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Video Depth Estimation by Fusing Flow-to-Depth Proposals
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Abstract— Depth from a monocular video can enable billions
of devices and robots with a single camera to see the world
in 3D. In this paper, we present a model for video depth
estimation, which consists of a flow-to-depth layer, a camera
pose refinement module, and a depth fusion network. Given
optical flow and camera poses, our flow-to-depth layer generates
depth proposals and their corresponding confidence maps by
explicitly solving an epipolar geometry optimization problem.
Our flow-to-depth layer is differentiable, and thus we can refine
camera poses by maximizing the aggregated confidence in the
camera pose refinement module. Our depth fusion network
can utilize the target frame, depth proposals, and confidence
maps inferred from different neighboring frames to produce
the final depth map. Furthermore, the depth fusion network
can additionally take the depth proposals generated by other
methods to further improve the results. The experiments on
three public datasets show that our approach outperforms state-
of-the-art depth estimation methods, and has reasonable cross-
dataset generalization ability: our model trained on KITTI still
performs well on the unseen Waymo dataset.

I. INTRODUCTION

Accurate dense depth estimation from a monocular video
stream can be a backbone algorithm for autonomous robots
and mobile devices. For autonomous ground or aerial vehicles,
video depth estimation can provide additional information for
navigation and obstacle avoidance. A mobile device with a
low-cost monocular camera can enable tremendous augmented
reality applications without the need for dedicated depth
Sensors.

A line of research work on monocular depth estimation
has been dedicated to single image depth estimation [1]-[5].
However, single image depth estimation methods heavily
rely on image priors learned from data, which may not
generalize well to unseen scenes. Since it is difficult to obtain
extremely accurate depth maps from single image, some
researchers focus on depth from video by utilizing multiple
video frames [6]-[11]. These approaches usually directly
regress depth from deep features aggregated from multiple
frames [9] or cost volumes constructed by a plane-sweep
algorithm [11]. Some methods use optical flow as part of the
input to their network [6] or as one auxiliary task [7]. Different
from these methods, our approach capitalizes on state-of-the-
art optical flow methods to refine camera poses and generate
depth proposals to improve the final depth estimation with
a novel flow-to-depth layer. This flow-to-depth layer is built
upon solving the classical triangulation problem for 3D depth
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estimation, and has the potential to generalize well to unseen
environments.

One critical design in our model is a differentiable flow-
to-depth layer that solves an epipolar geometry optimization
problem. The flow-to-depth layer takes optical flow and
camera poses as input and produces depth proposals. We
show that our flow-to-depth layer does not only produce
geometrically reliable depth maps (proposals) and their
confidence maps but also helps refine the camera pose
between video frames. At the end of our model, we have a
fusion network that takes a target frame, depth proposals, and
their confidence maps inferred from neighboring frames to
produce the final depth maps. Note that the fusion network
can additionally take the depth proposals generated by other
depth estimation methods. For optical flow, we utilize the state-
of-the-art optical flow methods that have gained significant
progress [12]. To obtain the initial camera pose, we can
use sensors such as IMU and GPS or apply odometry
algorithms [13].

We conduct extensive experiments on the KITTI [14],
ScanNet [15], and Waymo datasets [16]. The experiments
show that our approach significantly outperforms state-of-the-
art methods in depth estimation. Our controlled experiments
indicate that the differentiable flow-to-depth layers in our
model significantly improve the overall accuracy of video
depth estimation by refining camera poses and generating
depth proposals. To our surprise, our model trained on KITTI
can generalize well to the unseen Waymo dataset while
other methods do not. We believe the reason for the strong
generalization capability of our model is that we solve for
the depth proposals based on solving traditional triangulation
problems rather than memorizing visual content. In summary,
the main contributions of our work are as follows.

o We present a novel framework with differentiable flow-
to-depth layers for video depth estimation. The flow-to-
depth layer refines camera poses and generates depth
proposals by solving a triangulation problem between
two video frames.

o A depth fusion network can merge the depth proposals
from the flow-depth-layer to produce the final depth
maps. The depth fusion network can optionally take the
depth maps generated by other methods to improve the
performance further.

o We conduct thorough experiments on monocular depth
estimation and show that our approach produces more
accurate depth maps than contemporaneous methods do.
Our model also demonstrates stronger generalization
capability across datasets.
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Fig. 1.

The architecture of our overall framework. First, we estimate the optical flow from video frames and obtain initial camera poses from GPS and

IMU or applying odometry algorithms. Second, the initial camera poses are refined by maximizing the sum of per-pixel confidence in the pose refinement
module. Third, we can generate depth proposals and confidence maps with refined camera poses through the flow-to-depth layer. Finally, we obtain the final
depth map by a depth fusion network that fuses the given depth proposals, confidence maps, and the target frame.

II. RELATED WORK

In the literature, there is a large body of work on depth
estimation from images. The settings can vary from a single
image, binocular stereo, temporal sequences to discrete
multiple views. We briefly review them below.

A. Single Image Depth

Early work in this line can be traced back to Saxena et
al. [1] and Hoiem et al. [17]. The previous work learns to
predict depth from single images using a discriminatively-
trained Markov Random Field (MRF), while the later one
classifies image pixels into different geometric regions, which
can then be used to infer shapes. Most recently, with the
success of deep learning, several works start to train deep
convolutional neural networks to directly regress raw pixels
to depth values [3]-[5], [18]. Our work is fundamentally
different from these approaches in that we take geometrical
constraints between video frames into consideration, which is
suitable for various data and these single image approaches
only learn distribution from the training images. Meanwhile,
we also only need a single camera, the same device require-
ment as single image methods.

B. Binocular Stereo Depth

Depth estimation has been extensively exploited in the
paired stereo setting, and the original problem is usually
reformulated as a matching problem [19]. Thus, traditional
stereo approaches [20], [21] often suffer from correspondence
matching ambiguity in regions such as textureless areas,
reflective surfaces, and repetitive patterns. Most recently, deep
learning has also shown its success in stereo matching [22],
[23]. The state-of-the-art approaches [24]—[27] usually con-
struct a 3D cost volume and perform 3D convolutions on it.

Along with this direction, improvements have been made by
pyramid [25], semantic segmentation [26], learned affinity
propagation [27], etc. The stereo pair setting usually generates
an accurate depth and naturally adapts to dynamic scenes.
However, the calibrated stereo camera is not ubiquitous in the
real world. Compared to these approaches, our work focus
on the monocular setting.

C. Depth from Video

Depth from video becomes a popular research problem
recently, and the related work includes [6], [8], [10], [28].
Both [8] and [28] explicitly models the motion of moving
objects, but their complex motion model takes lots of
iterations to optimize. Instead of modeling moving objects
accurately, we regard them as low-confident areas to train
the network to do depth interpolation or inpainting in these
areas. DeMoN [6] also proposes a neural architecture that
alternates optical flow estimation and the estimation of camera
motion and depth. Different from DeMON, our rigid depth
and camera poses are more reliable since they are calculated
via epipolar geometry and not directly predicted from neural
networks.

D. Multi-view Reconstruction

Multi-view stereo (MVS) reconstructs 3D shapes from a
number of discrete images, which is a core computer vision
problem that has been studied for decades. Conventional MVS
algorithms [29] perform 3D reconstruction by optimizing
photometric consistency with handcrafted error functions to
measure the similarity between patches. Similar to traditional
stereo pair methods, these algorithms cannot handle poorly
textured regions and reflective surfaces where photometric
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Fig. 2. The illustration of generating a depth proposal from optical flow. p
and p’ are corresponding points given by the optical flow. The objective of
the flow-to-depth layer is to find an optimal P that minimizes the reprojection
error e.

consistency is unreliable. Recent deep learning methods [30]-
[32] take the plane-sweep volume of deep features as input
and produce depth maps for the reference images. The
most significant difference between these cost volume-based
methods and our approach is that we incorporate the multi-
view geometry constraint via the flow-to-depth layer, which
is new and effective.

III. OUR APPROACH

Given a sequence of frames {11, ..., Iy} from a monocular
video, our objective is to predict the depth map of every video
frame by utilizing the frames around it. The input to our model
includes the target frame I, its neighboring frames {I} and
the initial camera pose transformations {7} s} between I,
and {I}, which can be obtained from GPS and IMU, or by
applying a visual odometry algorithm [33].

Fig. 1 illustrates the overall architecture of our proposed
model, which consists of three critical components. The first
part is the novel differentiable flow-to-depth layer. It takes
optical flow and a camera pose as input and estimates rigid
depth by triangulation in 3D. The layer produces both depth
proposal map D, ; and confidence map C; , for the target
frame by solving the epipolar geometry problem using a
least-squares method.

The second part is the camera pose refinement module. The
initial relative camera pose 7} s may not be highly accurate
due to noisy sensor outputs from GPS and IMU, or imperfect
visual odometry algorithms. Since the flow-to-depth layer is
differentiable, we can use it to backpropagate the gradients
from the confidence map to the initial camera pose and
refine the initial camera pose by maximizing the sum of
per-pixel confidence. Our experimental results show that the
pose refinement module significantly improves performance.

The last one is the depth fusion network. It takes the target
frame, depth proposals, and confidence maps to generate the

Scene 1

Fig. 3. The confidence maps (the second row) and depth proposals (the
third row) generated by the flow-to-depth layer on the KITTI dataset. For
the confidence maps, darker areas indicate lower confidence. For the depth
proposals, blue areas indicate small depth values.

final depth map D. The intuition behind such a depth fusion
network is that, for regions with high confidence, the network
can directly use the provided depth values; otherwise, the
network will perform depth interpolation or inpainting. Note
that we also provide the target frame as an additional input
to the depth fusion network, which provides strong image
priors for inpainting the regions with low confidence. We
find that utilizing depth proposals along with their confidence
maps greatly improves the depth estimation quality.

A. Flow-to-depth Layers

Parallax can appear between two video frames because of
camera motion. We utilize this parallax to improve monocular
depth estimation by introducing a differentiable flow-to-depth
layer.

a) Depth proposals: Consider the depth estimation
problem for a target frame I;. Given a nearby source
frame I,, we leverage optical flow and relative camera pose
between I; and I, to generate a depth proposal D; . Fig. 2
illustrates configuration of our problem. With homogeneous
coordinates, we consider a 3D point P = [z,y,d, 1]T and
its corresponding pixels in I; and I, as p = [u,v,1]7,p’ =
[u/,v’,1]T. Given p and p’, we solve for an optimal P that
minimizes the reprojection error. Let the world coordinate
system be the camera coordinate system of ;. Suppose M
is the camera matrix for I, and K is the intrinsic matrix for
I;. In the following, we use numbers in subscript to slice
vectors and matrices, and use comma to separate dimensions.
Then we have

p=KPy3,p' = M'P. ey
Our reprojection error is formulated as:
dK 1p
etd) = o | Py -,
where d is the depth of P, and ¢(x) = X,x € R®. For
notation convenience, we denote a = M’ 1:3’1:3K*1p, b=
Mj.5 4. Then the optimal d* minimizing ¢(d) can be com-
puted in a closed form:

)

1
* : 'l = T
d 7argmd1n||¢(da+b) p'll mem n, 3)
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where m = aj.5 — a3p}.o, n = bsp}.o — by.o.

We can use optical flow algorithms, such as PWC-Net [12],
to find dense pixel-wise correspondences between I, I,
then solve for the optimal depth at each pixel location
using Equation (3). Since this procedure is differentiable,
we implement it as a flow-to-depth layer to enable end-to-end
training.

b) Confidence maps: The reprojection error € can serve
as a confidence measure for the computed depth: the larger
the reprojection error is, the more likely the depth is prone
to error. We obtain a confidence map C; ; by converting e
into confidence using exp (—<), where o is a normalization
constant. We set o = 20 in experiments. Moreover, if the
computed d is negative, we set its confidence to zero. Fig. 3
shows our depth proposals and the corresponding confidence

maps.

B. Camera Pose Refinement

The quality of our depth proposals highly depends on the
quality of camera poses. In practice, we can obtain an initial
camera pose from sensors such as GPS and IMU, but the
initial camera pose is not highly accurate due to sensor noise.
To improve the accuracy of the camera pose, we utilize our
flow-to-depth layer to refine the camera pose.

We can refine camera poses by building the relationship
between camera poses and confidences map through the
differentiable flow-to-depth layer. Typically, a good camera
pose should lead to a large confidence map. We define a
maximization objective function to improve the camera pose
Tt, s-

L(Tis) =Y Cilp), )

peES

where S is the set of pixels with positive depth in the depth
proposal. We exclude those pixels with negative depth as
depth should be not negative. The objective is designed to
maximize the sum of the confidence on each pixel with
positive depth.

To minimize the objective function in (4), we use the L-
BFGS-B optimizer [34], and set bounds [—, 7] for rotation
in M. Note that we are able to compute the gradients on the
camera pose because the flow-to-depth layer is differentiable.
We evaluate the performance with and without the pose
refinement, and experiments show that the refinement can
significantly improve the depth estimation.

C. Depth Fusion

For each pair of the target frame and the source frame,
we can generate a depth proposal and a confidence map for
the target frame. Then we can make use of depth proposals
and confidence maps to produce a high-quality final depth
map. Our depth fusion network is designed to merge them
and perform refinement as needed. Compared to single image
depth estimation methods, our approach has the benefits that
the model can take advantage of the depth proposals and
their confidence maps for better depth estimation.

As shown in Fig. 1, we concatenate the target frame
1, depth proposals D, ,, confidence maps C}, as input

to the depth fusion network. The output of the depth
fusion network is the final depth map D. Besides the depth
proposals and confidence maps computed by our flow-to-
depth layer, our depth fusion network can also take the
depth proposals generated by other methods to improve the
estimation accuracy. We train our depth fusion network with
provided ground-truth depth maps in a supervised fashion.

a) Loss function: Our depth loss is defined over each
pixel p with ground-truth depth:

Lacpin = Y _ |[log D, — log D3|, 5)
P
where D* is the ground-truth depth map. We define the depth
loss in the log domain rather than the linear domain to prevent
distant pixels from dominating the loss.
We also use a smoothness loss by imposing smoothness
regularization on the output disparity map (inverse of the
depth map). The smoothness loss is defined as

1
Lsmooth = Z V2Fa (6)
P P

where V? is the Laplace operator.
The total loss for the depth fusion network is

qusion = )\deepth + )\sLsmootha @)

where Ay = 1 and \g = 0.5.

b) Network architecture: Our depth fusion network
adopts the single view depth network in SfMLearner [9].
It is an encoder-decoder architecture with skip connections
and multi-scale prediction.

IV. EXPERIMENTS
A. Implementation

For the depth estimation of the target frame I;, we use
Ii_j, and I, as the source frames. Since depth proposals
have poor results when the camera translation between I,
and I (defined as ||Os; — O||) is too small, we search for
the smallest k; that satisfies ||O;—x, — O|| > T where T is
a threshold. For the KITTI [14] and Waymo datasets [16],
T is 80cm. For the ScanNet dataset [15], 1" is 12cm. We
perform similar search for ks.

To train the model, we use the Adam optimizer [36] with
the learning rate of 0.0001, batch size of 4, 5; = 0.9, and
B2 = 0.999. We use full-resolution video frames and ground-
truth depth maps during training and evaluation. With one
Nvidia 1080 Ti, our model trained on KITTI Eigen split
converges after 25 epochs. Each epoch takes 4 hours.

B. Datasets

We conduct experiments on three datasets: the KITTI
dataset [14], the ScanNet dataset [15], and the Waymo
dataset [16].

The KITTI dataset contains outdoor images with depth
maps projected from point clouds and also provides camera
poses calculated from GPS and IMU. To compare with
different previous works, we train our method in two different
splits. One is the Eigen split proposed by Eigen et al. [3],
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TABLE I
QUANTITATIVE EVALUATION ON THE KITTI DATASET.

Method Type split absrel| sqrel| rms| logrms| irmse| SIllog| 611 6271 637
Eigen et al. [3] coarse  supervised Eigen 0.194 1.531 7.216 0.273 - - 0.679 0.897 0.967
Eigen et al. [3] fine supervised Eigen 0.190 1.515  7.156 0.270 - - 0.692 0.899 0.967
GeoNet [7] unsupervised+video Eigen 0.155 1.297 5857 0.233 0.018 0229 0.793 0.931 0.973
Godard et al. [18] unsupervised-+stereo Eigen 0.150 1.329 5.806 0.231 0.019 0.227 0.810 0.933 0.971
Kuznietsov et al. [35]  semi-supervised+stereo  Eigen 0.110 0.708  4.312 0.172 0.014 0.169 0.878 0.964 0.987
DORN [4] supervised Eigen 0.102 0.592  3.837 0.162 0.015 0.158  0.898 0.967 0.986
Ours supervised+video Eigen 0.081 0488  3.651 0.146 0.012 0.144 0912 0.970 0.988
NeuralRGBD [11] supervised+video Uhrig 0.105 0.532 3.299 0.150 0.013 0.144  0.887 0.972 0.990
Ours supervised+video Uhrig 0.071 0.338  2.537 0.116 0.010 0.112  0.938 0.979 0.992

in which the train set contains 33 video scenes, the test
set consists of 697 images extracted from 28 video scenes,
and ground-truth depth maps projected from single-frame
point clouds. Another one is the Uhrig split [37] that came
with the KITTI depth prediction and completion benchmark.
It has 138 training scenes and 13 validation scenes. We
randomly sample 50 images from every video scene in the
validation set and get a test set that consists of 650 images.
Meanwhile, this split provides denser ground-truth depth
maps, which are accumulated by 11 consecutive frames point
clouds. Since different video sequences in KITTI may have
different resolutions, we resize all the training frames to
376 x 1241.

The ScanNet dataset is an RGB-D video dataset containing
2.5 million views in more than 1500 scans, annotated with
3D camera poses, surface reconstructions, depth maps, and
instance-level semantic segmentations. For the train set and
test set, we follow the instructions of the Robust Vision
Challenge 2018 Workshop at CVPR 2018.

The Waymo Open Dataset is a recently released au-
tonomous driving dataset. It contains LiDAR and camera
data from 1,000 video segments, split into training set and
validation set. We randomly sample 5 images from every
daytime validation video segment and obtain a total of 784
test images to do cross dataset experiment.

C. Baselines

In the KITTT Eigen split, we compare our method with sev-
eral state-of-the-art depth estimation approaches: DORN [4],
Kuznietsov et al. [35], Godard et al. [18], GeoNet [7], and
Eigen et al. [3].

In the KITTI Uhrig split, we compare our method against
state-of-the-art video depth estimation approaches: Neural-
RGBD [11]. We re-train NeuralRGBD [11] in the Eigen split,
but its results are poor. To have a fair comparison, we also
train our method in the Uhrig split and compare it with the
results by the pre-trained model of NeuralRGBD [11].

In the ScanNet and Waymo datasets, We carefully select
two deep learning based methods for comparisons. For
supervised single image depth estimation approaches, we

choose DORN [4], which is state of the art. For supervised
video depth estimation methods, we choose NeuralRGBD [11]
that is highly related to our work.

D. Results

We conduct extensive experiments to evaluate the per-
formance of our method and state-of-the-art methods. Our
method is able to produce more accurate depth maps and
outperforms the contemporaneous methods on most evaluation
metrics. In addition, our method is more robust and shows
great generalization ability.

a) Quantitative Evaluation: On the KITTI dataset, we
train our model in the Eigen split and the Uhrig split
separately. Table I summarizes the quantitative evaluation
results of our method and other state-of-the-art baselines in
both splits. For a fair comparison, we use exactly the same
evaluation code provided by Zhou et al. [9] to evaluate all the
methods except Eigen et al. [3]. We directly use the results
reported on Eigen et al. because the provided source code
only produces low-resolution 28 x 144 or 27 x 142 depth
maps, but we evaluate on full-resolution depth maps. The
results are much worse if we directly upsample their output
low-resolution depth maps.

Regarding the metrics, we include widely the used ones
from prior work [4], [7], and the metrics used by the KITTI
depth estimation benchmark. They are abs rel: absolute
relative error; sq rel: square relative error; rms: root mean
square; log rms: log root mean square; irmse: inverse root
mean square error; SIlog: scale-invariant logarithmic error; d;:
the percentage of pixels with relative depth error § < 1.25°.
The | indicates the lower the better, thef does the opposite.

b) Qualitative evaluation: As shown in Table I, our
method outperforms state-of-the-art methods in both splits.
In the Eigen split, our method has outperformed several state-
of-the-art depth estimation methods by a large margin. In
the Uhrig split, our model additionally takes the depth maps
generated by NeuralRGBD [11] for depth fusion, and has
about 20-30% improvement in most metrics.

Table II compares our method with two representative
approaches on the ScanNet dataset. As shown in Table II, our
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TABLE I
QUANTITATIVE EVALUATION ON THE SCANNET DATASET.

Method Type abs rel | sqrel, rms] logrms|  irmse | Sllog | 41 1 d2 T o3 T
DORN [4] supervised 0.096 0.033 0.217 0.127 0.099 0.120 0907 0981  0.996
NeuralRGBD [11] supervised 0.097 0.050 0.249 0.132 0.093 0.126 0906 0975  0.993
Ours supervised 0.076 0.029 0.199 0.108 0.077 0.103 0.933  0.984  0.996
Scene 1 Scene 2 Scene 3
BB () RO : :

I

GT

Fig. 4. The qualitative comparisons of DORN [4], NeuralRGBD [11], and ours on the KITTI dataset. The ground-truth depth map is interpolated from

sparse measurements for visualization.

Fig. 5. The visualization of depth proposals with (the third row) and without
(the second row) camera pose refinement. The quantitative comparison is
shown on TABLE III.

method performs better on the first nine metrics and achieves
comparable performance with DORN [4] on metric d3. The
depth proposals we used are the same as the model in the
KITTI Uhrig split. Besides depth proposals generated by the
flow-to-depth layer, the result of NeuralRGBD [11] serves as
a depth proposal on this model, which speeds up the training
process and improves performance.

Fig. 4 illustrates some qualitative results on the KITTI
dataset. As the green boxes in Scene 1 and Scene 2 show,
NeuralRGBD [11] misses the top of a van behind two
cars in Scene 1 and only estimates the bottom part of a
truck in Scene 2. Meanwhile, Both DORN [4] and our

TABLE III
QUANTITATIVE EVALUATION OF ABLATION STUDY.

Method absrel | sqrel| rms] Sllog| &1 7
RGB frames only 0.120 0.817 4.690 0.189 0.858
Ours (w/o refinement) 0.085 0522 37767  0.148  0.906
Ours (w/ refinement)  0.081 0.488 3.651 0.144 0912

results include the whole van and truck. As we utilize RGB
image priors, the depth values on the same object should
be continuous or constant. Compared to NeuralRGBD, our
depth fusion network can take advantage of the target frame
when computed rigid depth is not reliable.

As the red boxes in Scene 2 and Scene 3 show, DORN [4]
produces a blurry depth map that can not differentiate object
boundaries. In contrast, both NeuralRGBD [11] and our
method produce reasonably sharper results. Note that a
common characteristic of NeuralRGBD [11] and ours is that
we both use geometrical information. The sharper boundaries
benefit from our flow-to-depth layer.

Fig. 6 shows the comparisons on the ScanNet dataset,
where the first row shows depth maps and the second row
shows error maps. As shown in the error maps, we produce
depths with lower error compared to NeuralRGBD [11] and
DORN [4]. Our output depth map is less noisy and more
complete.
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TABLE IV
QUANTITATIVE EVALUATION ON THE WAYMO DATASET.

Method Type absrel |  sqrel | rms | log rms |  irmse | Sllog | 41 1 d2 T o3 T
SfMLearner [9] unsupervised 0.514 7.878 16.029 0.587 0.031 0.579 0.256  0.487  0.703
DORN [4] cross dataset 0.389 5.056 12.432 0.451 0.024 0.442 0.353  0.660  0.867
NeuralRGBD [11] cross dataset 0.177 2.646 9.891 0.402 0.072 0.396 0.790 0921  0.958
Ours cross dataset 0.150 1.691 6.773 0.222 0.013 0.211 0.804 0924  0.966
DORN [4] NeuralRGBD [11] Ours

Depth map

Error map

Fig. 6. The qualitative comparisons between DORN [4], NeuralRGBD [11], and ours on the ScanNet dataset. For the error maps, blue areas indicate low

errors and red areas indicate high errors.

c) Ablation study: The accuracy of relative camera
poses can significantly affect the video-based depth estimation
performance. Fig. 5 shows depth proposals generated with
and without pose refinement in two extreme examples. In
the second row, without pose refinement, the initial camera
pose produces poor depth proposals that have a vast region
of negative depths. After pose refinement, in the third row,
we can get depth proposals with higher confidence. We show
a quantitative comparison of models with and without pose
refinement in Table III. Our camera pose refinement improves
these metrics by about 3 to 6 percent.

We also have an ablation experiment by training the depth
fusion network to estimate depth directly from the target frame
and source frames. The results of this experiment are shown
in the first row of Table III, our complete model performs
much better than this ablated model and this comparison
validates the strength of flow-to-depth layer in our model.

d) Cross-dataset evaluation: Table IV reports the quan-
titative results of cross dataset evaluation on the Waymo
dataset. Our model (trained on KITTI and test on Waymo)
suffers less performance degeneration than NeuralRGBD [11]
and DORN [4] in the cross-dataset evaluation and completely
surpass SfMLearner [9] which is trained on the Waymo
dataset in an unsupervised fashion. Fig. 7 shows the visual
results of NeuralRGBD and our model on cross-dataset tasks.
These results suggest that our depth proposals can often
preserve object boundaries in the estimated depth maps, even

on the cross-dataset results.

V. CONCLUSION

We have presented a video depth estimation method that
builds upon a novel flow-to-depth layer. This layer can help
refine camera poses and generate depth proposals. Beyond the
depth proposals computed from the flow-to-depth layer, depth
maps estimated by other methods can also serve as depth
proposals in our model. In the end, a depth fusion network
fuses all depth proposals to generate a final depth map. The
experiments show that our presented model outperforms all
other state-of-the-art depth estimation methods on the KITTI
dataset, ScanNet dataset, and shows excellent generalization
ability on the Waymo dataset. We hope our model can be a
practical tool for other researchers and inspire more future
work on monocular video depth estimation.

REFERENCES

[1] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single
monocular images,” in NeurIPS, 2005.

[2] D. Eigen and R. Fergus, “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture,”
in ICCV, 2015.

[3] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in NIPS, 2014.

[4] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep
Ordinal Regression Network for Monocular Depth Estimation,” in
CVPR, 2018.

[5] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3DV, 2016.

10106



o)
m
@)
&
g
5
o)
Z

Fig. 7.

the KITTI dataset.

[6]

[71
[8]
[91

[10]

(1]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

(22]

(23]

(24]

B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy,
and T. Brox, “Demon: Depth and motion network for learning
monocular stereo,” in CVPR, 2017.

Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in CVPR, 2018.

R. Ranftl, V. Vineet, Q. Chen, and V. Koltun, “Dense monocular depth
estimation in complex dynamic scenes,” in CVPR, 2016.

T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, 2017.

Z. Teed and J. Deng, “Deepv2d: Video to depth with differentiable
structure from motion,” CoRR, vol. abs/1812.04605, 2018. [Online].
Available: http://arxiv.org/abs/1812.04605

C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz, “Neural rgb(r)d
sensing: Depth and uncertainty from a video camera,” in CVPR, June
2019.

D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume,” in CVPR, 2018.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” TPAMI,
2018.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in CVPR, 2012.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. NieBner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in CVPR, 2017.

“Waymo open dataset: An autonomous driving dataset,” 2019.

D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a
single image,” in ICCV, 2005.

C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, 2017.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” IJCV, 2002.

H. Hirschmiiller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in CVPR, 2005.

A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” TPAMI,
2013.

J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” JMLR, 2016.

X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet:
Unitying feature and metric learning for patch-based matching,” in
CVPR, 2015.

A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry, “End-to-end
learning of geometry and context for deep stereo regression,” in ICCV,
2017.

[25]
[26]
(271

(28]

(291
[30]
[31]
(32]
(33]

[34]

[35]
[36]

(371

10107

The cross-dataset comparisons between NeuralRGBD [11] and ours on the Waymo dataset. All the depth maps are produced by models trained on

J. Chang and Y. Chen, “Pyramid stereo matching network,” in CVPR,
2018.

G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting
semantic information for disparity estimation,” in ECCV, 2018.

X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity learned
with convolutional spatial propagation network,” in ECCV, 2018.

V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction
without the sensors: Leveraging structure for unsupervised learning
from monocular videos,” in AAAI 2019.

A. Harltey and A. Zisserman, Multiple view geometry in computer
vision (2. ed.). Cambridge University Press, 2006.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference
for unstructured multi-view stereo,” in ECCV, 2018.

P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs:
Learning multi-view stereopsis,” in ECCV, 2018.

S. Im, H.-G. Jeon, S. Lin, and I. S. Kweon, “Dpsnet: End-to-end deep
plane sweep stereo,” in ICLR, 2019.

D. Nistér, O. Naroditsky, and J. R. Bergen, “Visual odometry,” in
CVPR, 2004.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimization,”
TOMS, 1997.

Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep
learning for monocular depth map prediction,” in CVPR, July 2017.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in 3DV, 2017.



