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Abstract— We present a multi-UAV Coverage Path Planning
(CPP) framework for the inspection of large-scale, complex
3D structures. In the proposed sampling-based coverage path
planning method, we formulate the multi-UAV inspection appli-
cations as a multi-agent coverage path planning problem. By
combining two NP-hard problems: Set Covering Problem (SCP)
and Vehicle Routing Problem (VRP), a Set-Covering Vehicle
Routing Problem (SC-VRP) is formulated and subsequently
solved by a modified Biased Random Key Genetic Algorithm
(BRKGA) with novel, efficient encoding strategies and local
improvement heuristics. We test our proposed method for
several complex 3D structures with the 3D model extracted from
OpenStreetMap. The proposed method outperforms previous
methods, by reducing the length of the planned inspection path
by up to 48%.

I. INTRODUCTION

While visual inspection of 3D structures with a camera-
equipped Unmanned Aerial Vehicle (UAV) can be achieved
by a manual flight, it becomes extremely difficult for a
human operator to perform the task efficiently and safely
for a large-scale, complex 3D structure. It is particularly
difficult for a human operator to make sure that the camera
captures every bit of the target surfaces while flying the UAV
safely in a windy condition. For complex 3D structures, it
is thus necessary to fly a UAV autonomously along optimal
paths planned prior to the flight [1], [2], [3]. By flying along
carefully planned paths, we can make sure that an autonomous
UAV can capture every portion of the target surfaces by photos
and/or videos with shortest possible flight paths.

If the 3D structures are not only complex but also large-
scale, deploying multiple autonomous UAVs is desirable,
considering that typical quad-rotor UAVs’ batteries last only
for 20 - 40min. With the recent price drop of quad-rotor UAVs,
deploying multiple autonomous UAVs for visual inspection is
a realistic solution for completing visual inspection tasks for
a large, complex 3D structure [4]. Planning optimal paths for
a team of multiple UAVs is the subject of the work presented
in this paper.

Planning paths for multiple UAVS is significantly more
complex and challenging than in a single UAV case. In
formulating the problem, we assume that the geometries of
target 3D structures are known and represented as triangular
meshes, made available through OpenStreetMap buildings [5].
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Fig. 1: Large-scale complex 3D structure inspection: a): 3D
model (Marina Bay Sands) from OpenStreetMap buildings [5];
b) multi-UAV inspection path planning; c): voxel constructed
from Octomap [8]

Assuming also that the geometries do not change between
the planning time and the time that the UAVs are deployed,
the problem becomes a model-based, offline Coverage Path
Planning (CPP) problem [6], [7]. Since multiple UAVS, or
agents, are used, the problem is also considered as a Multi-
Agent(UAV) Coverage Path Planning (MACPP) problem.

Previously published planning methods are not suitable for
solving the multi-agent path planning for visual inspection of
large and complex 3D structures. These methods are limited
in that most of them are for a single agent [9], [10] and
that the ones for multiple agents mostly work only for 2D
problems or simple 3D problems [11], [12].

This paper presents a novel formulation and algorithm
for the CPP problem with multiple UAVs for 3D visual
inspection tasks. The proposed approach utilizes a sampling-
based method to generate and select the via-points and path-
primitives. Upon evaluation of the path and the visibility,
a Coverage Probabilistic Roadmap (C-PRM) graph is con-
structed to encode the topological, distance and coverage
information. The overall problem is then formulated as a Set
Covering Vehicle Routing Problem (SC-VRP) and solved by a
proposed Biased Random Key Genetic Algorithm (BRKGA).
The main contributions of our work are:

• a multi-UAV CPP framework for large-scale complex 3D
visual inspection tasks using a sampling-based planning
method;

• a minmax SC-VRP formulation by combining two NP-
hard problems, SCP and VRP for the MACPP problem;

• an efficient evolutionary computing algorithm with
novel encoding and decoding strategy, as well as local
improvement heuristics to solve the formulated minmax
SC-VRP problem.
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II. RELEVANT WORK

Path Planning finds a collision-free path for a robot to move
from a starting pose to a target pose [13]. CPP [14], [11]
is to plan an efficient path that covers a specified area
with or without the starting and target pose requirements.
CPP problems [11] have been studied extensively in many
applications such as inspection [10], [15], surveying [16]
and 3D mapping / reconstruction [17]; for different types of
robotic systems such as UAV, UGV and robotic manipulators.

Depending on availability of the target geometric informa-
tion, CPP could be either model-based or non model-based
[4], [7]. For CPP in inspection applications, usually the 3D
model of the target is available and could be formulated
as a model-based CPP problem [6], [18]; with only a few
exceptions [9]. Sampling-based “Generate-Test” framework
are usually used for the model-based CPP problems [19], [20],
[18], which usually generate redundant samples to fulfill the
coverage requirements of the inspection and then optimize
the path and viewpoints from the samples. Learning-based
methods has also been combined with the sampling-based
method for the single-agent CPP problem [21].

CPP with multiple UAVs has also been studied [4], [22],
[12] to reduce the required time or to cover larger areas. Most
of the work mainly focused on 2D swapping coverage with
UAVs for covering 2D areas [12], [23], [24], with different
optimization objectives depending on the requirements from
the applications. Only a few studies focused on 3D coverage
planning with multiple agents. However, the 3D environments
in these work are limited to simple smooth targets (e.g.
3D terrain) [25], [26]. More recently, research work on 3D
structural coverage with multiple agents have been conducted,
but not targeting for a visual inspection application that
requires a high coverage ratio [27]. More comprehensive
reviews of state-of-the-art planning methods for CPP and
multi-robot CPP problems in different robotic applications
are available in previous survey papers [7], [28], [22], [11],
[4].

In this paper, we address the model-based 3D MACPP
problem by a sampling-based “Generate-Test” framework
[19], [29], with the path-primitive sampling method [10] to
ensure a high ratio of coverage of a large-scale, complex 3D
environment. This work extends the path-primitive sample
method and applies it to a multi-UAV inspection task. A novel
BRKGA method is applied to solve the NP-hard optimization
problem.

III. PROBLEM DESCRIPTION

The goal of our work is to solve the path planning problem for
3D visual inspection with multi-UAV system for large-scale,
complex structures. Since our solution is for an inspection
task for static environment, we assume the geometry of the
environment is known, and it is represented by a triangular
mesh format. Thus, the planning problem is formulated as
a model-based, offline planning problem. For the multi-
agent system, K UAVs with onboard cameras fly around
the buildings to conduct the inspection. The objective is
to minimize the length of the inspection path for the task,
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Fig. 2: Overview of our proposed framework which breaks
down the problem into a coverage sampling problem
followed by a path planning and optimization problem.

with the coverage requirement constraints. The planning
problem for 3D structural inspection with multi-UAV is thus
formulated as a MACPP problem.

IV. METHOD

We propose an inspection path planning framework for an
MACPP problem and apply it to the 3D visual inspection task.
The proposed method first generates way-points and path-
primitives by incremental sampling to create a C-PRM graph
with information on topology, coverage and path length; the
MACPP is then formulated as a min-max SC-VRP problem
and solved by BRKGA. The overall structure of the proposed
problem-solving framework is shown in Fig. 2

A. Coverage Sampling with Path-Primitives

For the CPP problem in inspection applications, a Coverage
Sampling Problem (CSP) [18] is formulated to generate
and select the via-points and path-primitives to ensure good
coverage of the target structures.

1) Sampling and Visibility Evaluation: We use a path-
primitive sampling method to generate and select the via-
points and paths for 3D swapping coverage [10]. In addition,
we also adopt a dual sampling method [18] to improve the
sampling efficiency and improve the coverage. Moreover, bi-
nary dilation on voxel is also used to create efficient sampling
space for the via-points and path-primitive generation in the
RandomSample and DualSample. A binary dilation of voxel
A by B is defined as:

A⊕ B = {x|B̂x ∪ A 6= ∅} (1)

where B̂x shifts the symmetric of B by x.
The dual path-primitive sampling algorithm is shown

in Algo 1. It iteratively samples the viapoints and path-
primitives with a bias towards unseen surface patches. In
order to improve the via-point sampling efficiency, the
sampling space is created by two binary dilations, D1 and
D2, as shown in Eqn. 1 and Algo 1, and a subtraction.
RandomSample is then performed to sample the via-points.
This is followed by iterative incremental DualSample and
visibility evaluation. The orientations of the via-points and the
path primitives are generated using potential field methods
and linear interpolation, details could be found in [10].

The visibility of a viewpoint to the samples on the target
surface is evaluated through ray-tracing with the given
camera specifications [19], [20]. In addition to the viewpoints,
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VisibilityEvaluation(E,M) evaluate the visibility of path-
primitives by sampling viewpoints on the path and combining
the binary visibility information of the samples [10]. The
target surface is uniformly sampled into M, a set of triangular
patches for the visibility evaluation. A m×1 binary vector, s,
is computed for each path-primitive to represent the visibility
of the target objects. The operator, dilate(Mv, d), performs
a dilation on Mv with a sphere of radius d. L(vi, vj ,M) is
the collision-free local planner to find the collision-free local
path from vi to vj . DualSampleVP samples the via-points
with a bias towards uncovered surface patches.

Algorithm 1 Coverage Sampling with Dual Path-Primitive
Sampling
Input: The collision-free Local Planner, L; the 3D model of target

objects in triangular mesh format M, and in binary voxel format
Mv; the max viewing range of sensor, dvis; and the safety
distance, dsafe

Output: The set of sampled via-points V; and the set of sampled
path-primitives, E.

1: E,V,Munseen ← ∅, ∅,M
2: D1, D2 ← dilate(Mv, dvis), dilate(Mv, dsafe)
3: D ← VoxelSubstract(D1, D2)
4: V← RandomSampleVP(D)
5: while |Munseen| > mmin or |E| < ndesired do
6: V′ ← DualSampleVP(D,Munseen)
7: V← Append(V,V′)
8: for vi, vj ∈ V, i 6= j do
9: if dist(vi, vj) ≤ dmax then

10: eij ← L(vi, vj ,M)
11: E← Append(E, eij)
12: end if
13: end for
14: Munseen ← VisibilityEvaluation(E,M)
15: end while
16: return V,E

2) Coverage Probabilistic Roadmap for Inspection Plan-
ning: After coverage sampling and visibility evaluation, a
Coverage Probabilistic Roadmap (C-PRM) graph, G(V,E),
with coverage information for inspection is formulated
for a multi-UAV system. Similar to the construction of a
Probabilistic Roadmap (PRM) [30], the C-PRM encodes
additional coverage information of the path-primitives in
edge E of G. An illustration of sampled C-PRM is shown
in Fig. 3. Note that more via-points and path-primitives are
sampled during the actual implementation.

In addition to topological information, edge eij ∈ E
also encodes distance information and coverage information:
{dij , sij}. For the binary element skij ∈ sij , k ∈ [1,m],
skij = 1 indicates that a surface patch indexed by k is visible
to path-primitive eij , and skij = 0 indicates that it is invisible.

B. Planning and Optimizing the Inspection Path

The inspection path planning problem with multiple UAVs
could be formulated as an SC-VRP by combining two NP-
hard problems: SCP and VRP. The coverage problem is
formulated by sampling the target surface and evaluating
the visibility. The C-PRM graph, G(V,E), is used for the
formulation of the optimization problem for MACPP.

(a) Target structure (b) Target structure with C-PRM

Fig. 3: Illustration of C-PRM Graph

1) Integer Linear Programming: The Integer Linear Pro-
gramming (ILP) formulation of min-max SC-VRP is given
in Eqn. (2), with the objective of minimizing the maximum
length of the individual UAV path.

min
x

max
k

n∑
i=1

m∑
j=1

di,j x̂i,j,k, (2)

subject to the following constraints:
n∑

i=1

K∑
k=1

sij x̂i,j,k ≥ 1 ∀j, (3)∑
i,j|vi,vj∈V ′

k

x̂i,j,k ≤ |L| − 1, |L| ∈ V ′k, |L| ≥ 2, (4)

V ′k|V ′k ∈ V, for x̂i,j,k = 1, (5)
ei,j ∈ E, for x̂i,j,k = 1, (6)
x̂i,j,k ∈ {0, 1}, (7)

where xi,j,k is the binary selection of the path, ei,j , in C-
PRM G(V,E) of UAV k (as in Constraint (6)). Constraint
(3) is the coverage constraints, which states all surface areas
should be covered by adding coverage information sij of all
selected paths from all UAVs. Constraint (4) is the subtour
elimination constraint for all k UAVs of selected subset of the
nodes [31], [32]. Since the nodes are via-points to provide
connectivity information of edges, and the coverage is done
through flying over the path-primitive (edge), there is no
constraint on one-visit per node (via-point), or visiting of all
nodes.

In many inspection applications, a desired coverage ratio,
δd, is specified instead of full coverage. In such a case, the
coverage constraint, Constraint (3), should be alternated to:∑m

j=1(
∑n

i=1

∑n
k=1 sij x̂i,j,k) ≥ 1)

m
≥ δd (8)

which states the coverage ratio should be larger than or equal
to δd, by summing all coverage information sij of all selected
paths from all UAVs.

2) Path Planning and Optimization with BRKGA: Random
Key Genetic Algorithm (RKGA) is a meta-heuristic frame-
work that uses random keys in the chromosome to encode the
solution [33]. RKGA has been applied to many combinatorial
optimization problems [34], [35], [36]. Using random keys is
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to add an encoding-decoding process to map the feasible space
with complex constraints to an unconstrained one, which
reduces the complexity of constraint handling in solving a
constrained combinatorial optimization problem.

For the formulated NP-hard SC-VRP, we adopt an im-
proved version of RKGA, BRKGA [35], with a modified
encoding-decoding method. The chromosome C is a n× 1
vector (n is the number of node in G), which consists n
random-keys {x|0 ≤ x ≤ K}. The integer part of the random
key is used to encode the UAV (e.g. xint = 1 means UAV
1 is selected), and the fractional part is used to encode the
neighbour of current to choose. Note that not all nodes need
to be visited since this is a set covering problem, instead,
the task is considered as completed as long as the required
coverage is achieved. Additionally, we use BRKGA with local
improvement heuristics to further optimize the performance.

Our new formulation transfers the ILP problem with many
constraints into a sequencing problem. As shown in Algo. 2,
the fitness evaluation of BRKGA decodes the chromosome
into paths of K UAVs. The coverage constraint will be
evaluated after decoding each random-key. Once the coverage
constraint is satisfied, the fitness evaluation exits and returns
the fitness value, as well as the paths of the UAVs.

Algorithm 2 Fitness Evaluation
Input: The input chromosome, C; the C-PRM graph, G(V,E);

and other algorithm specific parameters;
Output: The fitness score smax

1: Vres,Eres, δ, s← ∅, ∅, 0,0
2: for i ≤ sizeof(C) do
3: v, e, xint ← decode(v,G, ci)
4: Eres ← append(Eres, e)
5: δ ← evaluateCoverage(Eres)
6: sxint ← sxint + d(e)
7: if δ ≥ δd then
8: break
9: end if

10: end for
11: smax ← s
12: return smax

In order to further improve the performance, we also
added local improvement heuristic to the BRKGA. Similar
to the 2-opt heuristics in Traveling Salemans Problem (TSP)
[37], the local improvement heuristics shown in Algo. (3) is
used to find two valid vertices in the C-PRM G to perform
the 2optSwap operation for each path of a individual UAV.
2optSwap(Co, vi, vj) only performs the swap operation when
the path length could reduce while the coverage constraint
still holds. 2optSwap also re-encodes the random-keys at the
swapping points, and returns the swapped chromosome Co.
This process is repeated along the paths of all UAVs in P .
For the BRKGA with local improvement heuristics, the local
improvement heuristic is used as an additional operator; in
addition to the conventional RKGA mutation, crossover, and
selection operators.

Algorithm 3 Local Improvement Heuristics

Input: The input chromosome, C; the C-PRM graph, G(V,E);
and the inspection paths(sequence of nodes) of all UAVs, P ;

Output: the output chromosome Co;
1: Co ← C
2: for pk ∈ P do
3: for vi ∈ pk do
4: for vj ∈ neighbour(vi,G) do
5: Co ← 2optSwap(Co, vi, vj)
6: end for
7: end for
8: end for
9: return Co

V. IMPLEMENTATION AND RESULTS

A. Setup

We validate the proposed planning method with six 3D visual
inspection cases. The 3D models of the target structures are
real-world buildings in Singapore and Pittsburgh, taken from
our previous work or extracted from the OSM Buildings of
OpenStreetMap [5]. The models are uniformly remeshed to
create samples m ∈ M on the target surface, as shown in
Fig. 4. The sizes of the bounding boxes are also indicated.
We implemented BRKGA using DEAP [38], the graph G
and relevant graph algorithms using NetworkX [39]. For the
parameters of visibility evaluation, the diagonal FOV is set to
94◦; the maximum viewing angle is 75◦; the safety distance
is 2m; the maximum viewing ranges and the coverage ratios
are 50m and 99% respectively for the first two small scale
targets, and 70m and 98% respectively for the last four large-
scale targets. The parameters used are similar to those in the
literature [20] [10].

(a) T1: 64×80×13m (b) T2: 85×79×14m (c) T3: 164×190×8m

(d) T4: 286 × 156 ×
15m

(e) T5: 198 × 196 ×
226m

(f) T6: 159 × 319 ×
207m

Fig. 4: Target structures and their sizes

B. Results of CPP for Inspection

The proposed BRKGA method is suitable to solving both
single-UAV and multi-UAV CPP problems. We first evaluated
the proposed method with inspection tasks for two small-
scale structures. A heuristic greedy neighborhood graph search
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TABLE I: Results of planned path for single/multi-agent
inspection (measured in meters, average of 10 runs)

T1 T2
No. of UAVs 1 2 3 1 2 3

VPP-TSP[2], [40] 507.7 - - 587.5 - -
GNS[10] 425.6 325.9 313.1 466.2 441.2 344.1
BRKGA 277.9 197.2 168.9 335.3 232.3 201.8

BRKGA+ 271.1 186.4 150.8 308.1 225.6 177.8

(labeled as GNS[10]), and a set covering based view planning
with TSP path planning (labeled as VPP-TSP [2], [40]) were
used as baselines for benchmarking. The reported BRKGA
and BRKGA with local improvement heuristics (labeled as
BRKGA+) results were the mean value based on 10 runs.
Note that VPP-TSP is only applicable to the single-agent
CPP problem.

The parameters for BRKGA and BRKGA+ were as follows:
the population size was 1000; the number of generation was
100; the mutation rate was 0.2, the crossover rate was 0.5;
the elite selection rate was 0.1. For BRKGA+, the rate of
performing local improvement heuristics was set as 0.2.

(a) T1 (b) T2

Fig. 5: Example visualizations of planned paths with 3 UAVs,
each color represents the path of an individual UAV

The results in Table I show that the proposed BRKGA-
based method performs significantly better than previous
methods. For the single UAV case, BRKGA reduces the path
length by 44.1% and 31.4% compared with the VPP-TSP
and GNS methods, while BRKGA with local improvement
heuristics (BRKGA+) further reduces it by 5.3% over
BRKGA and achieves an overall reduction of 47.1% and
35.1%. For the multi-UAV inspection path planning results,
BRKGA and BRKGA+ reduce the path length, respectively,
by 43.6% and 48.0% compared with GNS. The planned
inspection paths are visualized in Fig. 5, where each color
represents the path of an individual UAV.

C. Additional Results on Large-Scale, Complex Structures

We also evaluated the performance of the proposed method
with multiple UAVs for four additional large-scale, complex
target structures. The population size was set to 2500 for
BRKGA and BRKGA+, in order to deal with the larger scale
problems and more UAVs. All the other parameters were the
same as in Section V-B. In the planning results shown in
Table II, BRKGA and BRKGA+ reduced path lengths by
16.4% and 24.6% on average compared with the previous

(a) T3 (b) T4

(c) T5 (d) T6

Fig. 6: Example visualizations of planned paths with 3 UAVs,
each color represents the path of an individual UAV.

method. The planned inspection paths are visualized in Fig.
6.

The planned paths of multiple UAVs in different environ-
ments were simulated with Drake simulator [41]. Based on
the simulated sensor measurements along the paths, Octomap
[8] was used to incrementally construct the map and evaluate
the quality of coverage. The example convergence plots of the
BRKGA and BRKGA+ are shown in Fig. 7, which show both
methods converge smoothly, but that BRKGA+ converges
faster than BRKGA. The reconstructed octomaps are shown
in Fig. 8.
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(a) Convergence on T1
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(b) Convergence on T4

Fig. 7: BRKGA convergence rates for three-UAV cases (based
on 10-run)

VI. DISCUSSION

The proposed planning method automatically generates paths
for multiple UAVs to inspect large-scale 3D structures
with complex geometries. It also features a continuous
3D swapping coverage with the path-primitives, instead of
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TABLE II: Results of planned path for Multi-agent Inspection (measured in meters, average of 10 runs)

T3 T4 T5 T6
No. of UAVs 3 4 5 3 4 5 3 4 5 3 4 5

GNS[10] 527.6 447.3 430.5 804.5 542.5 498.3 1646.5 1373.4 1312.4 1890.2 1811.9 1736.3
BRKGA 396.1 351.3 279.5 697.2 500.3 449.8 1417.7 1167.8 1017.8 1821.4 1529.9 1490.4

BRKGA+ 357.0 317.4 270.6 567.7 430.9 390.6 1351.7 1062.3 926.7 1783.5 1349.2 1321.8

(a) (b) (c)

(d) (e) (f)

Fig. 8: Visualization of coverage target surfaces: the voxel model is obtained by simulating the planned path for three UAVs
using the proposed method in Drake simulator

discrete coverage with individual viewpoints. Our research
demonstrated that there are several advantages of continuous
3D swapping coverage. First, the planned inspection paths are
shorter than the discrete viewpoints planning method (VPP-
TSP). Second, it provides more reliable image registration
compared to viewpoint planning.

Since the BRKGA method optimizes the inspection paths
for multiple agents globally, it significantly outperformed
the previous method. Additionally, increasing the number of
UAVs reduces the cost (maximum path of the UAVs) of the
inspection. Note, however, that the path length reduction is
not proportional to the number of the UAVs, as also observed
in other multi-agent coverage planning in 2D scenarios [24].

The proposed method for finding efficient inspection
paths is widely applicable to inspection applications for any
geometries of complex 3D structure. Each individual UAV
covers a separate area by following a unique path. Though
not all planned paths are very smooth, especially for large-
scale complex structures (e.g. T5, T6), the path smoothness
issue usually happens on a long path-primitive, which is long
enough for the UAV to follow. The path smooth issue could be

addressed in future research by adding objectives/constraints
in the problem formulation, since only the longest route inthe
SC-VRP determines the cost of the optimal solution, all other
shorter routes are not optimized. In addition, the smoothness
of the path could also be addressed by post path smoothing
and optimization, or at lower control level through trajectory
optimization while flying the UAVs along the planned path.

VII. CONCLUSION

The proposed multi-UAV path planning framework for
inspecting large-scale, complex 3D structures consists of
a coverage sampling phase for path-primitive dual sampling,
and a path planning and optimization phase using BRKGA.
We demonstrated that the proposed method automatically
generates efficient collision-free inspection paths for different
large-scale and complex 3D structures with a required
coverage ratio. The proposed method found highly efficient
paths that are up to 48% shorter than those created previous
methods. Future research of multi-UAV inspection path
planning includes post path smoothing, optimization, and
uncertainty handling during the deployment of actual UAV
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flights.
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