
To Ask or Not to Ask: A User Annoyance Aware
Preference Elicitation Framework for Social Robots

Balint Gucsi, Danesh S. Tarapore
University of Southampton, UK
{bg1u17,d.s.tarapore}@soton.ac.uk

William Yeoh
Washington University in St. Louis, USA

wyeoh@wustl.edu
Christopher Amato

Northeastern University, USA
c.amato@northeastern.edu

Long Tran-Thanh
University of Warwick, UK

long.tran-thanh@warwick.ac.uk

Abstract— In this paper we investigate how social robots
can efficiently gather user preferences without exceeding the
allowed user annoyance threshold. To do so, we use a Gazebo
based simulated office environment with a TIAGo Steel robot.
We then formulate the user annoyance aware preference
elicitation problem as a combination of tensor completion
and knapsack problems. We then test our approach on the
aforementioned simulated environment and demonstrate that
it can accurately estimate user preferences.

I. INTRODUCTION

With the rise of artificial intelligence, autonomous and intel-
ligent social robots (e.g., assistive robots [1], or interactive
collaborative robots [2]), are becoming more and more
ubiquitous in our everyday life. These robots typically focus
on identifying the preferences of human users in order to
efficiently execute collaborative/assistive social tasks, rang-
ing from making coffee at the right time, helping workers
in packing, to assisting elderly persons in their everyday
life. To date, such human-robot collaboration is achieved
by using machine learning techniques for the robot to learn
user preferences through a prolonged observation period [3],
[4]. However, from the user’s perspective, this is usually
not acceptable as these learning models typically require a
significant amount of observed data in order to achieve good
accuracy [5]. This may lead to user dissatisfaction in many
cases (as the learning time would take too long), resulting in
the user losing trust and interest in collaborating/interacting
with the robot [6].

To overcome this issue, interactive preference elicitation
has been proposed as a technique to speed up the learning
process (i.e., to proactively ask the user to provide infor-
mation about their preferences) [7], [8], [9], [10]. This is
typically done through some sort of human-robot interaction
or feedback framework. This approach, however, comes with
the cost of user annoyance. In particular, by answering
too many elicitation questions, the users may feel upset
and bothered, which may also discourage the user from
interacting/collaborating with the robot in the future [6], [11].

In this work, we ask the following research question: what
would be an efficient way to gather information about the
user’s preferences without annoying them? Put differently,
what type of questions should a robot ask, and when should
it stop asking before it completely annoys the user, and

Corresponding author: Long Tran-Thanh, University of Warwick.

can ask no more questions? To answer these questions, we
design a preference elicitation framework for collaborative
robots in office environments, that takes into account user
annoyance through a repeated elicitation process as follows:
The robot formulates the user preference query process as
a tensor completion problem, for which it uses heuristics
taken from the knapsack optimisation literature to identify
which questions to ask. Each question has an associated
annoyance cost, and the robot stops asking questions once the
annoyance cost budget of the users has been exceeded. We
also investigate the case when faulty task executions cause
a decrease in future user preference values (e.g., if the robot
fails to complete a task, the user might lose interest in asking
the robot to do the same task in the future).

To demonstrate the efficiency of our model, we build a
simulator based office environment in which a TIAGo Steel
robot1 collaborates with human users by executing a set of
tasks for them. Our experiments show that our heuristics can
recover the user preferences with high accuracy by asking as
few as 3−6 questions per user.

II. RELATED WORK

Within the AI/robotics community, there are a number of
work addressing preference elicitation problems with in-
complete information. Many of the work focus on learning
the preferences of the users [3], [4], [12]. However, these
techniques cannot actively learn the unobserved preferences.
On the other hand, interactive preference elicitation models
can gather full preference information by interacting with
the user, but without taking into account user annoyance
during the process [8], [9], [10]. Notable exceptions are
the work of [5], [13], that integrate user annoyance costs
into the elicitation process. However, they do not deal with
annoyance caused by physical execution failures, and thus,
cannot be employed to the social robotics setting.

In addition, in the automated negotiation literature from
the multiagent systems community, there exist some work in
which queries to ask users can be associated with arbitrary
annoyance costs [14], [15]. However, in these studies, the
annoyance costs are typically included in the objective func-
tion. Thus, the proposed solutions typically select a query
that ensures the highest expected negotiation payoff (i.e., a

1https://tiago.pal-robotics.com

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7935

combination of utility and annoyance cost). As such, it is
regarded as a one-shot optimization problem. However, this
approach cannot adapt to changes in user preferences, which
often occur in many real-world domains. In contrast, to
achieve an adaptive, sustainable sequence of human-robot
interactions our proposed framework selects the question to
ask based on the current state of partially filled preference
tensor and the remaining predefined annoyance cost budget.
Thus, we are more interested in an optimal sequence of
queries whose total annoyance cost does not exceed a budget.

III. PREFERENCE ELICITATION MODEL

In this section, we formulate the process a social robot needs
to perform in order to learn the preferences of their human
collaborators on executing certain tasks. In particular, this
preference elicitation problem is defined formally as:

Definition 1: A preference elicitation problem is a tuple
〈A,T,U,Q,B(·),B〉, where
• A = {1,2, . . . , |A|} is the set of tasks, T = {1,2, . . . , |T |}

is the set of discrete time slots, and U = {1,2, . . . , |U |}
is the set of users. Our goal is to elicit the preference
of each user k about executing task i at time slot j.

• Q is a finite set of questions that can be asked.
• B(·) : 2Q→R+ is the annoyance cost function that takes

as input a sequence of questions and determines the
annoyance cost of asking those questions.

• B > 0 is the annoyance cost budget (i.e., the maximum
amount of annoyance cost that can be incurred). For now
we assume that this budget is the same for each user k,
but note that our solution can also be easily adopted to
heterogeneous budgets.

Preference Tensor: The preferences of a user for having
task A scheduled in T is modeled as a 3-dimensional tensor
M, called preference tensor, where each row corresponds to
a task a ∈ A, each column corresponds to a time slot t ∈ T ,
and the third dimension represents human users.2 We use
pk(i, j) = Mi, j,k to denote the preference of the user k having
task i∈ A scheduled at time slot j ∈ T , where the greater the
value of pk(i, j), the more likely the user will want task i to
be carried out at time slot j. For simplicity and w.l.o.g. we
assume that these preferences are integers in {1, . . . ,10}.

In our problem, it is reasonable to assume that tasks that
need to be scheduled and executed are interdependent across
tasks, users, and their execution times (e.g., see [16]). For
example, consider a particular user and their corresponding
rows (i.e., dimension A) in M that represents the execution
preference of the tasks. The linear dependency between two
rows a1 and a2 of M implies that the user has similar
preferences on a1 and a2 regarding their execution time.
Similarly, the correlation between users k1 and k2 can be
captured by the dependency between their corresponding
task-time matrices in M. This implies that the preference
tensor M is approximately low rank, which allows us to
perform exact tensor completion via convex optimization to
recover the preference tensor.

2It is worth noting that the periodicity of the task execution’s preferences
can also be represented by preference tensors and, thus, can be handled by
our approach.

Preference Elicitation Questions: Each question q ∈Q is
associated with:
• a cognitive annoyance cost c(q) > 0 (i.e., cognitive

effort required of the user to answer the question).
• a set of entries f (q)⊆ {(i, j,k) | i∈ A, j ∈ T,k ∈U} and

a set of values {pq
k(i, j) | (i, j,k) ∈ f (q)}.

Intuitively, given a user k’s response to a question q ∈ Q,
the robot fills a preference value pq

k(i, j) into the entry
(i, j,k) of the preference tensor M (i.e., Mi, j,k = pq

k(i, j)) for
each element of f (q). We assume that users are honest in
that when two different questions fill some common entries,
the preference values are consistent, i.e., ∀q1,q2,(i, j,k) ∈
f (q1) ∩ f (q2) : pq1

k (i, j) = pq2
k (i, j). Therefore, for conve-

nience, we omit the superscript q in pq
k(i, j) from here on.

Example 1: Consider the following two preference elici-
tation questions q1 and q2:
• q1: How likely you would like to have the bins emptied

between 12-2pm?
• q2: How likely you would leave the window #1 opened

between 4-8pm?
where we use the following scale to measure the preference:

HIGHLY UNLIKELY EXTREMELY LIKELY
1 2 3 4 5 6 7 8 9 10

Now assume that T = {1, . . . ,12} where each time slot repre-
sents an interval of 2 hrs slot, we have f (q1)= {(2,7,1)} and
f (q2)= {(1,9,2),(1,10,2)} if the robot sent q1 to user 1, and
q2 to user 2, respectively. In addition, a possible annoyance
cost function is one that assigns c(q1) = 2 and c(q2) = 3,
as a user is likely to be less bothered answering a single
question that asks the preferences over two time steps than
two questions that each asks the preference for a single time
step. Hence, c(q2)≤ 2c(q1).

Given a question q ∈Q and preference tensor M, M(q)
is the update of M by q based on the user’s response to
q and is defined as M(q)i, j,k = pk(i, j) if (i, j,k) ∈ f (q) and
M(q)i, j,k =Mi, j,k otherwise. For a sequence of questions Q=
〈q1,q2, . . . ,q`〉, let f (Q) =

⋃
q∈Q f (q) and M1 =M(q1), M2 =

M1(q2), . . . , M(Q) = M` = M`−1(q`), i.e., M(Q) is the result
of recursively updating M by questions q1, q2, . . . , q`. It is
easy to see that the order of questions by which M is updated
does not affect the resulting tensor.

Annoyance Cost Model: Our proposed framework is generic
and therefore it is compatible with any annoyance cost
model. However, in this paper, we use the model proposed
by [17] since (i) it has been used in a large body of literature
(e.g., [18], [19]), and (ii) it also gives the annoyance cost
function with more exponential and logarithmic appearances
for more unwilling and willing users, respectively, that fits
the users’ typical behaviour in office environments [5].

Let Q ⊆ Q be a sequence of questions that has been
asked thus far. The annoyance cost model by [17] defines
“annoyance cost so far” (ASF) as:

ASFQ = ∑
q∈Q

c(q)β e(q) (1)

where 0 < β ≤ 1 is a discount factor used to represent the
diminishing impact of interactions over time (i.e., questions

7936

asked long ago will be less bothersome than questions
recently asked) and e(q) is the amount of elapsed time since
q was asked. The total annoyance cost is then computed as:

C(Q) = Init +
1−αASFQ

1−α
(2)

where3 α = 1.26−0.05w, Init = 10−w, and w denotes the
willingness of a user to interact (i.e., answering questions)
on a scale of 0 (for unwilling users) to 10 (for willing users).

In our application, we assume that the robot will ask
questions consecutively and will thus use the number of
questions that has been asked after asking q as the value
for e(q). For example, assume the sequence of questions
Q = 〈q1,q2,q3〉, then e(q1) = 2, e(q2) = 1, and e(q3) = 0.
With β = 0.95 and c(qi) = 1 for 1≤ i≤ 3, we have AFSQ =
1+0.951 +0.952 = 2.8525.

Objective Function: Let M be a preference tensor, where
all entries are initially set to null and M(Q) be the update
of M by a sequence of questions Q ⊆ Q. Our goal is to
estimate the null entries of M(Q) using the non-null entries
in M(Q) using standard tensor completion techniques from
the literature (see, e.g., [20], [21], [22]). Given a tensor
completion algorithm L , let M̂L (Q) be resulting estimated
tensor by L with input M(Q). When L is unspecified or
clear from the context, we will omit it from the superscript.

Finally, the goal of the problem is to identify an optimal
sequence of questions Q∗ from Q and tensor completion
algorithm L ∗:

〈Q∗,L ∗〉=argmin
Q,L

||

W (Q,L)︷ ︸︸ ︷
M − M̂L (Q) ||1
|A|× |T |− | f (Q)|︸ ︷︷ ︸

Z(Q)

s.t. C(Q)≤B (3)

where B is the annoyance cost budget; M is the true (oracle)
preference tensor that can be achieved in the ideal scenario
where preferences for all tasks and users at every time slot
should be elicited; and ||X ||1 is the L1 norm (i.e., sum of
all absolute values of entries) of tensor X . In Equation (3),
W (Q,L) denotes the differences between M and M̂L (Q),
and Z(Q) is the number of unfilled entries in M(Q).

Solution Concept: Since we do not know M in advance,
the abovementioned optimisation problem cannot be solved
optimally. Instead, we use the following approach to approxi-
mate the optimum: As different tensor completion algorithms
might return different tensors, even if we start with the same
partially filled tensor, we use these differences to capture the
uncertainty of our knowledge about the true tensor M . In
particular, in our approach, we choose 3 standard state-of-
the-art tensor completion techniques to fill the tensor, and
for each entry (i, j,k) within the tensor.4 We define the cell

3Intuitively, α is intended to give a nearly linear bother curve for users
with moderate willingness values (i.e., w = 5) while giving bother curves
with more exponential and logarithmic appearances for more unwilling and
willing users, respectively. The value of Init is intended to reflect the cost of
bothering a user for the first time in which Init will be negligible (resp. quite
high) for a very willing (resp. an unwilling) user.

4In this paper, we use tensor completion techniques from [20], [21], [22].

value’s uncertainty as the biggest difference between the
3 values these tensor completion methods provide for that
particular entry. After this, for each elicitation question, we
define its total uncertainty value by the sum of the uncertain-
ties of the entries the question covers. We measure how much
uncertainty can be reduced by asking that particular ques-
tion). Finally, we use a knapsack model to identify the set
of questions that maximises the uncertainty reduction, where
each question is represented by an item within this knapsack
model: The item’s value is the question’s total uncertainty,
and the weight is the question’s total annoyance cost, the
annoyance cost budget B is the knapsack’s capacity.5

Now, we use two heuristics to implement this knapsack
based solution. In the singleshot heuristic, we solve this
knapsack problem only once to identify all the questions
at once. Multishot, on the other hand, sequentially asks one
question per round, In particular, it starts with solving the
knapsack problem as the singleshot version. But then instead
of asking all the questions from the solution set of the
knapsack, it only chooses the one with highest uncertainty
reduction. After new entries are revealed from the answer of
the chosen question, it uses the 3 tensor completion methods
to reevaluate the new uncertainty values of the remaining
empty entries in the tensor, and formulates a new knapsack
in order to identify the next question to ask. It repeats this
process until the annoyance budget is exceeded.

The advantage of the multishot heuristic, compared to its
singleshot counterpart, is that it can be adaptive, and thus,
more accurate. However, this improvement comes with an
increased computational cost (as we have to solve multiple
knapsack problems, each per round).

User Preference Changes: In our model, we also consider
the case when the robot fails to successfully execute a certain
task. This may occur due to the incorrect calculations for
identifying the optimal physical motions for that task. If the
human user observes that the robot cannot execute the task as
demanded (e.g., even after many attempts), their preference
for asking the robot to execute the same task in the future
will be decreased. In this paper, we analyse the impact of
this issue to the accuracy of the robot’s preference estimation
by investigating how the robot estimates user preferences in
a multi-day task execution period, without having to run the
full preference elicitation each day (for more details, see
Section IV-B).

IV. EXPERIMENTAL SETUP

To demonstrate the efficiency of our model, we test it in
a realistic simulator, in which we simulate a typical office
environment with a the TIAGo Steel robot and a number of
human office users using Gazebo. In what follows, we first
describe this simulated environment in more detail. We then
discuss the parameter setup of our experiments.

A. Robot Simulator Environment
The simulated environment comprised two office rooms
(3.5 m×3 m each) and one common room (5 m×3 m), with
static office equipment (i.e., desks, chairs, food cupboard,

5For the description of knapsack problems, see, e.g., [23].

7937

Fig. 1. The TIAGo robot in the office environment simulated with Gazebo,
with points of interest for office tasks marked with red crosses. Blue shaded
area indicate visibility for navigation of the robot’s laser rangefinder.

filing cabinets, etc.), and dynamic objects (i.e., boxes, drink
bottles and openable windows). Our environment provides
several potential tasks that may be performed by TIAGo
for the office workers, such as opening a window, lifting
a box and fetching a drink. To perform these tasks, TIAGo
has a pan-tilt head with a RGB-D camera, a lifting torso
with a 7 DoF arm and a parallel gripper, all mounted on a
differential drive mobile base equipped with laser rangefinder
and ultrasound navigation sensors.

To autonomously navigate in its environment, TIAGo uses
a map of the office containing the layout of rooms and the
location of static objects (furniture). This map was created
by navigating TIAGo around the office, while it mapped the
area with its frontal laser rangefinder and 3 rear ultrasound
sensors. Several points of interest – locations which are
significant for performing tasks – were also saved in the
map (e.g., a location on the floor next to the window from
where the window may be opened, see Figure 1).

To perform office tasks, TIAGo navigates to the coordi-
nates of an interest point, detects appropriately placed ArUco
markers ([24]) with its RGB-D cameras, and uses them to
track significant positions, for instance the location of a drink
bottle or the handle of a window (see Figure 2). This enables
TIAGo to move its 7 DoF arm to an object at a marked
location, gripping that object with its parallel gripper end-
effector, picking it up and moving it to different location.
Using these functionalities, the following set of tasks were
implemented, to be executed by TIAGo based on user (office
worker) preferences:

• T-1: Bring a package to a user from the main desk.
• T-2: Collect an office document from one user and

deliver to another.
• T-3: Fetch a drink from the cupboard.
• T-4: Open window #1 (right hinge).
• T-5: Open window #2 (left hinge).
• T-6: Collect files from user and file them.

Fig. 2. Top: TIAGo locating an object to pick up; Bottom: TIAGo opening
a window (Left: third-person point of view; Right: TIAGo’s point of view).

• T-7 Empty a paper bin.
The tasks commonly executed together in typical office

situations were grouped into task clusters: break-time tasks
(T-3, T-4, T-5), morning tasks (T-1, T-3, T-4 and T-5), end-
of-day tasks (T-2, T-6 and T-7), and cleaning related tasks
(T-4, T-5 and T-7). An office day was divided into time slots
(|T | = 8 hours) and no more than one task was performed
by TIAGo in each time slot.

B. Experimental Setup
Our study investigated the TIAGo robot assisting office
workers in two types of experiments:
• Single-day experiments were performed over one day.

Here, a full preference elicitation was executed at the
beginning of the day (see details in section 3), following
which TIAGo selected and executed a set of tasks for
the day. On completing all its tasks at the end of the
day, the users would update their preferences for each
one of tasks, based on whether they had been completed
successfully.

• Multi-day experiments were performed over five con-
secutive days, the first of which was identical to the
single day experiment. From day two of the multi-
day experiment, TIAGo would only perform a partial
preference elicitation by asking a few questions at
the beginning of the day, instead of executing a full
preference elicitation (as done on the beginning of the
first day). TIAGo would accordingly select and execute
its tasks for that day. This was repeated until the end of
the multi-day experiment.

Full Preference Elicitation: To perform a full preference
elicitation, TIAGo selects an ideal set of questions Q∗ (with
Equation 3) using a chosen heuristic (Multishot, Oneshot
or Random). It interacts with all the users, asks them the
questions Q∗ and elicits their preferences in M.

Changes in User Preference with Task Performance: At
the end of each executed tasks, every user decides whether
the task was performed successfully. In case of unsuccessful

7938

Fig. 3. Error results in small and big offices (single day experiments on the left, multi-day experiments on the right).

completion of a task, every user’s preference value about the
execution of that task decreases by d at that time slot. The
preference values for the remaining time slots decrease by
dγe(t), where γ ∈ (0,1] is the discount factor and e(t) is the
amount of time elapsed since completion of the unsuccessful
task. In our experiments, γ was set to 0.8, and d to 2.

Partial Preference Elicitation: In the multi-day experiments
the users also provide feedback to TIAGo on whether the
task was completed successfully. At the beginning of day
two, TIAGo asks a specified l number of questions about
each unsuccessful task (performed the previous day) from a
randomly selected user and updates its tensor M of learnt
preferences and the optimal sequence of tasks to execute.

In both single and multi-day experiments, the set of
tasks A was one of the task clusters selected at random.
The questions for the user’s preferences are inquired, on
performing which of the k ∈ {1, . . . , |A|} tasks in the selected
cluster in which of t ∈ {1, . . . , |T |} time slots. Overall,
|Q|= d|A| ∗11.5e questions were generated. Both the single
and multi-day experiments were performed on small offices
where the number of users |U | ∈ {5, . . . ,10} and in big
offices where |U | ∈ {15, . . . ,20}, were selected at random.
The discount factor β was set to 0.95.

User Profiles for Experiments: For running our experi-
ments, each office worker was randomly assigned one of
the following four profiles (describing the way they provide
their preferences):
• random: All preference values selected at random.
• neutral: All preference values are around the mid-values

with no strong opinion expressed.
• specific: A specific time slot for a preference has a

high value for a specific task, low preference values
are provided otherwise.

• normal: Preference values have a normal distribution
around the time slot most ideal for the user (the ideal
time slot is selected at random).

V. NUMERICAL RESULTS

We first evaluated the proposed model for single day and
multi-day scenarios considering the accuracy of eliciting user
preferences. We then evaluated the performance of TIAGo
in the simulation, examining the success of task executions.

Benchmarks: The preference elicitation of the single-day
and multi-day model was evaluated on small ({5, . . . ,10})

and big ({15, . . . ,20}) offices, comparing the multishot and
oneshot heuristics to a random one. The last one is a baseline
benchmark which randomly picks a question and user to
ask, until it exceeds the annoyance budget of that user. The
evaluation considers several different annoyance cost budget
sizes ({5, . . . ,18}). The results show an error value averaged
over 20 different randomly selected user configurations. The
error value of a given solution is calculated based on the
objective function of the optimisation problem (see Eq. (3)):
||W (Q,L)||1/Z(Q)).

In case of multi-day models, the preference values elicited
from the users were evaluated in comparison with the users’
final day preference tensor. These models were evaluated for
different number of additional questions asked: l = [0,1,2].

Performance in Preference Elicitation: We performed
single-day simulations using each one of the task clusters
with different (randomly chosen) user combinations to eval-
uate the learning times, execution times of the tasks and the
success rate of executing given tasks. Moreover, in case of
multi-day simulations the sequence of optimal executed tasks
and their success was logged; enabling us to see how this
sequence changes based on user feedback over the week.

The benchmark results displayed in Figure 3 show the
error against the annoyance cost budget (B) for small and
big office sizes in the single-day and multi-day scenario. It
is clear that the solutions improve with the increase of the
bother cost budget, as it allows TIAGo to ask more questions
about the users’ preferences. Considering the small office
scenario, the multishot heuristic has the best performance,
especially when the annoyance budget is larger than 9. When
the budget is very tight, there is indeed not much room for
improvement, compared to the baseline benchmark. When
increasing the number of users (in the big office scenario),
the errors do not change significantly compared to the small
office case, showing that the algorithm scales well.

Number of Questions Asked: It is worth noting that in
the single-day scenario, the multishot heuristic typically uses
3− 6 questions per user during the preference elicitation
process, whereas singleshot and random typically requires
7− 11 (e.g., for B = 14 multishot uses 6 questions, while
singleshot and random use 11 and 8, respectively).

Multi-day Scenario: The multi-day models similarly show
the decrease of error with the increase of the annoyance
cost budget. Considering the order of algorithms in terms

7939

Fig. 4. Executed tasks in a multi-day simulation (green: successful, red: unsuccessful). Unsuccessful task are preferred less often by the users.

of accuracy, the multishot, oneshot and random algorithms
remain in the same order as in single-day cases, as they
do not consider the following days changes. The multi-
day multishot algorithm with 1 or 2 additional questions
perform better with significant improvements. This, does
not answer the question about what would be the optimal
number of additional questions to ask, without spending
a significant amount of annoyance cost in the subsequent
days. Nevertheless, it is a proof of concept that further
investigations are needed in this direction.

Performance of TIAGo in Office Tasks: Considering the
performance of TIAGo in the simulations over 52 task exe-
cutions, it has successfully completed 73% of the executed
tasks. Task T-1 was the most successful on average, with
83% success rate, and T-7 the least successful at 33% success
rate. The successfully executed tasks had a runtime of 148.05
seconds, compared to the unsuccessful tasks with the runtime
of 173.78 seconds. This indicates that an unsuccessful task
completion is often due to a subtask taking longer than
expected and then failing. In most cases, the failed subtask
fall into the following categories (in order of most to least
probable source of error):
• After successfully lifting an object, TIAGo drops it

while transporting it or before placing it down.
• TIAGo fails to pick up an object and topples it over

instead.
• TIAGo does not navigate to the exact location of the

task and thus cannot execute the task.
Figure 4 depicts an example on how the sequence of executed
tasks change day by day, based on the success of their
completion.

VI. CONCLUSIONS

We proposed a framework that combines tensor completion
with knapsack algorithms to tackle the user annoyance issue
in the process of preference elicitation for social robots.
We also investigated the effect of incorrect/failure in task
execution to the users’ future preferences. Our findings show
that while the user preferences can be accurately estimated
in the single day scenario, there is still room to improve how
to efficiently update the preference values without annoying
users in the subsequent days.

REFERENCES

[1] G. Canal, G. Alenyà, and C. Torras, “A taxonomy of preferences for
physically assistive robots,” in IEEE RO-MAN, 2017, pp. 292–297.

[2] D. Kragic, J. Gustafson, H. Karaoguz, P. Jensfelt, and R. Krug,
“Interactive, collaborative robots: Challenges and opportunities.” in
IJCAI, 2018, pp. 18–25.

[3] A. Bestick, R. Pandya, R. Bajcsy, and A. D. Dragan, “Learning human
ergonomic preferences for handovers,” in IEEE ICRA, 2018, pp. 1–9.

[4] B. Woodworth, F. Ferrari, T. E. Zosa, and L. D. Riek, “Preference
learning in assistive robotics: Observational repeated inverse reinforce-
ment learning,” in Machine Learning for Healthcare, 2018.

[5] N. C. Truong, T. Baarslag, S. D. Ramchurn, and L. Tran-Thanh,
“Interactive scheduling of appliance usage in the home,” in IJCAI,
2016.

[6] C. Rivoire and A. Lim, “The delicate balance of boring and annoying:
Learning proactive timing in long-term human robot interaction,”
2016.

[7] A. Garrell, M. Villamizar, F. Moreno-Noguer, and A. Sanfeliu, “Teach-
ing robot’s proactive behavior using human assistance,” International
Journal of Social Robotics, vol. 9, no. 2, pp. 231–249, 2017.

[8] L. M. Zintgraf, D. M. Roijers, S. Linders, C. M. Jonker, and
A. Nowé, “Ordered preference elicitation strategies for supporting
multi-objective decision making,” in AAMAS, 2018, pp. 1477–1485.

[9] P. Dragone, S. Teso, and A. Passerini, “Constructive preference
elicitation,” Frontiers in Robotics and AI, vol. 4, p. 71, 2018.

[10] L. Sanneman, “Preference elicitation and explanation in iterative
planning,” in IJCAI, 2019, pp. 6456–6457.

[11] P. Kalgotra, R. Sharda, and R. McHaney, “Don’t disturb me! un-
derstanding the impact of interruptions on knowledge work: an ex-
ploratory neuroimaging study,” Information Systems Frontiers, vol. 21,
no. 5, pp. 1019–1030, 2019.

[12] S. Rosenthal and M. Veloso, “Monte carlo preference elicitation for
learning additive reward functions,” in IEEE RO-MAN, 2012, pp. 886–
891.

[13] T. Le, A. M. Tabakhi, L. Tran-Thanh, W. Yeoh, and T. C. Son,
“Preference elicitation with interdependency and user bother cost,”
in AAMAS, 2018, pp. 1459–1467.

[14] T. Baarslag and M. Kaisers, “The value of information in automated
negotiation: A decision model for eliciting user preferences,” in
AAMAS, 2017, pp. 391–400.

[15] T. Baarslag, A. T. Alan, R. C. Gomer, I. Liccardi, H. Marreiros,
E. H. Gerding, and M. C. Schraefel, “Negotiation as an interaction
mechanism for deciding app permissions,” in CHI, 2016, pp. 2012–
2019.

[16] N. C. Truong, J. McInerney, L. Tran-Thanh, E. Costanza, and S. D.
Ramchurn, “Forecasting multi-appliance usage for smart home energy
management,” in IJCAI, 2013, pp. 2908–2914.

[17] M. W. Fleming, “Reasoning about interaction in mixed-initiative
artificial intelligence systems,” Ph.D. dissertation, 2004.

[18] Y. Ren, M. Qin, and W. Ren, “A web intelligent system based on
measuring the effects of bother,” in WIC, 2007, pp. 715–718.

[19] R. Cohen, M. Y. K. Cheng, and M. W. Fleming, “Why bother about
bother: Is it worth it to ask the user,” in AAAI, 2005.

[20] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low—rank
tensor recovery via convex optimization,” Inverse Problems (27), 2011.

[21] B. Barak and A. Moitra, “Noisy tensor completion via the sum-of-
squares hierarchy,” in COLT, 2016, pp. 417–445.

[22] A. Montanari and N. Sun, “Spectral algorithms for tensor completion,”
Communications on Pure and Applied Mathematics, vol. 71, no. 11,
pp. 2381–2425, 2018.

[23] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[24] F. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, vol. 76, 2018.

7940

