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Abstract— In this work, a novel solution to the optimal
motion planning problem is proposed, through a continuous,
deterministic and provably correct approach, with guaran-
teed safety and which is based on a parametrized Artificial
Potential Field (APF). In particular, Reinforcement Learning
(RL) is applied to adjust appropriately the parameters of the
underlying potential field towards minimizing the Hamilton-
Jacobi-Bellman (HJB) error. The proposed method, outper-
forms consistently a Rapidly-exploring Random Trees (RRT*)
method and consists a fertile advancement in the optimal
motion planning problem.

I. INTRODUCTION

Motion planning problems have always been a main focus
point of control system theory and robotics. While they
might appear to be a classic control theory problem, where
traditional methods can be used to control the motion of
a robot, certain peculiarities give this type of problems a
different flavor. Such peculiarities might be specific restric-
tions pertaining to the motion of a robot (e.g. non-holonomic
constraints) or possible obstacles in the workspace of a robot,
calling for the establishment of robust control techniques that
will ensure safety during the navigation and convergence to
a desired goal position. The aforementioned issues have been
tackled in various ways, and safe techniques for navigation
have long been established. However, the same cannot be
put forward when considering optimality in such problems.
While efforts have been made towards the goal of optimizing
the motion of actors in a workspace, the problem is in no
way considered trivial yet, and we believe that there is room
for exploring novel solutions and ameliorating the existing
results in the related literature.

In this work, we intend to explore the application of
Reinforcement Learning methods in optimizing the motion
of a robot moving in a two-dimensional constrained, but
fully known workspace with internal fixed obstacles. In
particular, an offline solution to the underlying optimization
problem is formulated in such a way that ensures safety and
convergence with mathematical rigor using robust principles
and tools from the successive approximation theory [20].
Subsequently, we establish an on-line reinforcement learning
approach for optimizing the motion of a moving robot with
respect to a specific utility function, with great emphasis on
the rigorous proof of safety and convergence. The motivation
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behind the online approach stems from the fact that in real-
world problems, not all trajectories of a workspace are of
use, but rather specific starting-ending point combinations
are needed. Therefore, an online approach is not only suf-
ficient, but also advantageous with respect to computational
complexity. Finally, the prospect of implementing the online
scheme in unknown workspaces further motivates the latter’s
formulation.

II. RELATED WORK

Since the early days of robotics, many research efforts
have been devoted to the motion planning problem and
thus many approaches have been formulated. Such ap-
proaches can be generally classified as discrete methods,
e.g., Configuration Space Decomposition methodologies [1]-
[3], Probabilistic Sampling methods, e.g., Rapidly Exploring
Random Trees [4]-[5] or Probabilistic Roadmaps [6]-[7] and
others such as Manifold Samples [8]. On the other hand,
the Optimal motion planning problem has been approached
via Receding Horizon control [9]-[10] and Path Homotopy
Invariants [11]-[12].

A specific class of solutions to the motion planning
problem, and one that aims at addressing both safety and
convergence aspects are the APFs, as introduced in [13]. This
class of solutions encompasses both information for safety
and convergence in the form of the gradient of a potential
field. However, APFs entail problems of unwanted local
equilibria due to their inherent construction and the topology
of the workspace [14]. Rimon and Koditschek managed to
produce a family of APFs, namely Navigation Functions
(NF) that are applied to a transformed version of the physical
workspace in the form of a sphere world1. Along with pro-
viding a constructive transformation for mapping workspaces
with star-shaped obstacles (sets with a point from which any
ray crosses the boundary once) to the aforementioned sphere
worlds, Rimon and Koditschek aleviated some of the issues
of the APFs as well. However, extensive tuning is required
to get rid of local minima and in practice these functions
prove difficult to be implemented (see [15]).

Aiming at tackling the shortcomings of APFs, a specific
sub-category of the latter was introduced, namely the Ar-
tificial Harmonic Potential Fields (AHPF) [17]-[23]. The
AHPFs are free of local minima by construction, and negate
many of the issues of previous NFs. In the present work, the
natural progress of previous research efforts [18], leads to

1A Euclidean sphere world of dimension N is formed by removing from
the interior of a large N-dimensional ball a finite number of non-overlapping
smaller balls.
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inheriting all the strong points of AHPFs and introducing a
robust solution to the optimal motion planning problem. In
order to accomplish this, a novel approach will be introduced,
encompassing past work on Reinforcement Learning Opti-
mization [16], re-framed and adapted for a specific family
of AHPF-inspired motion controllers. Our work provides
a deterministic and mathematically rigorous approach that
exceeds the capabilities of previous probabilistic approaches.
The implementation of Reinforcement Learning is pivotal in
the current approach, as it overcomes the need for solving a
very hard non-linear partial differential equation for calcu-
lating the cost function. Additionally, the latter is rigorously
proven to converge under mild assumptions.

III. PROBLEM FORMULATION
Consider a point robot operating within a bounded and

connected workspace G ⊂ R2 with M inner distinct ob-
stacles Oi, i = 1, ...,M and a desired position p0 ∈ W ,
G−∪Mi=1Oi. Let p = [x, y]T ∈ W denote the robot’s position.
The robot’s motion is described by the single integrator
model:

ṗ = u, p(0) = p̄ ∈ W (1)

where p ∈ W is the state-vector, u ∈ R2 is a control input
(i.e., velocity command) and p̄ ∈ W denotes the initial
position. Now, consider the optimal motion planning problem
of minimizing a cost function that consists of a state-related
term, namely Q(p; p0) and a control input-related term,
namely R(u). Hence, the following value function should
be subject to minimization:

V (p̄; p0) =

∫ ∞
0

[Q(p(τ ; p̄); p0) +R(u(τ))] dτ,

∀p̄ ∈ W
(2)

where p̄ is the initial state of the system p̄ = p(0) and p0

denotes the goal position.

A. A Set of Parametrized Control Policies
We will now introduce a family of parametrized control

policies u = h(p, k) to the aforementioned problem, where
k denotes the control parameter vector. First, assume that
we have a diffeomorphic transformation2 from W onto the
punctured plane denoted by f : W → R2 − {V1, ...,VM}
that satisfies f(p0) = V0 and f(∂Oi) = Vi, i = 1, ...,M .
The proposed parametrized solution is given as:

h(p, k) , P (p) · k = −J−1
f (p) · g(p) ·A · k, (3)

where the control-parameter vector k , [k0, k1, · · · , kM ]
T ∈

RM+1 is analogous to the harmonic potential field weights,
A is a square matrix of the following form:

A =


1 1 · · · 1
0 1 0 0
...

...
. . . 0

0 0 0 1

 ∈ R(M+1)×(M+1) (4)

2The adopted transformation is the composition of a diffeomorphism that
maps all points inside W onto the open punctured unit disk [18], with a
diffeomorphism that maps the unit disk onto R2 [17].

and g(p) defines a vector basis:

g(p) =

M∏
i=0

tanh
(
‖f(p)− Vi‖2

)
·

·

[
f(p)− V0

‖f(p)− V0‖2
,
−f(p) + V1

‖f(p)− V1‖2
, ...,

−f(p) + VM
‖f(p)− VM‖2

] (5)

with Jf (p) denoting the Jacobian of the transformation f(p).
The above formulation is a direct analog to the gradient of
a classic harmonic potential field, enhanced in a way that
fits the needs of the optimization process that follows. We
will later show that this formulation, besides safety, ensures
convergence as well. Furthermore, we have further simplified
the problem of stability and safety of the robot incorporating
the matrix A in (3). As shown in [17], for safe navigation
the weight of the attractive term has to be greater than the
sum of the weights of all the repulsive ones. It is evident
that such formulation can be quite tedious especially when
considering an optimization approach. Nevertheless, in our
formulation, the equivalent constraint boils down to:

ki > 0, i = 0, ..,M (6)

owing to the adopted form of matrix A in (4) (notice that
the weight of the attractive term is the sum of all ki). We
will prove analytically how our method will ensure safety
and convergence after discussing the optimization problem,
as our solution for the vector k will ensure both optimality
and (6). Hence, we consider the following value function:

V (p̄; p0) =

∫ ∞
0

[Q(p(τ ; p̄); p0) +W (k(τ))] dτ (7)

for all p̄ ∈ W , where

Q(p; p0) = β · ‖p− p0‖2, β > 0 (8)

and

W (k) = γ ·
M∑
i=0

∫ ki

α(p)

(
vi

α2(p)
− 1

vi

)
dvi, γ > 0 (9)

with α(p) = 1√
1+M

ū√
‖P (p)‖2+1

for an upper bound of

the velocity ū. The state-related term is a classical control
problem’s form. In such problems, the input-related cost is
quadratic. However, in our approach, (9) is used to ensure
safety and convergence. Notice that the selection of W is not
heuristic. This term has no physical significance, however,
the form of the function W (k) ensures that through its
minimization all components of k remain positive. We have
already discussed how the positivity of these components
ensure safety and convergence. Moreover, the lower bound of
the integral in (9) ensures that the parameters ki are such that
an upper bound of the velocity control signal is minimized.

IV. OFFLINE OPTIMIZATION
Let us define the Hamiltonian associated with the adopted

value function (7) as:

H(p, k,∇V (p)) = ∇V (p)TP (p)k +Q(p; p0) +W (k)
(10)
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Hence, the Bellman optimality equation is formed as follows:

∇V ∗(p)TP (p)k∗ +Q(p; p0) +W (k∗) = 0 (10*)

from which the optimal control vector k∗ is derived by the
first optimality condition ∂H(p,k,∇V ∗)

∂k |k=k∗ = 0, as:

k∗

α2(p)
− 1

k∗
= − 1

γ
(∇V ∗(p))TP (p) (11)

that forms a simple quadratic equation. Solving (11) for
k∗ and keeping only the positive roots to establish safe
navigation, we obtain the optimal control vector k∗ =
[k∗0 , k

∗
1 , ..., k

∗
M ] as:

k∗i =
α2(p)Γi(p)+

√
(α2(p)Γi(p))

2+4α2(p)

2 , i = 0, 1, ..,M (12)

where Γi(p) denotes the i-th element of the vector

Γ(p) = − 1

γ
(∇V ∗(p))TP (p)

Furthermore, it is evident that with this formulation all ele-
ments k∗i of this vector are strictly positive by construction.
Additionally, notice that if we had an analytical expression
for the value function V ∗(p) we would be able to directly
compute the optimal control vector k∗. However that is not
the case, since in our formulation, one should replace the
term k∗ from (12) in (10*) and then solve a non-linear
partial differential equation, which is rather hard to solve.
Nevertheless, we shall remedy this issue employing, first the
successive approximation theory [20] in an offline setting,
and then RL to provide an online solution.

A. Successive Approximation of the Value Function

In this section, we prove that a method for successively
approximating the Value Function of (2) is valid. First, we
define an admissible control policy.

Definition 1 (Admissible Control): A control vector k(p)
is defined to be admissible with respect to (2) onW , denoted
by k(p) ∈ Ψ(W), if k(p) is continuous onW , k(p) stabilizes
the system on W and V (p) is finite for all p ∈ W .

It is evident that the proposed parametrized control poli-
cies are admissible. Moreover, the Hamilton-Jacobi-Bellman
equation is linear w.r.t. the value function, which motivates
why we adopt successive approximation. The latter was
introduced by [20] and later expanded by [19] for bounded
controls. Nevertheless, we shall further prove the validity
of this approach in our case, effectively expanding it for a
control vector obeying only lower bounds, through the use of
the appropriately selected function W (k) in (9). Notice that
the successive approximation technique is applied to (10)
and (12). Hence, the following lemma proves how (12) can
be used to improve the tuning policy for the control vector
k(p).

Lemma 1 (Admissibility of Control): If at the j-th step
k(j) ∈ Ψ(W), and V (j) ∈ C1(W) satisfies the equa-
tion H(p, k(j),∇V (j)) = 0, then the new control vector

k(j+1) =
[
k

(j+1)
0 , k

(j+1)
1 , · · · , k(j+1)

M

]
∈ R(M+1), derived

by the solution of the equation is:

k
(j+1)
i =

α2(p)Γ
(j)
i (p)+

√(
α2(p)Γ

(j)
i (p)

)2
+4α2(p)

2 ,

i = 0, · · · ,M
(13)

is an admissible control vector for (1) on W .
Proof: To show admissibility, notice that V (j) ∈

C1(W) and the fact that the transformation f , its Jacobian as
well as the field g(p) are continuous for all p ∈ W implies
the continuity of k(j+1). Since V (j) is positive definite it
attains a minimum at p0 ∈ W , and thus,∇V (j) should
vanish there. It is also easy to see that u(j+1)(p0) = 0.
Taking the derivative of V (j) along the system trajectory
ṗ = P (p)k(j+1) we have:

V̇ (j)(p, k(j+1)) =
(
∇V (j)

p

)T
P (p)k(j+1) (14)

Writing the HJB equation for this control yields:

H(p, k(j),∇V (j)) =

−∇V (j)(p)
T
P (p)k(j) −Q(p; p0)−W (k(j)) = 0

(15)

Adding the above expression to (14) and invoking the fact
that the quantity −Q(p; p0) is always negative away from
the desired point p0 and

−
∫ k

(j)
i

α(p)

(
vi

α(p)2 −
1
vi

)
dvi−

−
(
k
(j+1)
i

α(p)2 −
1

k
(j+1)
i

)(
k

(j+1)
i − k(j)

i

)
≤ 0

owing to the Mean Value Theorem, it is clear that
V̇ (j)(p, k(j+1)) < 0 and V (j)(p) is a Lyapunov function
for k(j+1) on W . Therefore, from Definition 1, k(j+1) is
admissible on W .
Notice that we can also prove that each successive approx-
imation decreases the value function, through following a
process similar to [19], i.e.:

V ∗(p) ≤ V (j+1)(p) ≤ V (j)(p) , ∀p ∈ W (16)

Finally, the stability and convergence properties of the robot
trajectories may be proven through Lyapunov arguments with
the cost function acting as the candidate Lyapunov function.
Notice that his holds for all p ∈ W except for a measure
zero subset Ω ⊂ W , since for any admissible initial control
policy, the corresponding set Ω obtains zero measure and
(16) holds true.

B. Neural Network Successive Approximation

Neural Networks have long been used to approximate
sufficiently well functions within certain compact sets [21].
In our case V (j)(p) is approximated as:

V (j)(p) =

L∑
i=1

w
(j)
i φi(p) = (w(j))T · φ(p) (17)

which is a single-hidden-layer neural network with L neurons
with activation functions φi(p) ∈ C1(W) and w(j)

i weights.
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The corresponding weights are then tuned in order to min-
imize the error of the approximation - in a least squares
sense - over a number of samples taken on the workspace
W as defined in Algorithm 1. To prove, i) convergence in the
mean, ii) existence of the approximation in the least-squares
sense and iii) uniqueness of the approximation as well as
admissibility of k(j+1), we refer the reader to [19]. Finally,
notice that the process described in Algorithm 1 is obviously
an offline process, where the critic estimation weights are
calculated in advance of the implementation of the motion
planning policy.

Algorithm 1: Algorithm for the Neural Network
Approximation of the Value Function

• Sampling;
Select N points pi, i = 1, · · · , N within the
workspace W .
• Initialize;
Select an initial control vector
k(0) = [1, 1, ..., 1]

T ∈ R(M+1), which is an
admissible policy.

while Weights have not Converged do
• Weights Improvement Step: Solve the
following linear regression problem:

(w(j))
T
X = −Y

where

X = [∇φ(p)P (p)k(j)|p1
, · · · ,

· · · ,∇φ(p)P (p)k(j)|pN ]T
and

Y = [Q(p; p0) +W (k(j))|p1
, · · · ,

· · · , Q(p; p0) +W (k(j))|pN ]T
• Policy Improvement Step: Update the control

vector k(j+1) =
[
k

(j+1)
0 , k

(j+1)
1 , · · · , k(j+1)

M

]
∈

R(M+1):

k
(j+1)
i =

α2(p)Γ
(j)
i (p)+

√(
α2(p)Γ

(j)
i (p)

)2
+4α2(p)

2 ,

i = 0, · · · ,M

where Γ
(j)
i the i-th element of the vector

Γ(j) = − 1
γ (w(j))T∇φ(p)P (p)

j ← j + 1

end
Upon convergence set the control law of the system

as follows:

u = P (p) · k(j)

V. ONLINE OPTIMIZATION
We provide an online approach to tackle the optimal

motion planning problem, in order to optimize the path of the
robot for a given starting-ending point pair. Reinforcement
Learning will be applied in the form of an actor structure
in order to minimize the HJB error, thus approximating
the value function of the optimization problem. Employing
the approximation capabilities of NN, the unknown value
function may be modelled as:

V (p) =

L∑
i=1

wiφi(p) + ε(p) = wT · φ(p) + ε(p)

where w , [w1, · · · , wL]
T ∈ RL, φ(p) ,

[φ1(p), · · · , φL(p)] ∈ RL, and ε(p) denote the optimal
weights that minimize the modelling error ε(p) over the
workspace W for a given regressor vector φ(p). Following
the optimality condition, the optimal control vector is given
by:

k(w) = −α
2(p)

2γ
PT (p)∇φT (p)w+

+

√(
α2(p)

16γ
P (p)T∇φT (p)w

)2

+ α2(p)

(18)

In the online approach, the estimation ŵ of the unknown
ideal w will be provided by a gradient scheme that aims at
minimizing the error in the HJB equation:

e(ŵ) = ŵT∇φ(p)P (p)k(ŵ) +Q(p; p0) +W (k(ŵ)) (19)

where k(ŵ) denotes the estimation of the control vector
provided by (18) based on the estimation of the NN weights.
Hence, we formulate the tuning law for the NN weight
estimates to minimize the cost function:

E =
1

2
eT (ŵ)e(ŵ)

In particular, a normalized gradient estimation scheme is
adopted as follows:

˙̂w = −a σ2

ms

[
ŵT∇φ(p)P (p)k(ŵ) +Q(p; p0) +W (k(ŵ))

]
(20)

with a > 0, where

σ2 , ∂e(ŵ)
∂ŵ = ∇φ(p)P (p)k(ŵ)+

+α2(p)
2γ

[
ŵT∇φ(p)P (p) + γ

(
k(ŵ)
α2(p) −

1
k(ŵ)

)]
×

×

 (ŵT∇φ(p)P (p))√√√√(α2(p)
γ ŵT∇φ(p)P (p)

)2

+4α2(p)

− 1

 (∇φ(p)P (p))
T

and ms = (σT2 σ2 + 1)2.
Theorem 1: The closed loop system ṗ = P (p)·k(ŵ) with

the adaptive law (20) guarantees that the trajectory for almost
any initial position in the workspace converges safely to the
desired position p0.

Proof: We adopt the Lyapunov candidate function:

L(p, ŵ) = V (p) +
1

2
w̃Ta−1w̃ (21)
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where V (p) is the unknown value function and w̃ = w − ŵ
denotes the parametric error. It is easy to see that the above is
always positive except for p = p0 and w̃ = 0. Now consider
the dynamics of the weight estimation (20) in the following
compact form:

˙̂w = −a σ2

ms
e(ŵ) (22)

Notice that the error in (19) can be written via a Taylor series
expansion around ŵ as follows:

e = −σT2 w̃ + e1 (23)

where e1 denotes the effect of the higher order terms. Hence,
we may write:

˙̃w = α
σ2

ms
e = − α

ms
σ2σ

T
2 w̃ +

ae1

ms
σ2 (24)

which leads to:

L̇ = ∇V T (p)P (p)k(ŵ)−
[

1

ms
w̃Tσ2σ

T
2 w̃

]
+

[
e1

ms
w̃Tσ2

]
Adding and subtracting wT∇φ(p)P (p)k(w) and invoking
the Hamilton-Jacobi-Bellman equation, we obtain:

L̇ ≤ −
[

1

ms
w̃Tσ2σ

T
2 w̃

]
+

[
e1

ms
w̃Tσ2

]
+wT∇φ(p)P (p)K̃(w̃)w̃ −Q(p; p0)−W (k(ŵ)) + ε

where K̃(w̃) = dk(w)
dw |w=w̃ and ε involves all modelling error

terms. Hence, we conclude:

L̇ ≤ −Q(p; p0)−W (k(ŵ))−

−‖σ2σ
T
2 ‖

ms
|w̃|2 +

[
B +

e1

ms

∣∣σT2 ∣∣] |w̃|+ ε

Notice that, assuming persistently excited neurons, the above
expression provides essentially a lower bound to ‖w̃‖ for
which the Lyapunov candidate is negative, which provides
convergence as shown in [22].

VI. RESULTS

In this section we will present the results of the offline
solution, followed by a comparison between the online
approach and an RRT* method. For the proposed algorithm,
a grid of 15× 15 neurons, consisting of Radial Basis Func-
tions (RBFs), were used. All simulations were implemented
with Matlab on a PC running Windows 10, on an intel-i7
quad-core processor. For the RTT* approach, a traditional
quadratic form for the input part of the cost function was
used. An artificial workspace was designed, with a square
outer boundary of side lengths equal to 10[m], and three
inner disk obstacles, as presented in Fig. 2. The goal position
was p0 = (1, 1) for all runs. In Fig. 1, we illustrate the
approximation of the value function and the respective vector
field that resulted from the successive value function ap-
proximation of Algorithm 1. The approximation exhibits the
desired behaviour, with large values away from the minimum
at the goal position. In Fig. 2 we present four trajectories
that resulted from various starting points, along with the
same trajectories for the RRT* method. In Fig. 3, we present

the respective tree graphs for each trajectory of the RRT*
method. Finally, Table I includes the results for every run,
including the start-end point configurations, the computed
cost for each method and the corresponding run time. It is
evident that our method consistently outperforms the RRT*
optimization method, both in cost function value, and in run
time. Additionally, our method produces smooth trajectories.
The offline method outperforms the online one as expected,
however, the trajectories of the online approach tend to match
the offline ones as time progresses and the learning process
evolves towards the optimal parameter estimates. Finally, all
of the aforementioned trajectories exhibit both safety and
convergence, as it has been rigorously proven.

Fig. 1. The offline vector field and value function approximation.

Fig. 2. The online trajectories (solid lines), the offline trajectories (dashed
lines) and the RRT* trajectories (star points).
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Fig. 3. The RRT* graphs and trajectories.

Traj.
#

Start
Pos.[m]

Goal
Pos.[m]

Cost
Online

Cost
RTT

Run T.
Online [s]

Run T.
RRT [s]

1 (-4,0) (1,1) 576 830 440 601
2 (0,4) (1,1) 177 361 192 718
3 (1,-4) (1,1) 346 827 395 640
4 (4,-4) (1,1) 770 988 435 612

TABLE I
COMPARATIVE SIMULATION RESULTS

VII. FUTURE WORK

The results of this work are both promising and intriguing.
As future directions, we intend to expand the application
to unknown workspaces. Moreover, we intend to further
generalize the above results with novel sets of parametrized
control policies and more general controller forms.
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