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Abstract— We investigate the task and motion planning
problem of clearing clutter from a workspace with limited
ingress/egress access for multiple robots. We call the problem
multi-robot clutter removal (MRCR). Targeting practical appli-
cations where motion planning is non-trivial but is not a bottle-
neck, we focus on finding high-quality solutions for feasible
MRCR instances, which depends on the ability to efficiently
compute high-quality object removal sequences. Despite the
challenging multi-robot setting, our proposed search algorithms
based on A∗, dynamic programming, and best-first heuristics
all produce solutions for tens of objects that significantly
outperform single robot solutions. Realistic simulations with
multiple Kuka youBots further confirms the effectiveness of
our algorithmic solutions. In contrast, we also show that
deciding the optimal object removal sequence for MRCR is
computationally intractable.

I. INTRODUCTION

This study expands the investigation of the clutter removal
problem (CRP) [1] to the case where multiple robots are
available. Specifically, we target the setting where several
robots operate in a constrained workspace where an exit is
shared, and the task is to remove objects that are initially
scattered in the workspace. We call this the multi-robot
clutter removal (MRCR) problem (see Fig. 1 for an example).
The shift from a single robot to multiple robots brings two
key challenges. First, the robots must share the free space,
especially when they are close to the exit, which negatively
impacts the computational efficiency when high-quality plans
are sought after. Second, intricate interactions arise when there
are more than one robot. Consider the scenario in which one
robot is scheduled to grasp an object (say o1), while o1 is
currently blocking the access to another object o2. As we
plan for a second robot, an optimal plan must account for
the possibility that o2 becomes available after the first robot
picks up o1, even though o2 is not accessible at the moment.

To address these challenges, in this paper, multiple best-
first and near-optimal algorithmic solutions are developed for
the computation of high-quality object removal sequences for
multiple robots. These solutions are empirically shown to be
of high quality when they are compared with linearly scaled
single-robot solutions. For example, for 15 objects, solutions
computed using dynamic programming use only less than
60% the execution time required for a single robot. This
closely match the theoretical lower bound of 50%, which is
clearly impossible to achieve due to inevitable robot-robot
interaction. In contrast to the single-robot case [1], for typical
multi-robot settings, though greedy best-first methods work
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Fig. 1. A snapshot from a simulation run with three Kuka youBots solving
a clutter removal task. At the moment, the robot at the bottom is placing an
orange object at the drop-off location (i.e., the exit), the robot in the middle
is carrying a yellow object to the exit, while the robot at the top is retrieving
a dark green object. To solve the problem efficiently, careful coordination
among the robots is necessary.

reasonably well and run faster, they fall significantly behind
more optimal methods in terms of solution quality. V-REP [2]
based simulation further confirms the removal sequences
computed by our proposed methods remain effective when
they are integrated into complete solutions.

From the practical point of view, our study is motivated
by the need of deploying mobile robot systems for disaster
response tasks [3], [4]. Clearly, effective and autonomous
disaster response requires the close integration of robotics
hardware and advanced algorithmic solutions spanning com-
puter vision (e.g., scene understanding), planning, among
others. Our work focus at calculating the optimal object
picking sequence, which is often called task planning in a
task and motion planning (TaMP) problem [5]–[9].

Generally, solving a TaMP challenge requires discrete
combinatorial reasoning and (continuous) motion planning,
both of which can often be computationally hard [10]–
[15]. Nevertheless, effective algorithmic solutions have been
proposed for solving many practical settings. A problem
bearing similar combinatorial challenge as MRCR is the
problem of Navigation among Movable Obstacles (NAMO).
When the problem instance has monotone property, i.e., a
solution exists that requires moving each obstacle once,
backtracking techniques may be applied to effectively solve
it [16]. Probabilistic complete solutions for non-monotone
settings have also been proposed [17]. In solving the single
robot CRP, we further note that dynamic programming can
be integrated into the backtracking process [1] to reduce the
search complexity significantly, from O(n!) to O(n2n).

Object rearrangement, e.g., [18]–[21] is a class of TaMP
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problems closely related to MRCR. Most of these studies focus
on the effective generation of a rearrangement sequence to
reach a desired spatial order of multiple objects. Some formu-
lations [18], [22] in this domain are much like NAMO. Whereas
a search based approach is used in [18], symbolic reasoning
is applied in [22]. In contrast, [19], [20] put more emphasis
on taming the combinatorial explosion caused by the multiple
objects involved. As it turns out, the combinatorial aspect is
highly non-trivial. For example, rearranging unlabeled objects
is already NP-hard if an optimal solution is sought after [20].

Our study builds on efforts aimed at developing integrated
TaMP solutions [5]–[9]. However, the current work distinguish
itself in that it attacks optimality issues under the CRP
formulation but for multiple robots. In this aspect, the focus
is similar to [1], [20], [23]. We note that this work does not
consider other equally important aspects in TaMP including
grasp planning [24], [25], high-fidelity motion planning of
robot arm [26]–[29], non-prehensile manipulation [30]–[32],
or uncertainty rising from perception and motion [33]–[37].

Main Constributions. First, we develop several practical
combinatorial algorithms that generate high-quality object
removal sequences for multiple robots (the problem has a
search space of size O(n!kn) where n is the number of objects
and k is number of robots). These algorithms include novel A∗

and dynamic programming variants which produce solutions
approaching theoretical optimality limits. Second, through
realistic simulations using multiple Kuka youBots, we verify
that our algorithms serve as a solid foundation for effectively
performing multi robot clutter removal tasks in practical
applications, providing significant savings in execution time
as compared with single robot solutions. This validates the
premise that a high-quality object removal sequence is a main
performance impacting factor in real-world clutter removal
tasks. As a minor contribution, we also show that MRCR is
NP-hard to optimally solve.

The rest of the manuscript is organized as follows. In
Section II, we define MRCR and provide an overview of our
MRCR solution pipeline. In Section III, we describe MRCR’s
structural properties, including NP-hardness if one attempts
to optimally solve a part of it, and an intricate dependency
between two robots and two objects. In Section IV, we provide
combinatorial algorithms for deciding high-quality object
removal sequences that also match objects with robots. We
present experimental results in Section V and conclude in
Section VI.

II. PRELIMINARIES

A. The Multi-Robot Clutter Removal Problem

We consider the setting in which k ≥ 2 mobile robots R =
{r1, . . . , rk} are to clear n rigid objects O = {o1, . . . , on}
scattered on the ground, i.e., the objects are isolated from
each other. We denote the workspace as W ⊂ R2, and its
boundary as ∂W . The robots are initially placed outside of
W , and can enter W through an exit on ∂W . Each robot is
capable of grasping and transporting a single object at a time.
Each object may be picked up once and must be subsequently
transported outside of W . An object is considered cleared

after it is carried by the robot outside the exit and dropped
off. The problem studied in this paper is defined as below.

Problem 1. Multi-Robot Clutter Removal (MRCR). Given
W,R,O, find a time-optimal plan to clear all objects in O.

A typical MRCR instance with k = 3 is illustrated in Fig. 1.
In this study, we assume the given MRCR instance is always
feasible and focus on optimizing the solution to minimize
the task completion time, also known as the makespan.

B. Task and Motion Planning Pipeline

As TaMP is generally computationally intractable, approxi-
mation is necessary. We apply a hierarchical approach where
a task planner takes charge of the overall planning process.
As shown in Fig. 2, a general solution pipeline for MRCR
starts with the acquisition of environment setup including
object poses, workspace boundaries, and the ingress/egress
location. In the current work, we assume such information is
given or can be directly retrieved from the simulator (V-REP)
backend. In a real-world setting, which we plan to tackle in
future work, this step would require perception techniques
including object detection, scene understanding, and pose
estimation, among others.

Fig. 2. The full clutter removal pipeline.

With the necessary information acquired about the problem
setup, the task planner is called next, which handles the
task of matching each robot to an ordered sequence of
objects to be removed. In general, k � n so each robot
will be matched with multiple objects. Multiple algorithms
are proposed (detailed in Section IV) that trade off between
solution optimality and computational efficiency; a specific
choice can be decided according to an application. During the
task planning step, a grasp planner is used to find grasping
configurations, and a multi-robot motion planner is used to
evaluate the time cost for traveling to a certain target object
to be removed. By integrating the grasp planner and the multi-
robot motion planner into the task planner, we can compute
a desirable picking sequence, the corresponding reference
robot trajectories for reaching the target objects, and object
grasping plan, all at the same time.

As our work does not focus on non-prehensile manipu-
lation, we work with cuboid-like objects. For such objects,
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we apply a relatively simple grasp planner:
for each object, the planner first finds the
top face (i.e., the one with surface normals
pointing up) and samples the normals for
possible grasps by a 2-finger gripper. As
an illustration, in the figure on the right,
the simple 2-finger gripper is placed at a sampled grasp pose
over an accessible object identified by the planner. Generally,
at each phase, many such grasping poses are sampled.

Given the robots’ current configurations and the target
objects’ poses, the task for the multi-robot motion planner is
to plan time-efficient, collision-free trajectories for the robots
to retrieve the objects from the workspace. Unlike CRP where
only a single robot appears in the scene, in MRCR, we must
avoid robot-robot collisions while ensuring that the resulting
paths have short makespan. In this work, we experimented
with both a dRRT∗ [38] based planner and a planner that
combines visibility graph (VG) [39] and Reciprocal Velocity
Obstacles (RVO) [40]. dRRT* worked for two robots while
VG-RVO worked well for two or more robots. In the two-robot
case, we did not observe significant optimality difference
between the dRRT* solution and the VG-RVO solution. As
such, we only provide evaluation results on VG-RVO. Other
multi-robot motion planners can also be used.

We note that the pipeline can be made resolution complete
and asymptotically optimal for solving MRCR, e.g., by using
an optimal sampling-based motion planner within the task
planner. However, the approach is unlikely to be scalable.

C. Special Cases and Problem Extensions

In the study of the single robot version of MRCR [1] (i.e.,
k = 1), we have explored additional cases including multiple
exits, static obstacles within the workspace, and different
object placements. From that study, we have observed that
internal static obstacles do not adversely affect algorithm
running time holding object density unchanged. Also, cases
with multiple exits and axis-aligned or overlapping objects can
be handled with proper techniques and are generally simpler
to solve. In the multi-robot scenario, we admit that these
variations and extensions may make the motion planning part
harder to solve, but they do not add much more complexity to
the task planner. Therefore, in our study of MRCR, we focus
on the most challenging single-exit case without considering
static internal workspace obstacles, and mainly consider cases
where objects are randomly placed without overlapping.

III. STRUCTURE AND HARDNESS OF MRCR

A. Unique Structural Properties of MRCR

For an MRCR instance with k robots and n objects, in the
worst case, there are n!kn possible assignments of robots to
objects over the time horizon: there are n! possible sequences
with which the n objects may be picked up over time; for
each such sequence of length n, there are kn possible ways
of assigning the k robots.

Beside the combinatorial explosion induced by multiple
robots, there are two more differences that distinguish MRCR
from single robot CRP. First, with a single exit of limited

width, robots must non-trivially coordinate their movement
to avoid collisions. Second, there can be more intricate
dependencies between multiple robots and objects that impact
solution optimality. Fig. 3 illustrates a simple case that may
happen between two robots and two objects. Essentially, when
there are multiple robots, lookahead (i.e., simulating execution
of plan into the future) is necessary to optimize a plan. Our
algorithmic solutions (in Section IV) are tailored to address
these unique complications induced by MRCR.

o1 o1
o2 o2

r1

r2

r1

r2

Fig. 3. An example illustrating an intricate dependency that may happen
among two objects o1, o2 and two robots r1, r2. [left] If we do not look
into the future, r2 will need to take a long detour to pick up o2. [right]
However, it is clear that once r1 lifts o1, r2 may readily access o2. The
figure is just for illustration purpose, and is not drawn in the actual ratio.

To conclude this subsection, we mention that for a given
environment and object set, if a single robot requires at least
time T to complete the object removal task, then for k robots,
the minimum possible makespan is no less than T

k , i.e.,

Proposition III.1. For an MRCR instance with k robots, if the
corresponding CRP task for a single robot can be optimally
solved in time T , then k robots require at least T

k makespan.

Clearly, T
k is a theoretical limit that is generally not

achievable due to interactions among robots and objects.
We will be comparing our algorithmic solutions to this limit.

B. Hardness of Selecting Optimal Object Removal Sequence

In an extended version [41] of [1], CRP is shown to be
NP-hard to optimally solve when there is a single exit (the
conference version [1] only provided hardness proof for
multiple exits). In the proof, it was shown that a planar
arrangement of objects (Fig. 4) can be made for which
the optimal picking sequence is NP-hard to compute. The
structure is constructed from a monotone planar 3-SAT
(MPSAT) instance [42]. Based on this result, we may establish
that the combinatorial part of MRCR is also hard to solve.

Fig. 4. A sketched illustration of the object arrangement used in proving
that CRP is NP-hard to solve optimally. The instance is reduced from an
MPSAT instance, with each colored block representing an object to remove.
The objects reflect variables and clauses, and are specially designed so that
they can only be grasped in certain poses and ordering. Computing the
optimal picking sequence in this CRP instance would provide a solution to
the original MPSAT instance.
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Theorem III.1. Deciding an optimal object removal sequence
is NP-hard for MRCR.

Proof. The reduction from MPSAT to optimal CRP is fairly
complex [41]. However, for this proof, we only need the
fact that the colored pieces can be only removed in a mostly
sequential manner. Moreover, an optimal removal sequence
translates to a solution to the original MPSAT instance. For our
reduction from MPSAT to MRCR with k robots, we essentially
make k copies of the structure. For two robots, a possible
reduced instance is given in Fig. 5.

Fig. 5. A sketched illustration of the object arrangement used in proving
that MRCR is NP-hard to solve optimally.

In the figure, two of the reduced structures are placed on
the left and right ends of the environment and there is a
single exit in the middle. If this setup is to be solved with
a single robot, it can be partitioned into a left task and a
right task, each of which take the same amount of minimum
time to complete, say T . The minimum makespan for the full
problem is then 2T which is NP-hard to compute by [41]. If
we use two robots, then the problem can be solved with a
makespan of T by asking each robot to take care of one side.
On the other hand, given the sequential nature in solving the
individual side, having two robots working on the same side
(e.g., the left one) cannot reduce the required makespan. As
such, the MRCR problem is NP-hard to solve as well. The
generalization to arbitrary k is straightforward.

IV. COMPUTING HIGH-QUALITY OBJECT REMOVAL
SEQUENCE AND ROBOT ASSIGNMENTS

As mentioned, unlike the single robot setting [1], MRCR
has a unique, more complex structure that makes it much
more challenging computationally. To begin to address the
challenge, we first provide a description of the system state
for tracking progress in a search algorithm.

Problem State Discretization. While there are many
possible ways of doing this, we discretize the continuous
problem at time instances when there is at least one robot at
the exit (the drop-off location) and ready to start retrieving
an object. With this definition, a state is essentially a crucial
time point when a decision must be made in terms of which
objects the free robots are going to retrieve next. We denote
a state as {R,O1, O2, . . . , Ok, ONA,S} with R being the set
of robots currently idle, Oj (1 ≤ j ≤ k) being the sequence
of objects that are already assigned to robot rj and are (or
being) retrieved by rj . ONA := O \⋃1≤j≤k Oj is the set of
objects not yet assigned to any robot. S contains the low-level
motion planning elements.

A Basic Search Process. Beginning from the start state
where ONA = O, R = R and all robots are at the entrance, a
discrete search can be carried out to find a picking sequence.
To proceed to a next state, we assign each available robot in R

an object from ONA. Here, the maximum number of possible
assignments is |R|!

(|ONA|
|R|
)
. For each possible assignment,

a low-level grasp and motion planning problem is tackled,
which involves two steps: (i) for each object assigned to
retrieve, the grasp planner is called to provide a feasible
configuration for the designated robot to grasp the object; (ii)
the multi-robot path planner is called to plan the paths for
the robots to move their respective grasping configuration,
grasp the objects, and then move back to the entrance to
drop-off. A grasp stage in the path planner is represented
as the robot staying at the feasible grasp configuration for
a certain period of time. At the end of the low-level search,
a robot drops off an object and is ready to start to retrieve
another object. Now, the search process reaches a new state
by our definition. This searching process reaches a goal state
when all the objects are retrieved from the workspace.

An illustration of a search tree section is provided in Fig. 6.
At the top left state (a), robot r2 is on its way retrieving object
o2, while robot r1 just finished dropping off an object and is
ready to start to retrieve the next one. Since ONA = {o1, o3}
and both objects are reachable, the current state generates
two new states (b) (d) by assigning o3 or o1 to r1. Since o3
is close to the exit, if we assign o3 to r1, at the next state
(b), r1 finishes retrieving o3 before r2 reaches the exit, and
immediately starts to retrieve o1. The search finishes as both
robots return to the exit and all objects are removed from the
workspace (e).

r1

r2o1
o2

o3

r1

r2

o1
o2 r1

r2

o1

r1

r2

o1

o3

r1r2

(a) (b) (c)

(d) (e)
Fig. 6. Illustration of a discrete search tree section. There are totally five
discrete search states in this figure.

When performing an object assignment during the search
process, not all assignments seem to provide feasible low-level
grasp and motion planning problems due to two reasons. First,
some objects might be surrounded by the others, thus the grasp
planner cannot find a collision-free grasping configuration.
Second, even with a valid grasping configuration, an object
might be behind some other ones and is not reachable.
That is, there does not exist a collision-free path from the
robot’s current configuration to the designated object. As
discussed in Section III-A, simply ignoring these seemingly
infeasible assignments could significantly increase the solution
makespan. In this work, we use a lookahead method to
accurately determine whether an assignment is feasible.
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With Lookahead. To address the optimality-impacting
interactions among multiple robots and objects, at each state,
lookahead is performed via simulating the execution of robot
actions for robots that are already assigned. For example,
for the case from Fig. 3, object o1 is assigned to robot r1.
As the assignment to r2 is being decided, we also consider
a future setting where o1 is already picked up by r1 and
thus no longer blocking o2. Similar procedure can be carried
out for k robots in a recursive manner: as an assignment
is being decided, we virtually remove the objects that are
immediately reachable, and then see if such a removal makes
the previously unreachable objects reachable. As we will show
in Section V, algorithms with lookahead always provide more
optimal solutions than the ones without lookahead.

Based on the state discretization and the search structure,
we propose several algorithms to solve the problem near-
optimally, which are introduced in the next few sub-sections.
Note that we describe the algorithms as near-optimal due to
the near-optimality of the motion planner.

A. Near-Optimal A∗ Search with an Admissible Heuristic

With the definition of the system state and the established
tree structure, the A∗ framework can be applied to find a near-
optimal solution. For estimating the cost-to-goal, we propose
an admissible heuristic which calculates an underestimated
makespan, i.e., the minimum distance that the robots must
travel to retrieve all remaining objects over the product of
the number of robots k and the maximum speed of a robot.
Given a search state s, we denote oj as the object robot rj is
currently retrieving. The heuristic value for s is calculated as

H(s) =

∑
1≤j≤k d(oj) +

∑
oi∈ONA

d(oi)

kvmax
,

where vmax denotes the maximum speed of the robots, and
the function d returns the shortest distance for a robot to
retrieve an object. For the former part of the numerator, d(oj)
calculates the remaining straight line distance for robot rj
to finish retrieving oj ; for the latter part, d(oi) is two times
the Euclidean distance between oi and the drop-off location.
Note that since the heuristic ignores robot interaction and
acceleration, its value never exceeds the true cost-to-goal.
In a real system with robot’s specifications available, the
heuristic may use more accurate metrics rather than distance
over maximum speed, to account for robot dynamics.

As shown in Section V, the A* algorithm generates high-
quality solutions for all test cases. However, this method only
scales up to around eleven robots. To improve the scalability
while maintain a high level of solution optimality, we propose
an approximate dynamic programming (DP) algorithm.

B. Approximate Dynamic Programming

The dynamic programming (DP) recursion is based on
the assumption that the near-optimal solution of the entire
problem can be built on top of the near-optimality of its
sub-problems. A sub-problem of MRCR is to simply retrieve a
subset of objects Osub ⊆ O, while ignoring the other objects
for both task completion and collision check. Let C(Osub)

denote the near-optimal makespan of clearing all objects
in Osub, the DP framework for calculating a near-optimal
makespan for the entire problem is demonstrated in Alg. 1.

Algorithm 1: Using DP to get a near-optimal makespan.

1 C = {∅ : 0}
2 for 1 ≤ m ≤ n do
3 for Osub ∈ all m-subsets of O do
4 C(Osub) = min

oi∈Osub
{ min
1≤j≤k

{C(Osub \{oi}) + cij}}
5 end
6 end
7 return C(O)

We start from the base case where no objects need to be
picked up and gradually increase the number of objects m
in Osub (line 2). For each 1 ≤ m ≤ n, we iterate through
all possible Osub (line 3) and use the recursive function in
line 4 to calculate a near-optimal makespan to remove all
objects in this object subset. In the recursive function, cij
is the additional cost of using robot rj to remove object
oi as compared to the makespan of removing all objects in
Osub \ {oi}. Here, C(Osub \ {oi}) is already calculated in the
(m− 1)-th iteration, and cij can be computed by calling the
multi-robot motion planner. It is straightforward that with
proper bookkeeping, such a DP structure also provides the
near-optimal task and motion plan associated with the near-
optimal makespan.

The time complexity of the DP approach is as follows.
Suppose |Osub| = m, there are

(
n
m

)
possible Osub and for

each, computing the recursion requires a cost of O(kn). This
yields a total computational cost of

O(kn)
[(n

0

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)]
= O(kn2n),

which grows much slower than the naive O(n!kn).

C. Greedy Best-First Search

To further improve the scalability of the discrete search-
based method, we have developed a greedy best-first search
algorithm to reduce the number of state visited in the entire
search process. During the object assignment stage, for each
robot, the greedy algorithm always selects the closest available
object as its next target object.

D. Monte Carlo Tree Search

Trying to find a balance between scalability and optimality,
we also implemented a search algorithm based on Monte
Carlo tree search (MCTS) [43], [44]. Here in this sub-section,
we first provide a brief review of the MCTS framework and
then focus on explaining how we adapt it for MRCR.

MCTS is a search algorithm that expands the search
tree based on the analysis of the most promising states.
The method’s essential components are selection, expansion,
simulation, and back-propagation. In a basic iteration of
MCTS, first, the selection stage picks a search node based on
a selection function. Then, the expansion stage creates child
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nodes of the selected node. After that, the reward values of
the new child nodes are determined by a simulation from
the node to an end state. Finally, the back-propagation stage
updates the tree to prepare for the next selection stage.

In our implementation, the selection phase uses an Upper
Confidence Bound (UCB) formula T̄ +

√
lnN
n to select the

next node to explore. Here, T̄ is the average simulated
child node makespan, n is the number of times the node
is expanded, and N is the number of parent expansions. As
a node is expanded, we visit all child nodes and estimate
their makespan as follows: for high-level decision making,
we use the greedy best-first strategy; for low-level execution
time prediction, instead of calling the motion planner, we
simply use the picking distance over robot speed, and ignore
interactions between robots. The reward of each simulation
is back-propagated to inform further expansion. Every time
after we expanded three levels of the search tree, the most
explored node is chosen as the next action.

V. EXPERIMENTAL STUDIES

We evaluate the performance of the proposed near-optimal
and heuristic search algorithms under varied object density
and drop-off location setups. The algorithms were imple-
mented in C++ and executed on a quad-core Intel CPU
at 3.3GHz with 32GB RAM. A video of simulated Kuka
youBots carrying out the tasks is provided that supplements
the evaluation described in this section.

The testing environments we used for evaluation can be
categorized into two general types: one with objects sampled
close to each other in a clutter, and the other one with objects
scattered inside the workspace. An illustration of these two
typical environments are shown in Fig. 7. For evaluation, we
use disc robots with identical radius; some randomly selected
solutions are then executed in the V-REP simulator [2] with
an accurate Kuka youBot model, and the execution results are
consistent with the evaluation. We assume that the picking
and the unloading time are the same and equal the time it
takes for a robot to travel half of the square workspace side
length at maximum speed. This adjustable picking/unloading
time is included in the total execution time; our choice is
based on our actual experience working with Kuka youBots.

For multi-robot motion planning, in the evaluation, a
shortest path connecting a robot to the assigned object is
computed using visibility graph [39] which treats objects as
static obstacles but does not consider interactions among the
robots. Then, to generate feasible robot trajectory, collisions
among robots are resolved using RVO [40].

Our first set of experiments evaluates the performance of
all proposed algorithms using both cluttered and scattered
setups (Fig. 7), with the number of robots k = 2 and the
number of objects n ranging from 5 to 15. Fig. 8 shows
the result on optimality ratio and computation time. The
optimality ratio is the solution makespan of the proposed
algorithms divided by the optimal makespan of single robot
clutter removal for the same setup. The results show that for
all test cases, the near-optimal (A∗ and DP based) algorithms
achieve an optimality ratio as low as 0.6, which is close to the

Fig. 7. Two different categories of test environments. [left] A cluttered
setting. [right] Objects are more dispersed in the environment.

underestimated theoretical lower bound 0.5. As the number of
objects increases, the difference in optimality ratio between
near-optimal algorithms and heuristic search algorithms can
become as large as 5%. In terms of scalability, the A∗ search
method scales up to about 11 objects with the computation
time limited under 400 seconds, while DP can handle 15
objects. The heuristic search methods can solve a problem
with 15 objects in under 30 seconds.
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Fig. 8. Optimality ratio and computation time comparison of all the removal
sequence search methods for MRCR with two robots. The x axis on all figures
are the number of objects in a given environment. The y axes for the figures
on the left refer to optimality ratio as compared with the single-robot case.
The y axes for the figures on the right are the computation time in seconds.
[top] Settings where objects are more cluttered. [bottom] Settings where
objects are more scattered.

With a closer look, we can observe that, when the cluttered
case is compared with the scattered case, A∗ and DP generally
does slightly better in the former, except at one or two
outlier points. On the other hand, the greedier methods show
an opposite trend and do better in the scattered case. By
examining the object picking sequences generated in these
settings, it appears that the difference can be explained as
follows. From the earlier study of CRP [1], we know that
greedy methods work well for a single robot, producing
solutions generally indistinguishable from the optimal. As we
move to two robots, for the scattered case, greedy methods
are likely to cause the robots to pick objects in different
part of the workspace, essentially running a single robot
greedy solution with some minor coordination. On the other
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hand, since the cluttered case is harder than the scattered one,
there are generally more opportunities for multiple robots
to optimize the picking sequence. However, greedy methods
will not exploit such optimization as much given its short
horizon. Due to the closeness of the objects to be removed,
the greedy method actually spend more time coordinating the
robots’ motion.

In the second set of experiments, we evaluate the heuristic
search algorithms (i.e., greedy search and MCTS) in the
scattered environment as the number of robots ranging from
1 to 5 and the number of objects ranging from 10 to 25.
Since the number of robots is increased, the exit width is
also increased so that it potentially allows two robots to
unload at the same time, to avoid making the exit an artificial
bottleneck. The experimental result is summarized in Fig. 9.
As we can observe, first, as expected, with a larger exit,
the two-robot case does better than the previous experiment.
Second, whereas adding more robots shortens the makespan,
the amount of gain is quickly diminishing (it does so even
faster if we use a narrower exit, which we have attempted).
Nevertheless, with five robots, the greedy methods can readily
handle 25 objects and does so about 2.5 times faster than
if a single robot is used. We note that the setup is chosen
to be somewhat constrained; if multiple exits are available,
additional execution time speedup can be expected.
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Fig. 9. Performance of greedy and MCTS methods for 2-5 robots and
10-25 objects. The x axes for both figures denote the number of objects.
The top figure is the makespan as compared with a single robot case. The
bottom figure are the computation time in seconds. For each number of
objects, there are eight bars. The left (resp., right) four bars correspond to
greedy search (resp., MCTS search) for 2, 3, 4, 5 robots, from left to right.

In a third set of experiments presented here, we work with
a cluttered setting to evaluate the impact of the complex
multi-robot multi-object dependency in MRCR, as explained
in Section III-A. In the experiment, we run each of the
four search methods with lookahead (Section IV) enabled
or disabled (by default lookahead is enabled). The result is
plotted in Fig. 10. The solid lines are the same as that from
the first plot in Fig. 8. As expected, the interaction contributes
positively to optimality, yielding a gain up to about 5%.
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Fig. 10. Comparing methods with and without performing look-ahead to
address the multi-robot multi-object dependency. The x axis is the number
of objects in a given environment. The y axis is the optimality ratio as
compared with the single-robot case. “method – LH” means a given method
without look-ahead.

Lastly, as mentioned, in V-REP based simulation with
accurate Kuka youBot models, the computed object removal
sequence and the associated robot assignments returned from
our task planner directly carry over; the amount of execution
time that is saved is also largely the same as those shown
in Fig. 8 and Fig. 9. This further validates the effectiveness
of our pipeline design. Selected V-REP simulations can be
found in the accompanying video.

VI. CONCLUSION AND DISCUSSIONS

In this work, we have explored the combinatorial challenge
present in the task and motion planning problem of removing
clutter from an environment with limited ingress/egress access
using multiple robots. We call the formulation the MRCR
problem. In contrast to the single robot case [1], for multiple
robots, in addition to having a much larger search space due
to the choice of more robots, unique constraints also arise
that make (near-) optimal task planning more computationally
demanding. Toward addressing these combinatorial challenges
in MRCR, we have proposed an extendable solution pipeline
and within it multiple principled search algorithms (greedy,
MCTS, DP, and A∗) that balance between scalability and
solution optimality. In general, however, these search methods
are all reasonably practical and produce significant savings
in task execution time when the solutions are compared with
those from the optimal single robot setting. For example, using
two robots, the execution time can be as little as less than 60%
of the optimal single robot case, approaching the theoretical
lower bound of 50%. Moreover, when integrated into physics
based simulation in realistic settings, the performance of our
algorithms hold unchanged. Strengthening the result, we also
show that computing the optimal object removal sequence
remains NP-hard for multiple robots. In conclusion, we have
developed several effective search algorithms for computing
high-quality object removal sequence for solving MRCR.
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