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Abstract— Wireless capsule endoscopy (WCE) is a novel
imaging tool that allows the noninvasive visualization of the
entire gastrointestinal (GI) tract without causing discomfort to
the patients. Although convolutional neural networks (CNNs)
have obtained promising performance for the automatic lesion
recognition, the results of the current approaches are still lim-
ited due to the small lesions and the background interference in
the WCE images. To overcome these limits, we propose a Third-
order Attention guided Lesion Amplification Network (TALA-
Net) for WCE image classification. The TALA-Net consists of
two branches, including a global branch and an attention-aware
branch. Specifically, taking the high-level features in the global
branch as the input, we propose a Third-order Attention (ToA)
module to generate attention maps that can indicate potential
lesion regions. Then, an Attention Guided Lesion Amplification
(AGLA) module is proposed to deform multiple level features
in the global branch, so as to zoom in the potential lesion
features. The deformed features are fused into the attention-
aware branch to achieve finer-scale lesion recognition. Finally,
predictions from the global and attention-aware branches are
averaged to obtain the classification results. Extensive exper-
iments show that the proposed TALA-Net outperforms state-
of-the-art methods with an overall classification accuracy of
94.72% on the WCE dataset.

I. INTRODUCTION

Wireless capsule endoscopy (WCE) [1] has been widely
adopted for early screening of gastrointestinal (GI) diseases.
Compared with traditional endoscopies, WCE provides pain-
less and noninvasive visualization of the entire GI tract. In
the screening for each patient, WCE will generate a large
number of images, usually more than 55,000, which is time-
consuming and tedious for clinicians to manually review
all these images. Additionally, various shapes, textures, and
sizes make it quite challenging for the clinicians to correctly
identify lesion regions. Even well-trained clinicians may
produce different diagnostic results. Therefore, automated
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Fig. 1: Examples of WCE images. (a)-(b) contain vascular
lesions. (c)-(d) show inflammatory images. The lesion areas
are annotated by the green circles.

recognition algorithms are highly demanded for efficient and
accurate diagnosis of WCE images.

Vascular lesion and inflammatory are two common GI
diseases, which are also important syndromes or indica-
tors of other GI abnormalities such as bleeding, ulcers
and Crohn’s diseases. In recent years, many efforts [2]–
[4] have been dedicated to developing deep learning-based
algorithms for autonomously recognizing these two diseases.
However, these methods usually utilize off-the-shelf deep
models without taking into account the challenging charac-
teristics of WCE images, thus leading to limited performance
and generalization capability. Challenges of WCE lesion
recognition mainly lie in two aspects. Firstly, as shown in
Fig. 1, lesions usually take up tiny regions in WCE images
and show obscure boundaries with the background normal
textures, which make them hardly recognizable. Secondly,
for images of different categories, the background regions
show a highly similar appearance and impede the extraction
of class distinctive features. In the classification of abnormal
frames, feature embeddings extracted from the entire images
might be dominated by the background interference, thus
leading to unsatisfactory performance.

In the clinical practice, clinicians usually first browse the
whole image to localize potential lesion regions, then zoom
in these tiny lesion regions for more detailed inspection,
and make final diagnostic decisions based on the global
and amplified lesion information. Inspired by this working
mechanism, we propose a two-branch Third-order Atten-
tion guided Lesion Amplification Network (TALA-Net) to
achieve more accurate WCE classification by automatically
highlighting the potential lesion regions and emphasizing the
features from these regions. Specifically, the global branch
takes the WCE images as input and produces attention
maps based on a novel Third-order Attention (ToA) module.
With the guidance of these attention maps, multiple level
features in the global branch are deformed through the
proposed Attention Guided Lesion Amplification (AGLA)
module. The AGLA module imitates clinicians to zoom in
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Fig. 2: Overview of the Third-order Attention guided Lesion Amplification Network (TALA-Net). ToA and AGLA stand
for the proposed Third-order Attention module and Attention Guided Lesion Amplification module. [Best viewed in color.]

the lesion regions and zoom out the irrelevant background
areas, thus producing deformed feature maps with enhanced
representation of lesions. By fusing the deformed features
into the attention-aware branch, more discriminative feature
representations are extracted for finer-scale lesion recogni-
tion. Finally, the prediction scores of the two branches are
averaged to obtain final classification results.

Our main contributions are summarized as follows:
• We design a two-branch TALA-Net to emphasize the

lesion features and promote the WCE lesion recognition
in an end-to-end training manner.

• We propose a ToA module that can produce attention
maps to highlight the potential lesion regions and guide
the lesion amplification.

• A novel AGLA module is proposed to zoom in the sus-
pected lesion features and produce more discriminative
feature representations.

• Effectiveness of our proposed ToA and AGLA modules
are validated on a WCE dataset. Extensive experiments
show that the proposed TALA-Net outperforms state-
of-the-art WCE classification methods.

The rest of the paper is organized as follows: Section II
reviews the related work, Section III presents the proposed
methods. The experimental results are discussed in Section
IV and we draw some conclusions in Section V.

II. RELATED WORK

Deep Learning for WCE Image Classification: Due to
the strong feature representation and discrimination abilities,
deep learning-based algorithms have been widely utilized in
WCE image classification [2]–[11]. Some researchers [2], [3]
employed AlexNet [12] to automatically recognize abnormal
images. Alaskar et al. [4] utilized a combination of the
AlexNet and GoogLeNet [13] to distinguish ulcer images.
Jeon et al. [6] trained two parallel GoogLeNet models
to extract features from the images in RGB and CIELab
color spaces, respectively. However, the above works made
decisions based on the global images, thus the extracted

features were dominated by the background interference and
led to limited performance. To mitigate the background inter-
ference, Xing et al. [7] utilized saliency maps to indicate the
abnormal regions and constructed a saliency-aware input for
the WCE classification. Guo et al. [8] proposed a trainable
abnormal-aware attention module to enhance the recognition
of abnormalities. The performance of [7], [8] were improved
since they enhanced the lesion features and suppressed the
background interference.

Attention Mechanism: Inspired by the human visual
system, attention mechanism has been widely used in the
classification tasks of natural images [14]–[17] and medical
images [18]. The related papers are reviewed from the
perspectives of attention generation and attention utilization.

Since the activation value of a neuron is roughly propor-
tional to its importance, some researchers [14]–[17] proposed
activation based methods to construct attention maps. The
methods in [14], [15] utilized stacked convolution operations
in the CNN model to produce attention maps but required ad-
ditional trainable parameters. To reduce parameter overheads,
some methods generated spatial attention maps using the
first-order statistics, such as channel-wise average pooling
[16] or max pooling [17] of the feature maps. In our method,
the ToA attention calculated by third-order statistics is free
of parameters and outperforms the first-order attentions.

In the previous work, attention maps were usually utilized
to recalibrate the feature intensities [14], [15], [18]. By such,
the lesion features are enhanced to promote the classification
performance. Though sharing the similar motivation of em-
phasizing the lesion features, our proposed AGLA module is
intrinsically different from the existing methods since it is the
first work that proposes to imitate the working mechanism
of human doctors by zooming in the potential lesion regions.

III. METHOD

The proposed two-branch TALA-Net is illustrated in Fig.
2. For a given WCE image, it is resized to 128×128
and fed into the global branch, which is constructed by a
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densely connected convolutional network (DenseNet) [19].
The DenseNet consists of four blocks, including 4, 8, 12, 8
convolution layers, respectively. Then, the ToA module takes
the feature maps in the block4 as an input and generates the
attention map with large values at the discriminative lesion
regions. The generated attention map is utilized to guide the
deformation of different level features through the AGLA
module. Compared with the original features in the global
branch, lesion features transformed through the AGLA are
spatially amplified and better represented. The transformed
features are then hierarchically fused to the attention-aware
branch to achieve more accurate classification. The entire
network is differentiable and is trained by the cross-entropy
losses (Loss1, Loss2) in an end-to-end manner.

A. Third-order Attention (ToA)
In the WCE classification networks, attention maps can

roughly highlight potential lesion regions and emphasize the
lesion features. However, the existing first-order attentions
[16], [17] that rely on the local features inside the limited
receptive fields usually produce inaccurate attention maps
due to the following two reasons. Firstly, since the lesions
on one WCE image may distribute in several non-contiguous
regions, features from the unobvious segments of lesions
may be occluded by the surrounding normal features, thus
resulting in small attention values (false-negative). Secondly,
hard mimics may share a similar appearance with lesions and
produce relatively large attention values (false-positive).

To reduce the false-negative and false-positive responses
on the attention maps, we propose a novel ToA module
to enhance the attention values of abnormal regions and
suppress the responses of hard mimics by aggregating long-
range dependent features. Specifically, as shown in Fig. 3,
for the feature F ∈ RW×H×C with C channels and size
W ×H , we reshape it into X ∈ RHW×C and calculate the
second-order [20] spatial correlation matrix M ∈ RHW×HW

as
M = XĪXT , (1)

where Ī = 1
C (I − 1

C11T ), I is the C × C identity matrix,
and the vector 1 = [1, 1, ..., 1]T . The matrix M can capture
long-range dependencies, with each entry Mi,j represents
the feature correlation between the i-th and j-th positions.
Regardless of the spatial distance, a pair of features from
the same class has a higher correlation while lesion features
show lower correlations with normal features.

Then, the long-range dependent features are aggregated
through the third-order feature aggregation defined as

X ′ = softmax(M)X = softmax(XĪXT )X, (2)

where the second-order correlation matrix M is first normal-
ized through the row-wise softmax, hence the values in each
row sum up as 1. Then the normalized correlation matrix is
multiplied by the input feature X to produce the third-order
feature X ′ ∈ RHW×C , with each entry X ′i,c calculated as

X ′i,c =

HW∑
j=1

Mi,jXj,c. (3)

Fig. 3: Illustration of the Third-order Attention (ToA) mod-
ule. F denotes the feature of the block4 in the global branch,
A is the ToA attention map. [Best viewed in color.]

With this formula, the feature response at each position X ′i,c
is modified by the weighted aggregation of the features at
all positions, which results in two benefits. On one hand,
the responses at the potential false-negative positions are
enhanced by aggregating the features from other lesions that
might be spatially distant but share the similar semantic
features with them. On the other hand, the features of hard
mimics are suppressed by aggregating normal features with
larger weights, thus reducing the false-positive responses.
As illustrated in Fig. 3, compared with the original feature
F , the third-order feature F ′ has enhanced responses at the
lesion regions and suppressed activations at the normal areas.
Finally, the ToA attention map A ∈ RH×W is generated by
compressing F ′ through channel-wise average pooling and
then normalized into the range of [0, 1]. Attention values of
the suspected lesion areas are close to 1 while the responses
at the normal regions are close to 0. Although supervised
with image-level labels only, the ToA attention map can
indicate lesion regions and provide visual explanations for
the classification results, which are crucial for the clinical
applications of the deep learning-based lesion recognition
algorithms.

Compared with the common nonlocal [21] attention mod-
ule, the proposed ToA has two advantages. First, the ToA
module does not require additional trainable parameters
while several convolution layers are included in the nonlocal
block. Second, the pairwise correlation matrix in the nonlocal
module is calculated by the matrix multiplication between
two different transformations of the input feature. While
in our ToA module, the correlation matrix is computed as
the second-order covariance of the input feature, which can
capture more accurate pairwise feature correlations.

B. Attention Guided Lesion Amplification (AGLA)

To achieve the enhanced feature representation and finer-
scale inspection of the small lesions on WCE images, we
propose a novel AGLA module to zoom in the lesion regions
indicated by the ToA attention maps.

Although a similar idea of zooming in the discriminative
image parts has been studied in natural image analysis [22],
[23], the deformation of input images may produce spatial
distortion and involve additional interference, thus degrading
the robustness and reliability of the network. Compared with
natural image analysis, network reliability in the medical
domain is more crucial since it is directly related to the
diagnosis and survival of the patients. Therefore, we propose
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Fig. 4: Illustration of the Attention Guided Lesion Amplifi-
cation (AGLA). [Best viewed in color with zoom in.]

the AGLA module that makes two main modifications to
transfer the idea to the WCE domain. First, the AGLA
module deforms the hierarchical feature maps rather than
the input images. Compared with the WCE images, the
abstracted feature maps contain less low-level features (e.g.,
edges and boundaries) and are less likely to suffer from the
spatial distortion, thus the AGLA module can amplify the
lesion features without distorting the input WCE images.
Second, the AGLA presents a novel deformation method to
reduce the spatial distortion effects.

As depicted in Fig. 4, the AGLA module consists of
two parts: (a) generating non-uniform deformation grids
(u, v) that are densely distributed in high-attention regions;
(b) sampling the positions (u, v) from the original feature
maps to generate the deformed features. To produce non-
uniform deformation grids that are less likely to cause spatial
distortion, we propose to calculate the row-wise mapping
(x 7→ u) and column-wise mapping (y 7→ v) independently.
In this way, each entire row or entire column is either
sampled or discarded, thus the deformed features can keep
the spatial structure of the original features. Specifically, we
first decompose the attention map into marginal attention
distributions A(x) and A(y) through

A(x) = max
1≤y≤H

A(x, y); A(y) = max
1≤x≤W

A(x, y). (4)

In order to produce u and v that are proportional to the
attention values, we formulate the mapping problem as to
find u(x) and v(y) that satisfy∫ u(x)

0

A(u)du = x;

∫ v(y)

0

A(v)dv = y. (5)

Let’s take the mapping from x to u(x) for example, in an area
with a higher attention A(u), the increase of x corresponds
to a smaller increment of u(x), thus leading to more densely
distributed u, and vice versa. Then, the solution u(x) and
v(y) of Eq. (5) are calculated as

u(x) =
∑

x′ A(x′)k(x,x′)x′∑
x′ A(x′)k(x,x′)

v(y) =
∑

y′ A(y′)k(y,y′)y′∑
y′ A(y′)k(y,y′) ,

(6)

which is implemented by the 1D convolutions with Gaussian
kernels. The underlying idea of Eq. (6) is that each 1-D

Fig. 5: Illustration of the attention based bilinear interpo-
lation. P is the sampling point with fractional coordinates,
and Q11, Q12, Q21, Q22 are the four neighbors of P . [Best
viewed in color.]

pixel x′ or y′ pulls its neighbors with a force of A(x′) or
A(y′). As a result, the 1-D deformation grids u(x) and v(y)
are decided by the integration of the pulling effects from all
positions. As shown in Fig. 4 (a), the distribution of u(x) and
v(y) are proportional to the attention values. Subsequently,
the 1-D deformation grids u(x) and v(y) are duplicated to
produce 2-D column-wise grids u(x, y) and row-wise grids
v(x, y) ∈ RH×W . Finally, they are concatenated to form
the deformation grids (u, v). Since pixels (x, y) in the same
column (row) are mapped into (u, v) in the same column
(row), thus the deformation is performed in a more structured
way and suffers less from spatial distortion.

Then, as shown in Fig. 4 (b), by sampling features from
the positions (u, v) on the original feature map F , we get
the deformed feature map F ′. As the coordinates of the
deformation grids are fractional, we propose a novel attention
based bilinear interpolation to calculate the feature f(u, v)
as

f(u, v) =
[u2 − u u− u1]

(u2 − u1)(v2 − v1)
F (Q)

[
v2 − v

v − v1

]
, (7)

where

F (Q) =

[
(1 +A(Q11)) ∗ f(Q11) (1 +A(Q12)) ∗ f(Q12)

(1 +A(Q21)) ∗ f(Q21) (1 +A(Q22)) ∗ f(Q22)

]
,

(8)
where the positions Q11(u1, v1), Q12(u1, v2), Q21(u2, v1),
Q22(u2, v2) are the four nearest neighbors of the sampling
point P (u, v); see the demonstration in Fig. 5. Compared
with the traditional bilinear interpolation, we modify the
matrix F (Q) by modulating each neighboring feature f(Qij)
with the weight 1 + A(Qij). As defined in Eq. (7) and Eq.
(8), the feature of the neighbor Qij that is closer to P or
shows a higher attention A(Qij) is aggregated to f(u, v) with
a larger weight. Consequently, compared with the original
feature F in Fig. 4 (b), the features with large attention (red
color) are densely sampled and spatially amplified while the
features with small attention (blue color) shrank on the output
feature F ′. Therefore, in the attention-aware branch, the
discriminative lesion features with larger attention are better
propagated in the forward pass and promote classification.
During the back-propagation, the lesion areas get larger
gradients and accelerate network optimization.
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TABLE I: Comparison results for the classification of WCE images.

Methods N-Rec (%) V-Rec (%) I-Rec (%) OA (%) Cohen’s Kappa (%)
DenseNet (B1) 97.15±0.42 92.50±1.10 87.59±0.58 92.40±0.30 88.28±0.49

DenseNet*2 + ToA + AGLA (TALA-Net) 97.33±0.38 94.89±0.59 91.93±1.01 94.72±0.15 92.08±0.22
Global branch 97.32±0.28 93.00±1.15 91.04±1.32 93.92±0.38 90.87±0.57

Attention-aware branch 97.32±0.39 94.67±0.67 91.48±1.17 94.49±0.27 91.74±0.40
DenseNet*2 (B2) 97.76±0.90 92.00±0.77 90.38±0.90 93.38±0.15 90.07±0.22

DenseNet*2 + ToA + SBS (B3) 97.54±0.95 93.54±0.89 91.04±1.22 94.05±0.12 91.07±0.17
DenseNet*2 + CAP + AGLA (B4) 98.21±0.59 92.89±0.97 89.26±0.77 93.45±0.27 90.18±0.40
DenseNet*2 + CMP + AGLA (B5) 97.99±0.01 93.11±0.97 89.68±0.62 93.60±0.27 90.40±0.40

DenseNet*2 + nonlocal + AGLA (B6) 97.33±0.01 94.65±1.32 89.26±0.67 93.75±0.22 90.63±0.34

C. Training and Testing Strategies

Loss function. Since all component modules are differen-
tiable, we optimize the proposed TALA-Net in an end-to-end
manner. The overall loss function is defined as

L = −
∑

j∈{1,2}

∑
i∈D

tilog
ez

(j)
i∑

i e
z
(j)
i

, (9)

where j ∈ {1, 2} is the index of the two branches, i ∈ D
denotes the index of training samples, ti and zi represent
the ground truth label and output logits of the i-th sample,
respectively.

An advantage of the end-to-end training strategy is that the
global branch and the attention-aware branch can be mutually
promoted through gradients propagation. For example, if the
ToA attention map fails to highlight the lesion areas, this may
lead to suppression rather than amplification of the lesion
features, thus degrading the performance of the attention-
aware branch. Hence, the optimization of the attention-aware
branch will force the global branch to produce more precise
ToA attention maps. The accurate attention maps can further
promote the feature representation and classification abilities
of both branches.

Inference. In testing phase, the classification result of each
image is obtained by the average of predictions from the
global and attention-aware branches.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Dataset: The proposed method was validated on the
CAD-CAP WCE dataset [24] containing 1812 images with
resolution 512× 512. It consists of 600 normal images, 605
vascular lesions, and 607 inflammatory frames. The dataset
was randomly divided into a training set (75%) and a testing
set (25%) to conduct experiments. Each experiment was
repeated three times and the average results were reported to
evaluate the network performance. In order to maintain the
robustness and stability of the training process, the training
data was augmented through flip and rotation.

Implementation: Our model was implemented using Ten-
sorflow on a desktop with Intel Core i7-7820X3.60GHz
processors and a NVIDIA GeForce GTX 1080 Ti with 32
GB of RAM. The model was trained for 60 epochs utilizing
stochastic gradient descent (SGD) with Nesterov momentum.

We set the momentum to 0.9 and mini-batch size to 8. The
learning rate was initialized as 0.01, and dropped by 0.1
after 40 epochs. The performance of lesion classification was
evaluated by overall accuracy (OA), recall of normal images
(N-Rec), recall of vascular lesion images (V-Rec), recall of
inflammatory images (I-Rec), and Cohen’s Kappa score.

B. Evaluation of Network Design

We evaluated the proposed TALA-Net and reported the
classification performance in TABLE I. Compared with
the vanilla “DenseNet (B1)”, our TALA-Net obtains an
improvement of 2.32% and 3.80% in terms of OA and
Cohen’s Kappa, respectively. Besides, the recall of abnormal
images (V-Rec & I-Rec) gains larger improvement than the
normal recall (N-Rec). These results verify that the TALA-
Net achieves better lesion recognition performance through
the amplification of lesion features. In the following subsec-
tions, we conducted comparison experiments to validate the
effectiveness of the proposed AGLA and ToA modules.

1) Evaluation of the AGLA Module: As shown in
TABLE I, in the TALA-Net, the attention-aware branch
outperforms the global branch with an improvement of
0.57% and 0.87% in terms of OA and Cohen’s Kappa,
respectively. The reason is that the features deformed by the
AGLA module have an enhanced representation of lesions
thus lead to a stronger discriminative ability. As shown
in Fig. 6, the deformation grids (Fig. 6 (c)) are more
densely distributed in the lesion areas with higher attention,
thus these regions are more densely sampled and spatially
amplified on the outputs shown in Fig. 6 (e, g, i). What’s
more, compared with the original features (Fig. 6 (d, f,
h)), the AGLA transformed features (Fig. 6 (e, g, i)) show
suppressed responses in the background regions, which is
due to the attention based bilinear interpolation utilized in
the AGLA. Therefore, more discriminative deformed features
with enhanced representation of the lesions and suppressed
responses of the irrelevant features are transferred to the
attention-aware branch, thus yielding stronger discrimination
power and performance gains.

As shown in TABLE I, although the global branch in the
TALA-Net shares an identical structure with the “B1” model,
it gains an accuracy promotion by 1.52%. This result is
consistent with our analysis in Section III-C. The inaccurate
attention maps of the global branch are rectified through the
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Fig. 6: Visualization of features before and after the AGLA module. (a) Input images. (b) ToA Attention maps. (c) Attention
guided deformation grids. (d) Original feature maps in block1. (e) Feature maps in block1 after AGLA. (f) Original feature
maps in block2. (g) Feature maps in block2 after AGLA. (h) Original feature maps in block3. (i) Feature maps in block3
after AGLA. (j) Ground truth masks. [Best viewed in color.]

end-to-end training, hence feature responses in the global
branch are forced to concentrate on the lesion areas, which
contributes to better classification performance.

Compared with the “B1”, our TALA-Net contains an ad-
ditional attention-aware branch with increased computation
complexity. To prove that the performance gains of the
TALA-Net are caused by the lesion amplification effect of
the AGLA module rather than the additional computations,
we constructed “DenseNet*2 (B2)” by ablating the AGLA
module. In the “B2” model, hierarchical features from the
global branch are directly transferred to the attention-aware
branch. As shown in TABLE I, although the OA of “B2”
is 0.98% higher than the “B1”, it is much lower than the
TALA-Net. This result proves the performance gains of the
TALA-Net is mainly caused by the lesion amplification effect
of the AGLA module.

Furthermore, since the saliency-based sampler (SBS) in
[22] and our AGLA module share the similar idea of
zooming in important regions, we constructed a comparison
experiment “B3” by replacing the AGLA with the SBS
module. As demonstrated in TABLE I, the accuracy of the
“B3” is 0.67% lower than the TALA-Net, thus proving the
superiority of the AGLA over the SBS module. The reason
is that the AGLA module suffers less from spatial distortion
and further enhances the lesion representations by utilizing
attention based bilinear interpolation.

2) Evaluation of the ToA Module: To evaluate the
performance of the ToA attention maps in indicating lesion
positions, we compared them with the high-order Nonlocal
attention [21] and the first-order attention maps generated
through Channel-wise Average Pooling (CAP) [16] and
Channel-wise Max Pooling (CMP) [17].

We constructed the models “B4”, “B5”, and “B6” by
replacing the ToA module with the CAP, CMP, and Nonlocal
modules, respectively. As shown in TABLE I, the “B4”,
“B5”, and “B6” perform inferiorly against the TALA-Net
with an overall accuracy of 93.45%, 93.60%, and 93.75%,
respectively. A possible reason is that these three attention
modules are insufficient to provide correct guidance for the
attention-aware branch, thus leading to limited performance.
To validate the above assumption, we compared the attention
maps produced by different modules. The image in the first

Fig. 7: Comparison between the attention maps produced by
different attention modules. The top and bottom rows show
examples of vascular lesion and inflammatory, respectively.
[Best viewed in color.]

row of Fig. 7 contains two segments of vascular lesions. On
the CAP and CMP attention maps, the lesion at the upper left
corner has a relatively low attention value, this is due to its
similarity with the surrounding normal features. On the cor-
responding ToA attention map, responses at that lesion area
are enhanced. The underlying reason is that benefiting from
the ToA module, low-response lesion features are enhanced
by aggregating features from other long-range dependent
lesion areas. For the inflammatory image shown in the second
row of Fig. 7, false-positive responses are observed in the
central part of the CAP and CMP attention maps. This
indicates that the first-order attentions have limited capability
of distinguishing lesions from hard mimics. In contrast, the
responses of hard mimics are effectively suppressed on the
ToA attention map. This is because the features from the
background normal areas are aggregated to suppress the
responses of the hard mimics. Note that although sharing
a similar idea of aggregating long-range dependent features,
the attention maps produced by the Nonlocal module fails
to highlight the lesion regions correctly. The reason is that
the multiplication of two different transformed features in the
Nonlocal module is insufficient to capture the correct feature
dependencies. This can further validate the superiority of the
second-order covariance utilized in our ToA module.

According to the experimental results, we conclude that
the ToA module can refine attention maps by suppressing
background noises and enhancing lesion features, thus more
accurate guidance for the AGLA module would help to ef-
fectively amplify the lesion features and boost classification.
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TABLE II: Comparison with state-of-the art methods for classification of WCE images.

Methods N-Rec (%) V-Rec (%) I-Rec (%) OA (%) Cohen’s Kappa (%)
Fan et al. [2] 91.95±1.03 90.44±1.46 73.37±2.13 85.27±0.59 77.90±0.89

Iakovidis et al. [3] 77.23±0.05 78.79±0.64 75.00±3.12 77.01±1.24 65.52±1.86
Alaskar et al. [4] 89.49±1.47 89.33±1.68 77.40±2.52 85.40±0.49 78.13±0.73

Xing et al. [7] 95.99±1.15 91.30±0.35 88.61±1.41 91.96±0.22 87.95±0.34
Guo et al. [8] 97.10±1.15 93.30±1.65 90.18±0.65 93.53±0.36 90.29±0.55

TALA-Net (Ours) 97.33±0.38 94.89±0.59 91.93±1.01 94.72±0.15 92.08±0.22

C. Comparison with Other Methods
We further compared our method with five state-of-the-

art deep learning-based image-level classification methods
[2]–[4], [7], [8] in the WCE field. For a fair comparison,
we used the implementations of other methods provided
by the authors. Due to the relatively shallow off-the-shelf
models, [2]–[4] showed limited discriminative capability
and produced unsatisfactory performance. In contrast, the
algorithms in [7], [8] produced relatively good performance,
which can be attributed to their advanced backbone (i.e.,
DenseNet) and the delicately designed attention mechanisms.
Compared with [8], our algorithm obtained performance
gains of 1.19% in terms of OA. The comparison results
validate the superiority of the proposed TALA-Net.

V. CONCLUSIONS
In this paper, we proposed a two-branch third-order atten-

tion guided lesion amplification network for the challenging
classification task of WCE images. The main idea is to
achieve better inspection of small lesions through ampli-
fication of the lesion features. Our proposed third-order
attention can accurately highlight the potential lesion regions
with image labels only. Then, a novel attention guided
lesion amplification module was proposed to zoom in the
suspected lesion features, thus leading to more discriminative
feature representations and better classification performance.
Extensive experiments on a publicly available WCE dataset
validated the superiority of the proposed method which
outperforms other state-of-the-art approaches.
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