OF VMC AND VM+ATC CONTROLLER IN THE

PRESENCE OF A LARGE MASS MODELLING ERROR OF THE UPPER ARM

LINK ∆mUA =−1 kg.
Method VMC VM+ATC VMC VM+ATC
α 0.7 0.7 0.6 0.6
Λr - 0.01 - 0.01
Λd - 0.14 - 0.14
IRmean 0.60 0.53 0.55 0.50
∆IRmean 0.67 0.09 0.18 0.16
T Rmean 0.50 0.49 0.38 0.46
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Fig. 6. Interaction wrench tracking performance at joint GHB under a
mass model error of −1 kg at the exoskeleton’s upper arm. The results are
shown without a) and with b) acceleration control. The reflected torque is
τrefl = J>C λC. Further, q̈∗ = q̈ref,out.

3) Robustness Against Modelling Errors: We assess the
robustness of the control methods by inducing a large mass
modeling error for the upper arm link ∆mUA =−1 kg. Table
II shows the resulting differences using the scalar values.
The results are shown for the control parameter sets which
have shown best performance in for the nominal model.
Both controllers show a quite good performance while the
acceleration tracking seems to improve the performance
slightly. Figure 6 shows the improved acceleration reference
tracking performance. The improved tracking helps to render
a more consistent feeling of low inertia as the system behaves
more like the controller dictates. This can be explained by
the ATC compensating for ∆λC in equation (8). Without the
ATC, the interaction feels very transparent during high jerk
as ∆λC helps to accelerate the system. However, when the
jerk crosses zero, the inertia feels higher than with ATC.

VII. DISCUSSION & CONCLUSION

We presented a control method to render free motion with
a multi-DoF rehabilitation exoskeleton in the presence of
rapid and high-acceleration movements by the user. We pro-
posed to compensate for the device’s dynamics as accurately
as possible during these swift movements. Therefore, we pro-
pose to work with the best knowledge of the current system
state to feedback linearize the dynamics at the interaction
points to the user. We introduce a controller rendering a low
virtual mass (VMC) at the end-effector by converting the
measured interaction wrench to desired accelerations.

To further improve the performance in the presence of
model inaccuracies, we developed a closed-loop joint accel-
eration controller (ATC). Therefore, we introduced a method
to fuse the double differentiated joint encoder signals and
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acceleration measurements from multiple low priced IMUs
to an estimation of the generalized joint acceleration. This
estimate was shown to be bias-free and to have a low delay,
which makes it eligible for feedback control. We could
demonstrate that the feedback acceleration control improves
the tracking performance significantly. Particularly for joints
with low attached inertia, this method is recommendable if
position control is not an option. Furthermore, the method
uses affordable IMUs, which keeps the hurdle for a transfer
to other robots low. An experimental comparison of the
proposed approach’s performance to state-of-the-art methods
that do not use q̈ to estimate the tracking error, as presented
in [21] and [10], should be addressed in future research.

Further, we compared variations of the method w.r.t. each
other and against a model-based feedforward controller as
a reference. In an earlier publication, this reference method
showed performance on par with state-of-the-art closed loop
controllers on comparable devices. The experiments demon-
strated that the introduced method is significantly superior
regarding all considered performance metrics compared to
the reference controller. The felt inertia, as well as the
maximum felt joint torque, could be reduced by more than a
factor of three. Besides, the method showed robust behavior
in the presence of significant modeling errors.

With the non-integrative VMC, we could demonstrate
that the inverse dynamics with the best momentary model
approach is a promising method to lay the ground for linear
interaction wrench controller synthesis. We intend to extend
the method using controllers with integrative action or/and
prior knowledge about the environment’s impedance (e.g.,
human) to improve the performance further.

These results set a new benchmark for dynamic free space
rendering in rehabilitation exoskeletons. It is possible to em-
ploy this method in combination with hierarchical optimiza-
tion strategies, which allows one to intuitively combine it
with tasks on other priorities, e.g., position limits. Therefore,
the VMC is used as a new standard on the rehabilitation ex-
oskeleton ANYexo. The level of transparency should pave the
way for novel intervention techniques in neurorehabilitation.
The results indicate that the proposed multi-sensor based
closed-loop acceleration tracking improves the accuracy of
the inverse dynamics. This method is attractive for all inverse
dynamics applications and particularly for joints with low
attached inertia. The presented control methods, as well as
the findings of the experiments, should be well transferable to
end-effector type haptic devices as well as for manipulators
to delicately interact with general environments that have an
unknown low impedance.
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