
Lightweight Multi-robot Communication Protocols for
Information Synchronization

Murtadha Alsayegh, Ayan Dutta, Peter Vanegas, Leonardo Bobadilla

Abstract— Communication is one of the most popular and
efficient means of multi-robot coordination. Due to potential
real-world constraints, such as limited bandwidth and contested
scenarios, a communication strategy requiring to send, for
example, all n bits of an environment representation might
not be feasible in situations where the robots’ data exchanges
are frequent and large. To this end, we propose and implement
lightweight, bandwidth-efficient, robot-to-robot communication
protocols inspired by communication complexity results for
data synchronization without exchanging the originally re-
quired n bits. We have tested our proposed approach both
in simulation and with real robots. Simulation results show
that the proposed method is computationally fast and enables
the robots to synchronize the data (near) accurately while
exchanging significantly smaller amounts of information (in the
order of logn bits). Real-world experiments with two mobile
robots show the practical feasibility of our proposed approach.

I. INTRODUCTION

In fundamental mobile robotics applications such as task
allocation, environmental monitoring, and search-and-rescue,
coordination among the robots via robot-to-robot communi-
cation is of utmost importance [1], [6], [17]. As a concrete
motivating scenario, suppose that we have a group of robots
that are deployed in a contested environment spanning a
large geographical area. This environment is highly dynamic,
where new obstacles are appearing and disappearing fre-
quently. All the robots need to keep an updated representa-
tion of the environment for decision making. However, due
to environmental, technical, and adversarial constraints, the
bandwidth available for communication is limited. Our test-
bed motivated by this problem is shown in Fig 1.

Most of the studies on multi-robot communication, such as
the one described above, assumes a smart underlying com-
munication framework, designed by an oracle, is available
to the robots or that they follow a naive form (having a
O(n) complexity) of communication where the robot Alice
sends all the n bits of her representation (X) to the robot
Bob, and then Bob contrasts this representation with his
own. However, this simple protocol will consume a large
amount of bandwidth and computational resources. Since
changes are constantly happening, sending n bits every time
might become a bottleneck. Furthermore, in an environment
where the available bandwidth is limited, a high cost of

M. Alsayegh, P. Vanegas, and L. Bobadilla are with
the School of Computing and Information Sciences,
Florida International University, Miami, FL 33199, USA
{malsa061@,pvane003@,bobadilla@cs.}fiu.edu
A. Dutta is with the School of Computing, University of North Florida,
Jacksonville, FL 32224, USA a.dutta@unf.edu

Alice

Bob

(a) (b)

(c) (d)
Fig. 1. An experimental demonstration of our lightweight communication
protocols with two parties Alice and Bob using two iRobot Create 2.0
platforms: (a) At time t = 0 second, Alice and Bob start executing their
paths, Alice intends to move north, and Bob intends to move south; (b)
At time t=16, Alice encounters, and obstacle and the equality of their
representations is checked, they noticed they have different maps; (c) At
time t = 22, Bob starts his path; (d) At time t = 29 Bob finds another
obstacle and calls for a testing in their representation, again it is found that
their maps are different.

communication such as this might potentially result in a
breakdown of the coordination process [17]. Therefore, the
objective of the robots should be to exchange their perceived
data represented by less than n bits.

In this paper, we present an approach, inspired by the
seminal work of Yao [31], to design protocols in which
the robots share less than n bits of data to synchronize
their local representations of the environmental state. Our
proposed approaches are easy to implement, fast, and need
significantly less data-exchange to answer the question: ”Do
we have the same representation of the state?” If the answer
is yes, they do not need to take any further action. On the
other hand, if they are not the same, using our proposed error
correction approach, the mismatches in the representations
are detected and attempted to be fixed. We have selected a
multi-robot map merging case study along with numerical
simulations to test our proposed approach. Numerical results
show that our proposed techniques are fast (taking in order of
a few seconds to synchronize large representations), and they
can accurately decide whether the robots have the same map
representations. The close-to-reality case study also validates
these findings. Our primary contributions in this paper are
as follows:

• We employ protocols for reducing the communication
between two robots and synchronizing the data after-
ward, which have significant implications in bandwidth-
limited environments.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11831

• We implement and rigorously test our proposed methods
with numerical simulations and on a highly applied
multi-robot map-merging application. Furthermore, we
present a proof-of-concept experiment to show the prac-
tical feasibility of our ideas.

II. RELATED WORK

Our ideas take inspiration from the field of communication
complexity theory [2], [14], [12], [13], [22], [31], which
studies the amount of communication (i.e., bits exchanged)
required to solve a given problem when the input is split
between two (or more) parties. In its original formulation,
there are two agents (Alice and Bob), each of which has
a binary string of size n – x and y respectively. Alice
wants to compute a function f(x, y) that depends on both
inputs using the least amount of communication between
them. A closely related extension of Yao’s results that share
the same goals of our research can be found in the area
of document exchange [5]. Our work is also related to
subspace synchronization using coding theory [25] and set
reconciliation [18]. However, our ideas differ as in robotics
applications, synchronization is required frequently, unlike
document exchange, and our goal is to have a practically
feasible approach instead of finding theoretical guarantees
only.

In a multi-robot system, especially where a large number
of robots are present, and the amount of bandwidth is
limited, reducing the size of the communicated messages
can tremendously benefit the coordination process. One of
the most prominent works on multi-robot communication is
by Eric Klavins [11], where the scalability of multi-robot
algorithms is studied, and ideas of multi-robot communica-
tion complexity are introduced. This work took inspirations
from the average-case communication complexity considered
in [28] for distributed algorithms. The author has proposed
four different complexity classes for such systems. However,
the complexity was measured in terms of the number of
messages passed among the robots. Unlike this, in our
approach, we reduce the size of the messages, which can
potentially be merged with the reduced message-passing
models proposed in [11].

The communication complexity of task allocation was
analyzed in [20] using discrete and continuous models of
communication. Giridhar and Kumar [10] studied the max-
imum rate to communicate functions to a sink node. In
[17], the authors have proposed a novel technique, with
which the robots decide what information to share with the
others in a bandwidth-limited environment. Recently, Dutta
et al. have proposed an efficient technique to minimize the
space complexity required to store the communication graph
in a large multi-robot system while keeping the maximum
hop count within a bound [7]. Instead of reducing the
space requirement for robot-to-robot communication while
sharing n bits of data as proposed in [7], our approach
in this paper aims to minimize the size shared data itself,
which potentially can be combined with the techniques in
[7] for magnified impact on multi-robot communication. In

[8], the authors have asked the question: “how the robots
should communicate?”. We try to answer this question in
this paper partly. Our proposed work advances the state-of-
the-art by introducing novel minimalist data synchronization
mechanism to reduce the communication complexity, which
is currently missing in the multi-robot system literature.

Our effort, especially in the tested case study, has sim-
ilarities with the problem of map merging [3], [4] where
individual robots build local maps that then are merged
through communication. Our ideas differ from these works
and are complementary to them in two important ways. First,
although our experiments and case studies focus on detecting
and correcting differences in occupancy grids, our approach
can be applied to any robot representation that has a binary
encoding (e.g., images, cloud points, or geometric maps).
Secondly, our main contribution, the minimization of bits
transmitted, was not the focus of the map merging process
in [3]. Our ideas are also connected to SLAM approaches
in communication-constrained environments [23], [15]. Our
work also contributes to the recent interest in security and
privacy issues in multi-robot networks [9], [24], [32], [21],
[30], [16] since minimizing the number of bits exchanged
among the robots can lead to better guarantees in privacy
and security.

III. PROBLEM FORMULATION

In our problem formulation, we have two robots, Alice
and Bob, that are moving in a two-dimensional workspace
W ⊂ R2. W contains an obstacle region O ⊂ W . Both
Alice and Bob move in the free space of the environment,
which is defined as E =W \O. The robots are modeled as
point robots and their positions in E can be sensed through
GPS and other state estimation sensors.

Both robots are equipped with sensors such as laser
rangefinders for sensing their surroundings. As the robots
move in the environment, they collect information using
their sensors from the environment and creates a map, an
occupancy grid for example [3], [27], over W where 0
represents a free space (the robots can traverse), and 1
represents an obstacle. The occupancy grid is encoded in a
vector of size n, let X = {0, 1}n be the data held by Alice
and Y = {0, 1}n be the encoding of Bob’s data. Alice and
Bob can communicate potentially through a low-bandwidth
channel.

As Bob and Alice move and explore their surroundings,
their local representations of the same environment change
due to the newly discovered obstacles and potential changes
in the environment. For this reason, both robots need to check
periodically if their representations are the same. However,
they do not want to send the whole n bits of their represen-
tations due to the communication channel limitations. This
scenario motivates our first problem of interest.

Problem 1. Equality Checking: Given Alice and
Bob’s representations of the same environment, X and Y ,
they need to check if they have the same information while
minimizing the amount of information sent.

11832

Besides checking whether they have the same information
or not, they need to synchronize their representations and
ensure they have the same data after the communication
while minimizing the number of bits sent. This motivation
leads to our second problem of interest.

Problem 2. Error Correction: Given Alice and
Bob’s representations, X and Y , synchronize them to ensure
that the robots have the same information while minimizing
the number of bits sent.

IV. METHODS

A. Equality Testing

To solve the first problem, we present a procedure based on
the results from the field of communication complexity [31],
[2], [14]. This sub-field of theoretical computer science
studies how to calculate the value of a function f(x, y) by
two parties Alice and Bob where Alice holds x and Bob
holds y. Both x and y are n-bit strings. The parties want to
calculate f using the least amount of communication (i.e.,
exchanging minimal bits) possible while ensuring that at
least one party can calculate the result. Next, sending one
more bit will ensure that both parties have the result of the
computation.

The field of communication complexity primarily focuses
on analyzing protocols based on the worst communication
complexity denoted as D(f), which is defined as the mini-
mum number of bits that needs to be exchanged between the
parties in the worst case. This metric contrasts to traditional
analysis of algorithms since the protocol analysis is not con-
cerned about the computational complexity, nor the amount
of memory used but in minimizing the number of bits sent
back and forth between the parties.

Protocol 1 Equality Testing
Inputs. Alice’s binary vector X and Bob’s binary vector Y .

Goal. Both robots, Alice and Bob, will check whether they
have the same binary vector.
The protocol:

1) Setup. Before their deployment, Alice and Bob are
given a database R = {r1, r2, . . . , r100n} that contains
100n random binary strings of size n each.

2) Bob initializes a counter to zero.
3) Repeat k times the following subroutine:

a) Alice picks a random number i ∈ {1, 2, . . . , 100n}.
b) Alice calculates the dot product for binary vectors

b = X · ri
c) Alice sends b and the position i to Bob.
d) Bob calculates the dot product for binary number

b
′
= Y · ri.

e) Bob compares b and b′. If they are different, Bob
increments the counter.

4) If the counter is greater or equal than zero returns 0 (X
and Y are different); otherwise return 1 (X and Y are
the same).

One canonical example studied in communication com-
plexity is the equality problem (function), that is formally de-
fined as EQ : {0, 1}n×{0, 1}n → {0, 1} where EQ(x, y) =
1 if and only if x = y and 0 otherwise. It has been proven that
the deterministic communication complexity of the equality
function D(EQ) = n, which means that in the worst case,
the original n bits need to be sent. This is prohibitive for
the robotics application of our interest where occupancy
grids can easily be in the order of 106. Instead, we will
implement a protocol based on randomization with better
communication complexity than the deterministic worst case
of n. This procedure is described in Protocol 1 and uses the
idea of computing dot products described in detail in [14].

Proposition 1: Protocol 1 calculates whether two binary
vectors X and Y of size n are the same with the communi-
cation cost of k(log100n+ 1) bits.

Proof:
Sketch A database R, consisting of 100n random binary

strings to size n, is given to the robots before the mission.
Therefore, R does not need to be transmitted every time we
are interested in checking the equality between the maps. The
protocol runs k times (the subroutine in line 3 in Protocol
1) and the only information sent are the integer i, which
can be encoded using log100n bits and b, which has a
length of 1 bit, resulting the communication complexity to
be k(log100n + 1). The fact that the size of R should be
100n is used to calculate the error rate of the protocol [14].
The intuitive idea is that R should be a set of strings with
enough randomness to run the protocol.

Proposition 2: Protocol 1’s probability of correctness is
at least (1− 1

2k
).

Proof:
Sketch To analyze the probability of correctness of the

protocol, we know that if X and Y are the same, the protocol
will not fail (the dot products with ri will be equal). If X
and Y are different, there is a probability of 1/2 that Y ·
ri = X · ri, which will give an incorrect result (a detailed
explanation can be found in [14]). We will use the subroutine
in step 3 as a Monte Carlo algorithm [19] with a one-sided
error. As such, the failure probability can be reduced (and
the success probability amplified) by running the algorithm k
times. Therefore, if X and Y are equal, the answer is always
correct, and if they are different, then the answer is correct
with a probability of at least (1− 1

2k
).

Although Protocol 1 sacrifices the determinism achieved
by sending n bits, it provides a dramatic reduction in com-
munication complexity, which makes it practical for large
maps. We have evaluated the effect of k on the success rate of
equality checking through experiments described in Section
V.

B. Error Correction

Once Bob and Alice detect that their maps are different
after executing the communication protocol described in the
last section, a natural next step is to exchange only the bits of
information in the map that are different instead of sending
the n bits to synchronize them. To this end, we propose an

11833

algorithm that uses Protocol 1 as a subroutine for such error
correction and is shown in Algorithm 1.

Algorithm 1: ERRORCORRECTION(X , Y ,l,u,res)
Input: Alice’s binary vector X , Bob’s binary vector Y ,

lower-bound l, upper-bound u, resolution for
error correction res

Output: Positions that are different
1 midpoint← FLOOR(l+u

2)
2 if LEN(X[l . . . u]) ≤ res then
3 if EQUALLINEAR (X,Y, l, u) == 1 then
4 return FALSE
5 else
6 return l, u

7 if PROTOCOL1 (X,Y, l, u) == 1 then
8 return FALSE
9 else

10 ERRORCORRECTION(X , Y ,l,midpoint,res)
11 ERRORCORRECTION(X , Y ,midpoint+ 1,u,res)

Algorithm 1 will return the intervals where X and Y differ.
It will work on X (Alice’s data) and Y (Bob’s data). l and u
represent the lower-bound and upper-bound of a sub-array.
Initially, the algorithm will be called with l = 1 and u = n.
res represents the resolution in bits at which a difference
between X and Y is detected and it is a low constant number
that aims to model the packet size which can be exchanged
between Alice and Bob.

Line 1 of the algorithm calculates the midpoint of the
array. Lines 2-6 are called when the length of the vector
is less than the resolution. In this case, it will decide in
constant time (EQUALLINEAR) whether the segment of the
map from l to u is different and report the positions l and u.
A simple linear comparison can be employed to realize the
EQUALLINEAR function in practice.

If the currently considered array segment is longer than
res, it will go to (line 7) and call a slightly modified version
of Protocol 1 that checks equality between positions l to u.
If the vectors are equal, the algorithm will stop; otherwise,
it will call itself (lines 10 and 11) twice with half the array
elements in each call. This divide-and-conquer strategy has
similarities to algorithms such as binary search.

There are two points in Algorithm 1 that need the data
from Alice and Bob: line 3 (EQUALLINEAR) and line 7
(PROTOCOL 1). This algorithm can be executed in a client-
server fashion where Alice (client) runs the algorithm and
invokes lines 3 and 7 as needed. Algorithm 1 can be con-
verted into an iterative procedure to facilitate the distributed
implementation.

Preliminary Algorithm Analysis. Algorithm 1 corrects the
discrepancies between the binary vectors X and Y using
log(n

res)k(log100n + 1) + i bits for communication in the
worst-case, where n is the length of the vector, i is the
numbers of bits where X and Y differ, k is the number
of iterations of Protocol 1, and res is a small constant.

To analyze Algorithm 1, recall that we are not interested in
calculating the space and computational costs of the proce-
dure, as only the communication cost is our primary interest.
There are only two places where communication is needed
in Algorithm 1 – lines 3 and 7. Line 3 is only called when
the segment of length res has differences; this would need to
communicate at most i bits. Line 7 is needed at each call of
the recursion. The recursion tree will stop growing when the
length of the array reaches res = n

2d
, where d is the depth

of the recursion tree. Solving for d, we have d = log(n
res).

At each level of the recursion, in the worst-case, Protocol 1
is called with the whole array, which has a communication
cost k(log100n+1) following Proposition 1. Multiplying the
number of levels of the recursion with the communication
at each level, we have log(n

res)k(log100n+1). Thus adding
the communication costs of Lines 3 and 7 gives the desired
result.

This communication cost is an improvement over the naive
n-bit communication protocol to correct differences between
X and Y in the context of our application where n can be
large and the number of bits they differ (i) is comparatively
small. Algorithm 1 calls Protocol 1 as a subroutine, and as
such, its reliability depends on it.

The reliability of Algorithm 1 in correcting discrepancies
between binary vectors X and Y can be modeled as a
Binomial Distribution B(m, θ) where m is the number of
segments of size res where the maps differ and θ = (1− 1

2k
).

Each of the m different segments will be detected when Pro-
tocol 1 is called. According to Proposition 2, the probability
of detecting the error when the segments are different is
θ = 1− 1

2k
and each of the calls to check if the segments are

different can be modeled as an independent Bernoulli trial.

V. EXPERIMENTAL RESULTS

First, we are interested in testing the quality of our pro-
posed approaches in a wide range of simulation experiments
and then transfer them to a real exploration experiment using
two robots. The simulation experiments are run on an Ubuntu
18.04 LTS machine with an Intel i7 3.60GHz CPU and 16
GB RAM using Python 3. Each simulation experiment is run
50 times and the average result is presented next along with
standard deviation data unless mentioned otherwise.

A. Numerical Simulation of Protocol 1

In these experiments, random binary strings, X and Y ,
of size n ∈ {16, 32, 64, 128, 256, 512, 1024} are generated
with the database R of strings also being random. We are
primarily interested in two metrics to test the quality of
Protocol 1: success rate and time. Success rate (S.R.) denotes
how many times out of 50 test runs Protocol 1 was able to
successfully determine whether input strings X and Y were
equal or not. The result is shown in Fig. 2. We observe that
with the increasing value of k, the S.R. value also increases.
This result is supported by the theoretical bound described
in Proposition 2. Regardless of the value of k and n, we are
always able to achieve a success rate of > 90% except with
k = 3 and n = 128.

11834

Fig. 2. Success rate of Protocol 1

On the other hand, the protocol’s execution time is an
important aspect, especially in robotics. The result of this
metric is shown in Fig. 3. As can be noticed, time increases
linearly with the size of the input strings X and Y , the min-
imum time being 0.04 sec. with n = 16 and the maximum
being a negligible 3.17 sec. with k = 7 and n = 1024. As
expected, with a higher value of k, Protocol 1 takes a little
more time as more data exchanges are involved.

Fig. 3. Execution time of Protocol 1

B. Numerical Simulation of Algorithm 1

Next, we adopt the same setting from the previous sub-
section and test the performance of Algorithm 1 while
varying its parameters. We initially implemented and tested
a non-distributed version of the algorithm. In the first set of
experiments, we fixed the length of the representations n to
128, the number of differences in them to 5, and studied the
effect of the number of iterations that Protocol 1 uses by
varying k ∈ {7, 8, 9, 10}. As shown in Fig. 4, there is an
expected increase in the average of detected differences (out
of 5 possible).

In the second set of experiments, we have fixed k to 10,
differences to 5, and studied the effect of increasing the
length of the representations n ∈ {256, 512, 1024, 2048}. As
shown in Fig. 5, the percentage of corrected errors does not

6 7 8 9 10 11
k

1

2

3

4

5

6

E
rr

o
r

C
o

rr
ec

ti
o

n
 C

o
u

n
t

n=128, Errors=5

Fig. 4. Number of corrected errors with varying k.

seem to be affected by the length of the representation, which
is consistent with our previous analysis.

256 512 1024 2048
n

3

3.5

4

4.5

5

5.5

6

E
rr

o
r

C
o

rr
ec

ti
o

n
 C

o
u

n
t

Errors=5, k=10

Fig. 5. Number of corrected errors with varying n.

In the third set of experiments, we have fixed k to 10,
n to 1024, and studied the effect of varying the number of
differences through {10, 20, 30, 40}. The result is presented
in Fig. 6. It can be seen that the percentage of detection
slightly decreases as the number of differences increases.
However, the rate always remains over 80%.

0 10 20 30 40 50
Error count

60

70

80

90

100

110

E
rr

o
r

C
o

rr
ec

ti
o

n
 C

o
u

n
t

(%
)

n=1024, k=10

Fig. 6. Percentage of error corrected for varying degrees of errors in X
and Y .

11835

C. Case Study: Occupancy Grid Mapping

We are interested in testing our proposed lightweight
communication mechanism for occupancy grid mapping
using two robots as a proof-of-concept. We implemented
this in a single computer. The robots starting from random
locations do a random walk in an unknown environment
(16 × 16, 4-connected square grid). We set k = 10. The
robots can detect any neighboring obstacle when they step
into a new cell. The environment is shown in Fig. 7. After
making every ten moves, the robots communicate their
current local perceptions of the world map represented as
a binary string and apply our proposed methods. If their
local representations of the environment are not the same,
they update them using Algorithm 1. The program stops
after 200 steps. In the environment presented in Fig. 7,
there are 10 obstacles randomly generated in positions
(12, 15), (6, 13), (6, 9), (3, 15), (12, 3), (12, 13), (5, 5)
(13, 7), (14, 1), (6, 5) of the grid. Alice starts in position
(11, 7), and the initial position of Bob is (3, 7). In step 20 of
the simulation when comparing representations using Algo-
rithm 1, it was found that their local representations differ.
Alice has found an obstacle at (6, 9), and then their maps are
updated. In step 40, Algorithm 1 detects a difference again
in their maps since Bob has discovered (5, 5). There are
also differences detected at steps 110 and 120. Both robots
reliably detect their differences every time they discover an
obstacle.

Fig. 7. Environment for the occupancy grid mapping test.

D. Physical Experiment

We have conducted physical experiments with two iRobot
Create 2, each connected to an ASUS Eee laptop. Each of the
laptops runs Ubuntu 16.04 LTS, with 1.66 GHz Intel Atom
N280 CPUs and 1GB of memory. Processes and commu-
nications are handled using the Pycreate 2 library [29] and
through a decentralized Peer-to-Peer TCP/IP protocol [26].
The robots are placed in a 4× 4 grid-world containing two
obstacles (Fig. 1). Maps are represented by 4× 4 occupancy
grid matrices, which are converted to vectors before applying
Protocol 1. One of the robots, Bob, remains on stand-by and
awaits a signal from the second robot Alice. Alice performs a
short move sequence to discover obstacles in the grid-world

(a)

(b)

Fig. 8. An experimental demonstration of our lightweight communication
protocols with two parties Alice and Bob using two iRobot Create 2.0
platforms: Snapshots of (a) Alice’s and (b) Bob’s execution of the protocol,
their paths, and representations are presented.

and, upon colliding with one, stops and sends her current
perception to Bob. Bob then runs his discovery until he faces
another obstacle, updates his map, and then compares it with
Alice. Upon having both comparison copies, both Bob and
Alice perform Protocol 1 to determine whether or not they
have the same map. Finally, the robots are set to sleep. It
took 1 minute to complete the experiment. However, most of
the run time is consumed by the robot movements, and our
proposed communication protocol was fast. The snapshots
of the algorithms running in Alice and Bob’s computers are
presented in Fig. 8. A video of the physical experiment can
be found at https://youtu.be/UiYuZ04t 2c.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of minimizing
the number of bits transmitted to synchronize two distributed
representations of two robots. We have proposed one protocol
and one algorithm, implemented them, and tested them
in simulation. We have also performed a proof-of-concept
experiment to show the practical feasibility of our approach.

We believe that there are exciting avenues of research
at the intersection of communication complexity and multi-
robot systems, which we would like to explore in the
future. In the short term, we want to expand the analysis of
Algorithm 1 and its implementation. Although Algorithm 1 is
an improvement in cases where n is large and the differences

11836

are comparatively small, a more detailed analysis, perhaps
studying its average complexity, can give more accurate
estimates of its performance. On the implementation side,
we have employed a non-distributed testbed. The next step
is to test a distributed implementation using the client-server
idea proposed and perhaps changing it to an iterative version
that will be more convenient in the distributed setting.

Another area of near-term interest is to compare and
contrast our ideas with the document exchange problem [5].
Although our motivations are the same, the methodologies
employed are different (Hamming distance-based similar-
ity in document exchange and binary dot products in our
case). Although we have implemented our protocol in both
hardware and software, a more detailed comparison between
both approaches is needed to identify scenarios in which
one approach performs better than the other. A more de-
tailed comparison with other approaches in communication-
constrained SLAM [23], [15] and set synchronization [25],
[18] can provide fruitful research directions.

We plan to move away from occupancy grids repre-
sented by binary strings to have richer encodings used in
robotics applications such as images, geometric maps, and
point clouds. Scaling issues will need to be considered, but
our preliminary results are encouraging. We have initially
studied in detail the two-robot synchronization problems. A
natural extension is to consider scenarios where multiple
robots simultaneously want to synchronize representations
as closely as possible. In these setups, we will take into
account the positioning of the robots since communication
costs will increase, for example, with distance and presence
of obstacles. Interesting scenarios would involve peer-to-
peer architectures where all the robots are equal participants
and then hierarchical architectures, where some robots have
greater computational and communication capabilities.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Department
of Homeland Security under Grant Award Number 2017-ST-
062000002. Murtadha Alsayegh is supported by the Saudi
Arabian Cultural Mission under scholarship number KSP
11822-38375072. Peter Vanegas is supported by the FIU
McNair program.

REFERENCES

[1] T. Arai, E. Pagello, L. E. Parker, et al. Advances in multi-robot
systems. IEEE Transactions on robotics and automation, 18(5):655–
661, 2002.

[2] S. Arora and B. Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[3] A. Birk and S. Carpin. Merging occupancy grid maps from multiple
robots. Proceedings of the IEEE, 94(7):1384–1397, 2006.

[4] S. Carpin. Fast and accurate map merging for multi-robot systems.
Autonomous Robots, 25(3):305–316, 2008.

[5] G. Cormode, M. Paterson, S. C. Sahinalp, U. Vishkin, et al. Commu-
nication complexity of document exchange. In SODA, pages 197–206,
2000.

[6] A. Dutta, A. Ghosh, and O. P. Kreidl. Multi-robot informative
path planning with continuous connectivity constraints. In 2019
International Conference on Robotics and Automation (ICRA), pages
3245–3251. IEEE, 2019.

[7] A. Dutta, A. Ghosh, S. Sisley, and O. P. Kreidl. Efficient communica-
tion in large multi-robot networks. In 2020 International Conference
on Robotics and Automation (ICRA). IEEE, 2020.

[8] B. P. Gerkey and M. J. Matarić. Principled communication for dynamic
multi-robot task allocation. In Experimental Robotics VII, pages 353–
362. Springer, 2001.

[9] S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus. Guaranteeing
spoof-resilient multi-robot networks. Autonomous Robots, 41(6):1383–
1400, 2017.

[10] A. Giridhar and P. R. Kumar. Computing and communicating
functions over sensor networks. IEEE Journal on selected areas in
communications, 23(4):755–764, 2005.

[11] E. Klavins. Communication complexity of multi-robot systems. In
Algorithmic Foundations of Robotics V, pages 275–291. Springer,
2004.

[12] E. Kushelvitz. Privacy and communication complexity. SIAM Journal
on Discrete Mathematics, 5(2):273–284, 1992.

[13] E. Kushilevitz. Communication complexity. In Advances in Comput-
ers, volume 44, pages 331–360. Elsevier, 1997.

[14] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1996.

[15] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, and G. Grisetti.
Multi-robot slam using condensed measurements. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
1069–1076. IEEE, 2013.

[16] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell. Coordinated
multi-robot planning while preserving individual privacy. In 2019
International Conference on Robotics and Automation (ICRA), pages
2188–2194. IEEE, 2019.

[17] R. J. Marcotte, X. Wang, D. Mehta, and E. Olson. Optimizing
multi-robot communication under bandwidth constraints. Autonomous
Robots, 44(1):43–55, 2020.

[18] M. Mitzenmacher and R. Pagh. Simple multi-party set reconciliation.
Distributed Computing, 31(6):441–453, 2018.

[19] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge
university press, 1995.

[20] N. Nisan and I. Segal. The communication complexity of efficient
allocation problems. Draft. Second version March 5th, pages 173–
182, 2002.

[21] J. M. O’Kane and D. A. Shell. Automatic design of discreet discrete
filters. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 353–360, 2015.

[22] C. H. Papadimitriou and M. Sipser. Communication complexity. In
Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 196–200. ACM, 1982.

[23] L. Paull, G. Huang, M. Seto, and J. J. Leonard. Communication-
constrained multi-auv cooperative slam. In 2015 IEEE international
conference on robotics and automation (ICRA), pages 509–516. IEEE,
2015.

[24] A. Prorok and V. Kumar. A macroscopic privacy model for het-
erogeneous robot swarms. In International Conference on Swarm
Intelligence, pages 15–27. Springer, 2016.

[25] V. Skachek and M. G. Rabbat. Subspace synchronization: a network-
coding approach to object reconciliation. In 2014 IEEE International
Symposium on Information Theory, pages 2301–2305. IEEE, 2014.

[26] M. Snoeren. python-p2p-network. https://github.com/
macsnoeren/python-p2p-network, Sept 2018.

[27] S. Thrun. Learning occupancy grid maps with forward sensor models.
Autonomous robots, 15(2):111–127, 2003.

[28] J. N. Tsitsiklis and G. D. Stamoulis. On the average communication
complexity of asynchronous distributed algorithms. Journal of the
ACM (JACM), 42(2):382–400, 1995.

[29] K. Walchko. iRobot Create 2. https://github.com/
MomsFriendlyRobotCompany/pycreate2, May 2017.

[30] Y.-C. Wu, V. Raman, S. Lafortune, and S. A. Seshia. Obfuscator
synthesis for privacy and utility. In NASA Formal Methods Symposium,
pages 133–149. Springer, 2016.

[31] A. C.-C. Yao. Some complexity questions related to distributive
computing(preliminary report). In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, STOC ’79, page 209–213,
New York, NY, USA, 1979. Association for Computing Machinery.

[32] Y. Zhang and D. A. Shell. Complete characterization of a class of
privacy-preserving tracking problems. The International Journal of
Robotics Research, 2018.

11837

