
Redundancy resolution under hard joint constraints: a generalized
approach to rank updates

Anton Ziese1,2, Mario D. Fiore1,?, Jan Peters2, Uwe E. Zimmermann1 and Jürgen Adamy.2

Abstract— The increasing interest in autonomous robots with
a high number of degrees of freedom for industrial applications
and service robotics have also increased the demand for efficient
control algorithms. The unstructured environment these robots
operate in often impose constraints on the joint motion, an
important type being the joint limits of the robot itself. These
circumstances demand control algorithms to handle multiple
tasks as well as constraints efficiently. This paper shows
that both kinematic and torque control of redundant robots
under hard joint constraints can be formulated in a single
framework as a constrained optimization problem. To solve
said problem, a generalization of the Fast-SNS algorithm to
weighted pseudoinverses is proposed, which fulfills our demand
of efficiently and reliably handling joint constraints.

I. INTRODUCTION

This paper makes contributions to the field of controlling
redundant robots, i.e. robots with more degrees of freedom
(DOF) than are needed to perform a given task. The main
benefit of a redundant robot is that it offers multiple solutions
for a given task (e.g. an end-effector trajectory), and thus a
joint configuration can be chosen that also fulfills secondary
objectives; often, obstacle avoidance is chosen as a sec-
ondary task, other important examples include self-collision
or joint limit avoidance [1]. These secondary objectives are
especially important for robots operating autonomously in
unstructured environments, which have seen an increasing
demand in industrial applications and service robotics in
recent years. Also, since the tasks are subject to change
during runtime, a control algorithm is needed that can
find a redundancy resolution for prioritized tasks online.
Task execution should not be deformed by saturation of
the robot joints, thus, since the robot’s reaction to the
environment is not predictable, joint limit avoidance must
also be handled online. Alternatively, one or more tasks may
become unfeasible altogether due to some change in the
environment, in which case the robot must retain robust and
predictable behavior. It stands to reason to exploit contingent
redundancies to find a solution that does not violate joint
limits, or bring the robot to a controlled stop otherwise.
When considering robots with a higher number of DOFs,
the computational efficiency of these algorithms becomes
increasingly important in light of real-time capability.

1Authors are with Corporate Research of KUKA Deutschland GmbH,
Zugspitzstraße 140, 86165 Augsburg, DE

2Authors are with TU Darmstadt, Karolinenplatz 5, 64289 Darmstadt,
DE

? Corresponding author. Mario.Fiore@kuka.com
This work was partly supported by the German Federal Ministry of

Education and Research (BMBF) through the project Hybr-iT (grant no.
01IS16026A).

Prioritized multitasking has been thoroughly explored in
the literature, the most common method using the well
known augmented projector [2] [3]. Joint limit avoidance
is a less clear-cut subject, though the literature provides
many approaches in the context of online local planning.
A common one is to minimize a cost function that increases
as a joint approaches a limit; the joint limit avoidance is then
realized with the same [4] or lower [5] priority than the main
task, meaning adherence to the joint limits is not guaranteed.
Also, these approaches favor a joint configuration where
each joint is in the center of its range, even though there
might be a better solution. To find the optimal solution,
the control problem can be formulated as a constrained
optimization problem, which is often solved using quadratic
programming (QP) [6] [7]; however, these typically present
higher computation time [8] and do not feature a defined
behavior in case a task is not feasible.

A family of algorithms known as SNS (Saturation in the
Null Space) offer a solution: these use task scaling, first
introduced in [9], as an additional strategy, while exploiting
redundancy similarly to active set QP solvers. In essence, the
SNS uses redundant DOFs to find a solution that requires
the least scaling of a task to satisfy all joint limits. While
the Opt-SNS guarantees optimal solutions, this requirement
can be dropped in favor of computational speed, while still
offering a far larger solution space than the other approaches
detailed above. Especially for high number of DOFs, the
Fast-SNS variant has proven very powerful [10], which, as
the name suggests, is especially efficient. An overview of all
SNS variants is given in [11].

Most of the above mentioned literature utilizes velocity-
based redundancy resolution, i.e. describes the robot using a
first order kinematic equation, because of its mathematical
simplicity. However, moving to second-order algorithms, i.e.
acceleration or torque level, promises some advantages, e.g.
enabling the joint limit avoidance to also limit the maximum
acceleration, improving the noise, vibration and harshness
(NVH) behavior of the robot. Torque control additionally
offers compliance, meaning the robot will yield at physical
contact. Both of the aforementioned points are especially
important in human-robot collaboration. The other obvious
reason to use torque control is that a given task demands a
certain force.

Discussing different strategies to control a redundant sys-
tem raises the question if it isn’t possible to find a more
general description of the control problem. Therefore, the
goal of this paper is twofold: first, we will show that all of
the aforementioned control schemes (velocity, acceleration

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7447

and torque control) can be brought into a single framework
and thus we can also design a single solver for all of them;
second, we will present such a solver which generalizes the
Fast-SNS algorithm to constrained optimization problems
with arbitrary weighting matrices.

Secs. II and III give the mathematical background for
these goals. Subsequently in sec. IV we will evaluate the
generalized Fast-SNS on velocity, acceleration and torque
level, showing how different control schemes can easily
be implemented with our unified formulation. Finally, we
discuss the results in sec. V.

II. GENERALIZED CONTROL PROBLEM

As mentioned in the introduction, there are different
approaches to controlling redundant robots depending on
the equation used to describe the robot. Velocity [12] and
acceleration-based [13] schemes describe the robot using
a kinematic equation on velocity and acceleration level,
respectively; the output of the solver is then a vector of joint
velocities or accelerations, which are typically integrated to
joint positions and given as input to underlying joint position
controllers. A torque-based approach [14], as the name sug-
gests, outputs a vector of joint torques instead. These are then
directly sent to joint actuators and an actual control loop is
closed using measured joint position and velocity. Velocity-
based redundancy resolution is used for its mathematical
simplicity, and torque control because it includes the robot
dynamics, with acceleration-based algorithms somewhere in
between in terms of complexity and abstraction. All of these
schemes can be brought into the form:

Au = b (1)
where u ∈ Rn is the output of the solver, b ∈ Rm a
vector describing the robot task, and A ∈ Rm×n a mapping
between the two. The number of robot joints is given by n,
and the dimension of the task by m. The definition of these
variables for the different control schemes can be found in
Tab. I. For sake of clarity, dependencies from the robot joint
configuration are omitted. Inputting the content of a column
in Eq. 1 will yield the basic equations found in [12], [13] or
[14] respectively.

As stated in the previous section, the problem of con-
trolling a redundant robot under joint constraints can be
formulated as a constrained optimization problem:

minuTNu

s.t. Au = b, Eu ≤ d
(2)

where N ∈ Rn×n is an arbitrary, (semi) positive definite
weighting matrix, d ∈ Rc a vector describing the c joint
constrains and E ∈ Rc×n a mapping between u and d. Again
the definitions for E and d can be found in Tab. I. The choice
of the metric uTNu is left to the programmer, some typical
examples are presented in sec. IV. Omitting the inequality
constraints, the solution for Eq. 2 is given by the weighted
pseudoinverse of A [12]:

u = A†Nb. (3)
In this paper, the weighted pseudoinverse is computed as:

A†N = N−1AT
(
AN−1AT

)−1
. (4)

TABLE I: Definitions for Eq. 2 for velocity, acceleration and
torque-based schemes with a desired task space trajectory
x ∈ Rm; q ∈ Rn is the vector of robot joint positions,
J ∈ Rm×n the jacobian of the robot, τ ∈ Rn the vector of
joint torques, M ∈ Rn×n the robot’s mass matrix, C ∈ Rn
a vector compensating coriolis, centrifugal and gravitational
forces, Q̈max ∈ Rn and Q̈min ∈ Rn are upper and lower
acceleration bounds, and Q̇max ∈ Rn and Q̇min ∈ Rn upper
and lower velocity bounds, respectively. I ∈ Rn×n is the
identity matrix.

velocity acceleration torque
A J J JM−1

u q̇ q̈ τ

b ẋ ẍ− J̇q̇ ẍ− J̇q̇− JM−1C

E
[
I −I

]T [
I −I

]T [
M−1 −M−1

]T
d

[
Q̇

T
max Q̇

T
min

]T [
Q̈

T
max Q̈

T
min

]T [
Q̈

T
max Q̈

T
min

]T
A solution for multiple tasks specified with different priori-
ties can be computed by using nullspace projections:

uk = uk−1 + (AkPA,k−1)
†N

(bk −Akuk−1)

PA,0 = I

u0 = 0

(5)

where uk denotes the solution for the k-th task (lower k
denoting higher priority) and PA,k ∈ Rn×n is the well
known augmented projector from [2]. Finding a solution
that fulfills also the inequality constraints is more complex
however, and is the subject of the following chapter.

III. GENERALIZED FAST-SNS
As remarked in sec. I, the SNS algorithm is a powerful

tool for online control of redundant robots under hard
joint constraints. In multiple iterations, it computes which
joint requires the most scaling to be within its limits, and
subsequently adds the inequality constraint of that limit to
the equality constraints of the task. Then, a new scaling
factor is computed for the task; this cycle is repeated until
either a solution that does not require scaling is found, or all
redundancies of the robot are exhausted. In the latter case, the
solution that requires the least scaling of the task is returned.

In this section, we will show how to integrate the SNS
into the unified control framework introduced in the previous
section. For the regular SNS algorithm presented on velocity
level in [11], this is easily achieved by substituting q̇, ẋ
and J with u, b and A, and replacing the Moore-Penrose
pseudoinverse with a weighted pseudoinverse (the former is a
special case of a weighted pseudoinverse with N = I). The
Fast-SNS, which we favor for its computational efficiency,
requires more complex deliberations, as it exploits some
properties of the Moore-Penrose pseudoinverse which are
not so easily transferred to the general case. To start, the
solution of Eq. 2 for the k-th task considering only the
equality constraint is written as:
uk = uk−1 + (AkPA,k−1)

†N (
s · b′k − b′′k −Akuk−1

)
(6)

with b′k ∈ Rn, b′′k ∈ Rn defined as in Tab. II. As in [11],
Alg. 1 is used to compute a task scaling factor s so that all
joints are within their limits, as well as to determine the most

7448

TABLE II: Definitions for b′ and b′′ from Eq. 6 for velocity,
acceleration and torque-based schemes

velocity acceleration torque
b′ ẋ ẍ ẍ

b′′ 0 J̇q̇ J̇q̇− JM−1F

critical joint that requires the most scaling. The arguments
α and β are given as:

α = En (AkPA,k−1)
†N

b′k

β = Enuk −α
. (7)

Where En ∈ Rc/2×n is equal to the first n rows of E.
Analogous to [10], the most critical joint is saturated to its
extremal value by augmenting the current task with a one-
dimensional saturation task:

uk = uk−1 +

[
AkPA,k−1
AsatPA,k−1

]†N [
s · b′k − b′′k −Akuk−1

bsat −Asatuk−1

]
(8)

where Asat ∈ Rr×n contains the rows of E corresponding to
the r saturated joints, and bsat ∈ Rr the respective elements
of d, with a new row and element respectively added at each
iteration. The new solution is then computed by rank update
of the pseudoinverse, which is the main source of savings in
computational time of the Fast-SNS; the reader is referred to
[10] for further details. One of the main contributions of this
paper is the solution by rank update for arbitrary weighting
matrices, which has been derived from the algorithm in [15]
for appending a column. When saturating the i-th joint, the
solution is updated as:

uk = uk−1 +

[
AkPA,k−1

Asat,iPA,k−1

]†N [
s · b′k − b′′k −Akuk−1
bsat,i −Asat,iuk−1

]
= uk−1 +

[
Xk − χi,kAsat,iXk χi,k

]
×
[
s · b′k − b′′k −Akuk−1
bsat,i −Asat,iuk−1

]
Xk = (AkPA,k−1)

†N

χi,k = (Asat,iPA,k)
†N
.

(9)
with the new update vector χi,k for a weighted pseudoin-
verse, and Asat,i being the i-th row of E. Pseudocode for
the entire algorithm is given in Alg. 2. The main benefit
of the proposed solution is that for each iteration, only the
(weighted) pseudoinverse of a vector must be computed for
χi,k, instead of a matrix. This makes the algorithm very
efficient. The initial computation of the pseudoinverse is also
critical for computation time; the programmer must decide
on a trade-off between speed and robustness. In this work,
the QR-Decomposition is used to compute the inverse in Eq.
6, which focuses on speed. A more robust alternative is e.g.
the singular value decomposition (SVD) [16].

An open question is the shaping of the joint limits, namely
finding Q̇max/min (velocity-based redundancy resolution) or
Q̈max/min (acceleration and torque-based schemes). The core
problem lies in finding velocity/acceleration bounds that also
ensure position limits are adhered to. For the velocity-based
solver, the boundaries for the i-th joint in the l-th time step

Algorithm 1 Task scaling factor

1: function GETTASKSCALINGFACTOR(α,β)
2: for i = 1→ n do
3: Smin,i =

(
Q̈min,i − βi

)
/αi

4: Smax,i =
(
Q̈max,i − βi

)
/αi

5: if Smin,i > Smax,i then
6: switch Smin,i and Smax,i

7: end if
8: end for
9: smax = mini {Smax}

10: smin = maxi {Smin}
11: most critical joint = argmini {Smax}
12: if smin > smax ∨ smax < 0 ∨ smin > 1 then
13: task scaling factor = 0
14: else
15: task scaling factor = min {smax, 1}
16: end if
17: end function

at the position ql,i are taken from [11]:
Q̇min,i = max

{
(Qmin,i − ql,i)/∆T, Vmin,i, Q̇min,acc

}
Q̇max,i = min

{
(Qmax,i − ql,i)/∆T, Vmax,i, Q̇max,acc

}
Q̇min,acc,i = −

√
2Amin,i (Qmin,i − ql,i)

Q̇max,acc,i =
√

2Amax,i (Qmax,i − ql,i)
(10)

with the absolute position, velocity and acceleration bounds
Qmax/min,i, Vmax/min,i and Amax/min,i. ∆T is the discrete
time step. For acceleration/torque control, joint boundary
computation from [17] is used. The concept of viability
of a state is introduced, which demands that the robot
can be brought to a full stop during the next time step.
Boundaries from viability are obtained by replacing joint
velocities and positions in Eq. 10 with the discrete difference
equations w.r.t. to the joint acceleration q̈i. An anticipation
coefficient h > ∆T is used in place of the cycle time ∆T
of the controller to provide some conservatism. The reader
is referred to [17] for a detailed derivation.

IV. EXPERIMENTS

In this section we will prove that the proposed generalized
Fast-SNS solver retains the key features discussed in the
previous sections: joint limit avoidance, task prioritization,
task scaling and computational efficiency. Experiments are
carried out on a KUKA LBR iiwa 7-DOF robot (Fig. 1), as
well as on highly-redundant mobile dual-arm system (Fig.
9).

A. Experiments with LBRiiwa

In the first set of experiments the robot performs the
same task with the generalized Fast-SNS solver working
at velocity, acceleration and torque level. In the first two
cases the output of the solver is integrated to obtain a joint
position reference, which is then provided to an underlying

7449

Algorithm 2 Generalized Fast-SNS algorithm for multiple
tasks
PA,0 = I, u0 = 0, sk = 0
for k = 1→ l do

Xk = (AkPA,k−1)
†N

u′k = Xkb
′
k

u′′k = −Xk

(
b′′k + Akuk−1

)
uW = 0
PA,k = PA,k−1 −Xk (JkPA,k−1)
P̄A,k−1 = PA,k

repeat
limits violated = FALSE
uk = uk−1 + u′ + u′′ + uW

α = Enu
′, β = Enuk −α

γ = α + β
if ∃i ∈ [1 : n] : (γi < dmin,i)∨ (γi > dmax,i) then

limits violated = TRUE
getTaskScalingFactor(α,β) . call alg. 1
if task scaling factor > s∗k then

s∗k = task scaling factor
u∗

′
= u′, u∗

′′
= u′′, u∗W = uW

end if
j = most critical joint

bsat,j =

{
dmin,j , γj < dmin,j

dmax,j , γj > dmax,j

χj,k = (Asat,jPA,k)
†N

u′ = u′ − χj,kAsat,ju
′

u′′ = u′′ − χj,kAsat,ju
′′

uW = uW

+χj,k (bsat −Asat,j (uk−1 + uW))
P̄A,k = P̄A,k − χj,kAsat,jP̄A,k

χj,k−1 = (Asat,jPA,k−1)
†N

P̄A,k−1 = P̄A,k−1 − χj,k−1Asat,jP̄A,k−1
if rank

(
AkP̄A,k−1

)
< m then

sk = s∗k, u′ = u∗
′
, u′′ = u∗

′′
, uW = u∗W

uk = uk−1 + sku
′ + u′′ + uW

limits violated = FALSE
end if

end if
until limits violated = FALSE

end for
utot = ul

position controller; in the last case the output of the algorithm
is directly fed to the joint actuators and an actual control
loop is implemented. The required task is to track a desired
Cartesian trajectory (xd, ẋd, ẍd) with the center point of
the robot end effector. Fig. 1 shows the Cartesian path
used for the experiments. The robot is commanded to move
on each segment of the star, returning every time to the
center point, following a sinusoidal velocity profile. The total
planned time is 10 seconds (1,25 seconds per segment). The
initial end-effector orientation must be kept along the entire
trajectory. Therefore, both Cartesian position and orientation
of the robot are controlled and only one redundant degree

of freedom exists. The initial configuration of the robot,
which can be seen in the top-left corner of Fig. 1, places the
second and the sixth joint very close to their respective upper
position limit. Additional limitations set on joint velocity and
acceleration can be seen in Tab. III, which gives an overview
of the initial setup. The velocity-based solver uses the joint

Fig. 1: LBRiiwa moving on a star-like path during the
experiments. The path is defined on the Y Z plane. Each
star segment (indicated with a capital letter) has a length of
24 cm.

TABLE III: Initial configuration and joint limits for the
LBRiiwa. The first joint is at the base of the robot.

Joint Position Velocity Acceleration Initial
nr. Lim. [rad] Lim. [rad/s] Lim. [rad/s2] Config. [rad]
1 ±2.9234 ±1.45 ±10 −0.7854
2 ±2.0508 ±1.45 ±10 +2.0502
3 ±2.9234 ±1.45 ±10 +2.0721
4 ±2.0508 ±1.45 ±10 −1.6563
5 ±2.9234 ±1.45 ±10 −2.0893
6 ±2.0508 ±1.45 ±10 +2.0342
7 ±3.0107 ±1.45 ±10 0

bounds in Eq. 10 and N = M. The reference Cartesian
trajectory is defined over the time t on velocity level as
ẋr(t) = ẋd(t)+kpx̃(t), with kp being a positive gain, which
has been set to 50, and x̃ a position error term. The output
joint velocities are shown in Fig. 2 and have been integrated
and differentiated, so as to obtain the corresponding joint
position and acceleration. For sake of clarity, all the values
are reported normalized w.r.t. the maximum/minimum limits
defined in Tab. III. The occurrence of saturation can be
easily identified, proving the effectiveness of the proposed
algorithm in respecting the hard bounds imposed on joint
positions and velocities. As it often occurs with velocity-
based solvers, fulfillment of the maximum joint acceleration
cannot be guaranteed (Amin/max in Eq. 10 is only used for
shaping of the joint bounds Q̇min/max in the proximity of
the position limits [11]). The moments in which saturation
occur can also be identified in Fig. 3, where the trend of
the task scaling factor and the number of executed iterations
are shown. Saturation (on either joint position or velocity)
requires an additional iteration. In most cases, the algorithm
finds a solution after saturating one joint. However, this is not
possible when the robot approaches segment E of the star.
In this case, a scale factor s < 1 shows that the task has
become unfeasible, i.e. it was not possible for the algorithm

7450

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

-15

-10

-5

0

5

10

15

Fig. 2: Normalized joint position, velocity and acceleration
produced by the velocity-based solver for the LBRiiwa.

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

Fig. 3: Task scaling factor and number of iterations of the
velocity-based solver for the LBRiiwa; as the robot has only
one redundant degree of freedom, the algorithm can perform
a maximum of two iterations.

to find a solution within the joint bounds. The task velocity
reference ẋr(t) is then scaled down to ensure compliance to
the joint limits.

To evaluate the computational efficiency of the algo-
rithm, the same motion has been executed using a standard
SNS solver [11], re-implemented using a weighted pseudo-
inverse. The produced joint motion is, as expected, identical
to the one shown in Fig. 2 and therefore not reported. The
difference between the two algorithms lies in the computa-
tion time. The computation times per cycle are shown in Tab.
IV. Both algorithms where executed in a VxWorks (32bit)
real-time module running on one of the four cores of an
Intel i5-45705 (2.89GHz) CPU with 432 MB of dedicated
RAM. The cycle time of the real-time system is 1 ms. The
advantage of the proposed algorithm is quite clear, as each

additional iteration requires approximately half the time of
the initial computation, whereas additional iterations of the
regular SNS require about 88% the time required by the
initial computation. Additionally, the computation time for
the first iteration is significantly shorter due to the use of the
QR-Decomposition, whereas an SVD decomposition is used
in the standard SNS.

TABLE IV: Average computation time for solving a 6-DOF
Cartesian task with a LBRiiwa; for the generalized Fast-
SNS additional iterations are always significantly shorter;
acceleration and torque based algorithms take slightly longer
due to more complex equations. The average is computed
over the entire execution time repeating each experiment five
times.

First iteration Additional iteration
SNS vel. (N = M) 33µs 29µs
Gen. Fast-SNS vel.(N = M) 17µs 9µs
Gen. Fast-SNS acc. (N = M) 18µs 10µs
Gen. Fast-SNS torq. (N = M−1) 21µs 11µs

The acceleration-based solver uses N = M and the joint
bounds in [17] with h = 4∆T . The reference Cartesian
trajectory is defined as ẍr(t) = ẍd(t) + kd ˙̃x + kpx̃(t), with
kp, kd two positive gains, which have been set to 400 and
40, respectively. A secondary joint space task −kdq̇(t) (with
kd a positive gain set to 20) is also added to damp nullspace
motions. The generated joint motion is shown in Fig. 4:
compared to Fig. 2, the constraint on the maximum joint
acceleration is also respected. In return, it is more difficult
for the algorithm to find a feasible solution throughout the
Cartesian trajectory and a task scaling smaller than one is
observed more often (Fig. 5), compared to Fig. 3.

The torque-based solver uses the same reference Cartesian
trajectory and joint bounds as the acceleration controller. A
secondary task, this time defined as −M(kdq̇(t)), with kd
set to 20, is again included to damp nullspace motions. The
choice N = M−1 should produce the same joint motion as
the acceleration-based solver. However, imprecise estimation
of the complete robot dynamic model results in a different
motion (Fig. 6); for the same reason, small inaccuracies
can be noticed on the joint velocity saturation, as well as
a slightly different trend of the task scaling factor (Fig. 7).

The Cartesian tracking error (Fig. 8) is also larger when
the robot is torque-controlled. The other cases present a
considerably smaller error, except when a task scaling s < 1
is observed.

B. Experiments with mobile dual-arm system

This experiment highlights the multitasking capability and
the computational efficiency of the proposed algorithm. A
redundancy resolution is computed online for a mobile dual-
arm robot with 17 DOFs and three 3-dimensional prioritized
tasks. A velocity-based solver is used with N = I. The
first task is to move the omnidirectional mobile platform
sideways, along the y-axis in Fig. 9, while keeping its x-
position and its orientation about the z-axis constant. The

7451

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

Fig. 4: Normalized joint position, velocity and acceleration
produced by the acceleration-based solver for the LBRiiwa.

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

Fig. 5: Task scaling factor and number of iterations of the
acceleration-based solver for the LBRiiwa.

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

Fig. 6: Joint motion produced by the torque-based solver for
the LBRiiwa; as a measure of the joint acceleration is not
available, only (normalized) joint position and velocity are
reported.

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

Fig. 7: Task scaling factor and number of iterations of the
torque-based solver for the LBRiiwa.

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

Fig. 8: Cartesian tracking error for the LBRiiwa; position
error (in norm) is presented above; orientation error, reported
as the angle extracted from the quaternion error, is reported
below.

second and third tasks consist in keeping the end-effectors
of both arms in place, controlling only their position. As can
be seen in Fig. 11, the lowest priority task (i.e. task 3) is
sacrificed first when it comes into conflict with the first task,
followed by task 2. Finally, the robot comes to a halt when
reaching a virtual limit in direction of the y-axis, which is
modeled as a joint limit for one of the translational DOF of
the mobile platform (joint 2 in Fig. 10). The computation
time T required by the solver is also reported in the lower
graph of Fig. 11 for a different number of total iterations.
The computational resources are identical to the previous
experiment.

V. DISCUSSION

In this paper we have shown that both kinematic and
torque control of redundant robots can be expressed in a
single framework, as well as presented an efficient algorithm
which exploits redundancy to fulfill a task under hard joint
constraints. Experiment A shows the versatility and effec-
tiveness in respecting joint limits of the solver, as well as
the benefit of task scaling; the multitasking capability and
computational efficiency in light of a high number of DOFs is
proven in experiment B. Additionally, the experiments have
hinted at the potential of using a weighted pseudoinverse to
influence the generated joint motion according to the chosen
metric. Some open issues regarding acceleration and torque

7452

Fig. 9: Mobile dual-arm robot moving along the y-axis while keeping end-effector positions in place; the tasks are dropped
in decreasing numerical order when they become unfeasible.

Fig. 10: Normalized joint position and velocity produced by
the velocity-based solver for the mobile dual-arm robot.

0

0.5

1

0 2 4 6 8 10 12

1

1.5

2

2.5

3

Fig. 11: Task scaling factor and number of iterations per task
of the velocity-based solver for the mobile dual-arm robot.
Execution times are given for 3, 4, and 7 total iterations

control remain, however. Foremost, the need for precise
acceleration commands at joint limits makes saturation under
torque control difficult. Additionally, task scaling alone is not
sufficient for the robot to come to a full stop, as merely the
acceleration is guaranteed to be scaled to zero; a joint-space
damping task is a simple, but only partial solution to this
problem. Finally, the used acceleration bounds present some
drawbacks, which is also acknowledged in [17].

Nonetheless, the proposed controller presents a solid
foundation on which different metrics and joint boundary
computations can easily be tested.

REFERENCES

[1] C. Scheurer, M.D. Fiore, S. Sharma and C. Natale, “Industrial im-
plementation of a multi-task redundancy resolution at velocity level
for highly redundant mobile manipulators,” Proceedings of ISR 2016:
47st International Symposium on Robotics , pp. 109-117, 2016.

[2] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” Fifth International
Conference on Advanced Robotics ’Robots in Unstructured Environ-
ments, pp. 1211–1216 vol.2, 1991.

[3] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Dynamic
multi-priority control in redundant robotic systems,” Robotica, vol. 31,
no. 07, pp. 1155–1167, 2013.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, pp. 500–505, 1985.

[5] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Transactions on Man
Machine Systems, no. 12, pp. 868–871, 1977.

[6] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[7] O. Kanoun, “Real-time prioritized kinematic control under inequality
constraints for redundant manipulators,” Robotics: Science and Sys-
tems 2011 , June 27-30, 2011.

[8] F. Flacco and A. de Luca, “Optimal redundancy resolution with
task scaling under hard bounds in the robot joint space,” in 2013
IEEE International Conference on Robotics and Automation (ICRA),
pp. 3969–3975, 2013.

[9] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” in
1983 American Control Conference, pp. 752–756, 1983.

[10] F. Flacco and A. de Luca, “Fast redundancy resolution for high-
dimensional robots executing prioritized tasks under hard bounds
in the joint space,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2500–2506, 2015.

[11] F. Flacco, A. de Luca, and O. Khatib, “Control of redundant robots
under hard joint constraints: Saturation in the null space,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 637–654, 2015.

[12] D. Whitney, “Resolved motion rate control of manipulators and human
prostheses,” IEEE Transactions on Man Machine Systems, vol. 10,
no. 2, pp. 47–53, 1969.

[13] B. Siciliano, A. de Luca, and G. Oriolo, “Robot redundancy resolu-
tion at the acceleration level,” Laboratory Robotics and Automation,
pp. 97–106, 1992.

[14] O. Khatib, “Robot manipulator control in operational space,” Porc.
CNRS Symposium on Mathematical Rools for Modeling and Control
of Robots, pp. 367–391, 1986.

[15] G.-r. Wang and Y.-l. Chen, “A recursive algorithm for computing the
weighted moore-penrose inverse a MN†,” Journal of Computational
Mathematics, vol. 1, no. 4, pp. 74–85, 1986.

[16] A. Björck, Numerical methods for least squares problems. Philadel-
phia, Pa: Society for Industrial and Applied Mathematics (SIAM 3600
Market Street Floor 6 Philadelphia PA 19104), 1996.

[17] A. Del Prete, “Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators,” IEEE Robotics and
Automation Letters, vol. 3, no. 1, pp. 281–288, 2018.

7453

