
AutoLay: Benchmarking amodal layout estimation for autonomous
driving

Kaustubh Mani∗1,2, N. Sai Shankar∗1, Krishna Murthy Jatavallabhula3,4, and K. Madhava Krishna1,2

1Robotics Research Center, KCIS, 2IIIT Hyderabad, 3Mila - Quebec AI Institute, Montreal, 4Université de Montréal

Fig. 1: Amodal layout estimation is the task of estimating a semantic occupancy map in bird’s eye view, given a monocular image or
video. The term amodal implies that we estimate occupancy and semantic labels even for parts of the world that are occluded in image
space. In this work, we introduce AutoLay, a new dataset and benchmark for this task. AutoLay provides annotations in 3D, in bird’s eye
view, and in image space. A sample annotated sequence (from the KITTI dataset [1]) is shown below. We provide high quality labels for
sidewalks, vehicles, crosswalks, and lanes. We evaluate several approaches on sequences from the KITTI [1] and Argoverse [2] datasets.

Abstract— Given an image or a video captured from a
monocular camera, amodal layout estimation is the task of
predicting semantics and occupancy in bird’s eye view. The
term amodal implies we also reason about entities in the
scene that are occluded or truncated in image space. While
several recent efforts have tackled this problem, there is a
lack of standardization in task specification, datasets, and
evaluation protocols. We address these gaps with AutoLay, a
dataset and benchmark for amodal layout estimation from
monocular images. AutoLay encompasses driving imagery from
two popular datasets: KITTI [1] and Argoverse [2]. In addition
to fine-grained attributes such as lanes, sidewalks, and vehicles,
we also provide semantically annotated 3D point clouds. We
implement several baselines and bleeding edge approaches, and
release our data and code.1.

I. INTRODUCTION

Commercial interest in autonomous driving has led to the
emergence of several interesting and challenging problems,
particularly in terms of perception. In this work, we focus on
the problem of amodal scene layout estimation (introduced

∗ denotes equal contribution
Corresponding author: kaustubh3095@gmail.com
1Project page: https://hbutsuak95.github.io/AutoLay/

in [3]). Amodal perception, as studied by cognitive scientists,
refers to the phenomenon of “imagining" or “hallucinating"
parts of the scene that do not result in sensory stimulation. In
the context of urban driving, we formulate the amodal layout
estimation task as predicting a bird’s eye view semantic map
from monocular images that explicitly reasons about entities
in the scene that are not visible from the image(s).

Amodal scene layout estimation is an emerging area of
study where prior efforts [3], [4], [5] have only focused on
amodal completion for coarse categories such as roads and
sidewalks. While recent efforts have incorporated dynamic
objects [3], they fall short of modeling higher-level behaviors
in urban driving scenarios such as lane-keeping, merging, etc.
Further, each of these efforts [3], [4], [5] lack consensus in
problem specifications and evaluation protocols.

We address both the above issues. We first formalize
the problem of amodal scene layout estimation that unifies
existing work and extends the task to several fine-grained cat-
egories. To foster research in this area, we provide AutoLay,
a dataset comprising of over 16000 images over a distance of
12 kilometers, annotated with fine-grained amodal comple-
tions in 3D as well as in bird’s eye view. AutoLay includes

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8184

44 sequences from KITTI [1] and 89 sequences from the
Argoverse [2] datasets. We implement several baselines and
prior art, and open-source our code, models, and data [3], [4],
[6]. We additionally propose VideoLayout, a simple approach
that achieves top performance on the AutoLay benchmark
by leveraging temporal information across image sequences,
advancing the state-of-the-art of amodal layout estimation.

II. RELATED WORK

Interpreting 3D scenes from an RGB image has been a
longstanding challenge for computer vision systems. In this
section, we enlist a few approaches to amodal perception. For
a comprehensive survey of general 3D scene understanding,
we refer the interested reader to Ozyecsil et al. [7].

Amodal perception for indoor scene understanding: In
the context of indoor 3D scene understanding, a few ap-
proaches to amodal perception have been proposed [8], [9].
While these approaches use coarse voxel grids to represent
objects, we instead focus on an orthographic top-down view
that restricts semantic understanding to road regions. We
note that most of the semantic understanding necessary for
driving-related tasks can be obtained on the road regions,
making this simplification attractive.

Amodal perception for autonomous driving: To the best
of our knowledge, there are no previous works that provide a
unified approach to obtain an amodal scene layout estimation
in bird’s eye view for fine-grained static and dynamic classes
like lanes, sidewalks, vehicles, etc. Existing approaches [4],
[5], [10], [11] reason about “coarse-grained" static classes
such as roads and sidewalks. Schulter et al. [5] obtain
occlusion-aware bird’s eye view road layouts by hallucinat-
ing behind objects tagged as foreground in an image. Wang
et al. [10] develop a parametric representation of road scenes
that reason about the number of lanes, width of each lane,
presence of an intersection, etc. Lu et al. [4] use a variational
autoencoder to predict road, sidewalk, terrain, and non free-
space in bird’s eye view. Lu et al. [11] also perform vehicle
shape completion, albeit independent of the static layout
estimation task. Garnett et al. [12] predict static road and
lane layouts by estimating lane boundaries in 3D.

For dynamic scene understanding, several approaches aim
to detect object layouts in 3D. While some of these [13], [14],
[15] combine information from images and lidar, others [16],
[17], [18] operate by converting images to bird’s eye view
representations, followed by object detection. However, these
techniques are often developed independently of static layout
estimation methods.

In earlier work, we presented MonoLayout [3]- perhaps
the first approach to amodally reason about the static and
dynamic layout of an urban driving scene. While the interest
in this nascent area is rapidly increasing, the absence of
standardized task specification and evaluation have been
slowing down research. This forms the primary motivation
behind the AutoLay dataset and benchmark.

III. AMODAL SCENE LAYOUT ESTIMATION

We begin by formally defining the task of amodal scene
layout estimation. Given an image (or a sequence of images)

I, usually in perspective view, we wish to learn a labeling
function Φ of all points within an area R (usually rectangu-
lar) around the camera. The region of interest R is often in
a different view than that of the perspective image. In this
paper, we focus on bird’s eye view, which refers to a top-
down orthographic view of the ground plane. The labeling
function Φ must produce a label distribution (over a set of
N classes) for world points within the swath R, regardless
of whether or not they are imaged in I.

In particular, we propose the estimation of the following
semantic classes tasks in the context of this problem: road,
sidewalk, crosswalk, lanes (ego-lane, other lanes), other road,
vehicle. Depending on the exact setup used (single-image vs
image-sequences, semantic categories to be estimated, etc.),
this enables fair evaluation of all approaches. We defer a
detailed description of evaluation protocols and its challenges
to Sec. VI-D.

IV. AUTOLAY DATASET

Over the last decade, several public datasets [1], [19], [20],
[21], [2] have enabled massive strides in autonomous driving
research. While nearly all the above datasets provide out-
of-the-box support (annotations, evaluation utilities, metrics,
benchmarking support) for popular tasks like object detec-
tion, semantic segmentation, multi-object tracking, trajectory
forecasting, none of these currently benchmark amodal scene
layout estimation.

Obtaining training data for the task of amodal layout es-
timation involves multiple challenges. It involves perceiving
scene segments that are not even imaged by the camera.
While most datasets have lidar scans that often span a larger
sensor swath, such lidar beams are not dense enough to
perceive thin scene structures. Approaches such as MonoLay-
out [3] compensate for this lack of precision training data by
adversarial learning, using OpenStreetMap [22] data. More
recently, Wang et al. [10] release a dataset that provides a
parametric bird’s eye view representation for images from
the KITTI [1] and nuScenes [20] datasets, but the top-
view representations are synthesized views of a simulated
parametric surface model. In summary, there is currently no
dataset that provides off-the-shelf support for benchmarking
amodal layout estimation. We fill this void with AutoLay,
a dataset for amodal layout estimation in bird’s eye view
(Fig. 1).

A. Dataset overview

We use 44 video sequences from the KITTI Raw
dataset [1] in AutoLay. We provide per-frame annotations
in perspective, orthographic (bird’s eye view), as well as
in 3D. Of the 44 annotated sequences, 24 sequences—
containing 10705 images—are used for training. The other
20 sequences—comprising 5626 images—form the test set.
This makes for nearly 16K annotated images, across a dis-
tance of 12 Km, and a variety of urban scenarios (residential,
city, road) (cf. Fig 2). The semantic classes considered in
this dataset are road, sidewalk, vehicle, crosswalk, and lane.
Each lane segment is provided a unique id, which we classify

8185

Fig. 2: Dataset: (Left to right) Sample images from the KITTI split of AutoLay. Corresponding annotated lidar pointclouds. Amodal scene
layout in bird’s eye view. (Last column) Distribution of semantic classes (bar plot), and scene types (pie chart).

further2 The lane class is further classified as ego-lane and
other lane. We also have an other road class for road areas
that do not fall under any of the above categories.

B. Data annotation

Since annotating amodal layout from a single image is
a hard task even for professional annotators, we leverage
multiple sources of information to guide this procedure. We
first build a point cloud map of the entire scene, annotate the
map (in full 3D), and then generate the other views (bird’s
eye view). To build a map of the entire area, we use the
lidar scans corresponding to each frame and register them
to a global view. We use the precise odometry information
provided in KITTI for registration, to be robust to outliers, as
many scenes contain dynamic objects (vehicles/pedestrians).
To reduce manual effort, we semi-automate the data annota-
tion pipeline to the extent possible. As a first step, we identify
lane markers by choosing a range of remission values of
the lidar and thresholding the 3D map. Once a set of lane
markers are identified, we tag as lanes the area between pairs
of lane markers. Manual verification is performed to ensure
no discrepancies creep in. Each identified lane is labeled
with a different lane id, unique within a given sequence.
Annotators are then presented with this preprocessed map
in an orthographic view and asked to amodally complete
annotations. Specifically, chunks of missing points in a lane
are filled in as lanes, and so on. Other identified chunks
are annotated as sidewalk, crosswalk, or other road. We
repurpose the annotation tool from Semantic KITTI [23] for
this.

Note that the above annotation procedure can only be used
for static parts of the scene. For dynamic scene components,
such as vehicles, a 3D bounding box annotation is performed
per-frame. This entire annotated sequence is then projected
into bird’s eye view and semantics are made available in
every camera frame in the sequence.

2We perform this subclassification for our specific task, by projecting lane
segments to bird’s eye view.

V. APPROACH

Learning the mapping function described in Sec. III which
maps the perspective RGB images to the static and dynamic
layouts in bird’s eye view is quite a challenging problem. The
problem demands an accurate understanding and modeling of
the 3D scene which necessitates the requirement for learning
good visual features that can encode the depth and the
semantics of the 3D scene. Most approaches [5], [3], [4]
to monocular layout estimation operate on a single RGB
image input, which often leads to temporally inconsistent
predictions.

In this section, we tackle the aforementioned problem by
proposing a neural network architecture that takes a sequence
of images as input and generates temporally consistent
layouts as output.

A. VideoLayout: Temporally Consistent Layout Estimation

Given a sequence of RGB images I1, I2, ..., It as
input, our model predicts the posterior distribution
P (St,Dt|I1, I2, ..., It), where St and Dt denote the pre-
dicted static and dynamic layouts corresponding to image
It.

Our network architecture consists of four subparts:
• A feature encoder which takes as input a sequence of

RGB images I1, I2, ..., It and generates rich multi-scale
features maps C1, C2, ..., Ct corresponding to each rgb
image.

• A stacked Convolutional LSTM submodule which ag-
gregates image features C1, C2, ..., Ct and encodes a
temporal representation useful for estimating consistent
layouts.

• Similar to [3], we maintain two set of decoder weights
corresponding to the static and dynamic decoders. Both
decoders share a similar architecture except for the
use of sampling layer at the beginning of the static
decoder in order to generate smooth looking road and
lane layouts. Instead of directly processing the encoded
output representation of convLSTM, we instead sample

8186

Fig. 3: Weak Supervision setup: We show our automated (noisy) label generation scheme herein. Points from the lidar frame are projected
down to semantically segmented images (a), to obtain sparse static layouts (b). These sparse layouts are stacked across an image sequence
to generate dense static layouts (c). In the next step (d), road and lane boundaries are extracted and combined to obtain lane layouts (e).

from a gaussian distribution with the feature map as the
mean values and a fixed standard deviation.

• A Refinement Network, which helps in improving the
quality of the output static and dynamic layouts by
regularizing the predicted layouts in order to resemble
the true data distribution.

B. Consistency Loss

The weights of the VideoLayout architecture are updated
via backpropagation using the loss function defined in Eq. 4.

Lsup =

N∑
i=1

f(S̄i, Si) + f(D̄i, Di) (1)

Lc
short =

N∑
i=1

seqlen−1∑
j=1

f(S̄j
i , S̄

j+1
i) + f(D̄j

i , D̄
j+1
i) (2)

Lc
long =

N∑
i=1

seqlen−1∑
j=1

seqlen∑
k=j+2

f(S̄j
i , S̄

k
i) + f(D̄j

i , D̄
k
i) (3)

L = λsup ∗ Lsup + λcshort ∗ Lc
short + λclong ∗ Lc

long (4)

Here, S̄ and D̄ denote the predicted static and dynamic
layouts respectively, S and D denote the ground truth
(weak/strong) layouts. N is the mini batch size, seqlen is
the length of the input image sequence per sample. f(·, ·)
is the cross-entropy loss function. Lsup is a supervised loss
term that penalizes the deviation of the predicted static and
dynamic layouts. Lc

short is the short-range consistency loss
and Lc

long is the long-range consistency loss. λsup, λcshort
and λclong are the weights corresponding to the supervised,
short-range consistency and long-range consistency losses
respectively. Finally, L is the total weighted loss used for
backpropagating gradients through the network. 3. Consis-
tency loss acts as a soft constraint on the layout prediction
objective Lsup, which enables the model to learn more
temporally consistent layout.

3λsup > λcshort >> λclong

C. Refinement Network

Similar to [3], we use adversarial regularization in order to
restrict the encoder-decoder network into predicting conceiv-
able layouts. For adversarial regularization, we use a Patch
Discriminator which takes the output of the encoder-decoder
and a sample from the true data distribution. Unlike [3], we
make use of ground-truth layouts to do paired training with
the discriminator which further improves the performance of
the model. Adding the sampling layer in the static decoder
converts the Encoder-Decoder network into a generator and
further helps in regularization for static layouts.

D. Data Preparation: Weak Supervision

Since the amodal scene layout labels are not provided
for almost every autonomous driving dataset, we propose
a generic layout generation method to generate noisy or
weak supervision layout labels for static classes like roads,
lanes, and sidewalks (cf. Fig. 3). Our weak supervision layout
generation method is similar to the sensor fusion approach
adopted in [3]. Further, we provide a solution to obtain weak
supervision layout labels for lanes as well.

The process of aggregating / registering the lidar points for
several image frames and projecting them to an orthographic
view by assuming a flat plane is shown in Fig. 3. To
obtain lanes, we perform the registering process for road
and lane marker semantic classes. We then obtain lane
boundary curves by isolating individual lane boundaries
through Density Based Spatial Clustering and fit third order
polynomial curves on these individual lane boundaries. From
the registered road layout, we estimate the road boundaries
and group the road and lane boundaries together to obtain
lane contours.

Additionally, we also obtain improved weak supervision
layout for roads by addressing cases where there are too
many stationary obstacles in a sequence occluding lidar from
capturing the road layout. We register lidar points belonging
to those stationary obstacles that lie on the road.

VI. EXPERIMENTS

So far, there has been a lack of consensus on datasets
and evaluation protocol for amodal layout estimation. We

8187

Fig. 4: Static layout estimation: VideoLayout predicts fine-grained attributes of the road scene including lanes, side roads and ego-lane. Each individual
color represents a single lane. Ego-lane is shown in blue and side-roads are shown in light orange. VideoLayout produces decent static layout estimates
for both AutoLay and Argoverse datasets. Its able to hallucinate occluded regions in the scene very reliably specially for Argoverse dataset.

describe the AutoLay evaluation protocol in detail, and eval-
uate baselines and existing approaches on the benchmark.

A. Datasets

To ensure fair comparison with existing methods, we show
our results on the Argoverse [2] and KITTI RAW split used
in [3] and [5] respectively. Argoverse [2] provides detailed
high-resolution semantic maps in bird’s eye view for roads,
vehicles and lanes, which makes it suitable for evaluation on
all the tasks proposed in Sec. III. We present a breakdown
of the AutoLay benchmark below.

1) KITTI split: The KITTI split of AutoLay comprises
10705 train images and 5626 test images. We report
results for models trained using weak (proposed data
preparation) and strong (ground-truth) supervision.

2) KITTI RAW split: For fair evaluation with Schulter et
al. [5], we use the KITTI RAW split comprising 16269
train images and 2305 test images).

3) Argoverse split: The Argoverse [2] split contains 6722
train images and 2418 test images.

B. Implementation Details

1) PseudoLidar input: We evaluate the performance of
a set of approaches that take PseudoLidar[18] as input for
amodal scene layout estimation. The PseudoLidar represen-
tation is a processed point cloud obtained by projecting
the RGB image pixels to the camera coordinate system
using the per-pixel depth values obtained from unsupervised
monocular depth estimation methods like [24]. We substitute
the remission value by the normalized mean of RGB channel
intensities. We then obtain a voxel representation of the point
cloud by slicing it vertically along the X-Z plane with a
resolution of 0.15625 m and horizontally along the Y-axis
into 10 channels starting from 0.4 m above the camera to
2 m below the camera. This PseudoLidar representation is
provided as the input to ENet [25] or Unet [26] for amodal
scene layout estimation.

2) Lane layout convention: In order to convert lane
estimation, which is essentially an instance segmenta-
tion/detection task in bird’s eye view to an occupancy
prediction task, we adhere to the following convention while
performing lane layout estimation. While creating the per
frame training labels using both weak and strong supervision,

8188

we classify the individual lane layouts on the road with the
ego-vehicle, (ego-road), as either ego lane or other lanes.
The ego lane and the other lanes are provided individual
lane ids. The lane ids to the other lanes are given on the
basis of their position with respect to the ego-lane.

C. Evaluation Metrics

1) Vehicle Layout: Similar to [3], We evaluate the ve-
hicle layouts on both mean intersection-over-union(mIoU)
and mean average-precision(mAP). Since we are evaluating
different methods on the task of vehicle occupancy prediction
in bird’s eye view, we don’t go for the traditional evaluation
metric(APIoU>0.7 or APIoU>0.5) used by 3D object detec-
tion methods or object detection methods in bird’s eye view.

2) Road Layout: We adopt mean intersection-over-
union(mIoU) and mean average-precision(mAP) as our met-
ric for evaluating road layouts on the datasets. To evaluate
hallucination capabilities of different methods, we also make
use of the occluded mean intersection-over-union (IoU) used
in [5], [3]. This involves calculating IoU for only the portions
of the road which are occluded.

3) Lane Layout: As mentioned in Sec. III, Lane Layouts
are evaluated on two separate tasks: Ego-lane estimation and
Overall lane detection.

1) Ego-Lane Estimation: Ego-Lane estimation task is eval-
uated on the mean intersection-over-union (mIoU) and
mean average-precision (mAP) metric.

2) Overall Lane Detection: For this task, we use
APIoU>0.7, a popular metric used for evaluating object
detection and instance segmentation methods. A pre-
dicted lane is counted as a detection if its intersection-
over-union(IoU) with one of the ground truth lanes is
greater than 0.7(70%). APIoU>0.7 provides information
about the average-precision of predicted detections. We
also report RecallIoU>0.7, which gives us an idea about
the prediction capability of the method.

D. Evaluated Methods

We evaluate the performance of the following approaches.

• Schulter et al.: The static scene layout estimation ap-
proach proposed in [5].

• MonoOccupancy: The static scene layout estimation
approach proposed in [4].

• MonoOccupancy-ext: We extend MonoOccupancy [4] to
predict vehicle occupancies.

• PseudoLidar-ENet: A ENet [25] architecture with Pseu-
doLidar input for amodal scene layout estimation.

• PseudoLidar-UNet: A UNet [26] architecture with Pseu-
doLidar input for amodal scene layout estimation.

• MonoLayout: Amodal scene layout estimation architec-
ture proposed in [3]

• VideoLayout: The full VideoLayout architecture trainned
with temporal-consistency loss and the adversarial re-
finement network.

Fig. 5: Dynamic Layout Estimation:. VideoLayout provides crisp
and accurate vehicle occupancies. The grey boxes indicate vehi-
cle occupancies. Observe the ability of VideoLayout to precisely
localize vehicles that are distant and partially occluded.

E. Road Layout Estimation

We evaluate PseudoLidar based (PseudoLidar-UNet,
PseudoLidar-ENet) and RGB image based architectures
(MonoOccupancy [4], MonoLayout and VideoLayout) for the
task of road layout estimation using the ground truth labels.
Table I provides a detailed benchmark of these methods on
the AutoLay and Argoverse[2] datasets. We also perform
state-of-the-art comparision(Table II) with previously pro-
posed methods in literature on KITTI RAW split proposed
in [5] on the task of road and lane layout estimation. For
this comparision, we use the weak data generation method
mentioned in Sec V-D.

We observe that MonoLayout and VideoLayout perform
better than PseudoLidar-based methods for road layout
estimation. This can be attributed to the sparsity of the
PseudoLidar points as the distance from camera increases.
Also, PseudoLidar based inputs don’t allow the use of deep
feature encoders like ResNet[27] needed to extract the rich
visual features necessary for hallucinating amodal scene
layouts. From Table I it can be seen that MonoOccupancy-
ext performs better than the PseudoLidar counterparts. This
further exemplifies the narrative that with better supervision,
an RGB image-based architecture can reason for occluded
regions better than pseudo-lidar based approaches.

Within the RGB image based approaches, we observe that
VideoLayout outperforms MonoLayout, MonoOccupancy [4]
by considerable margins for all the evaluation metrics. The
same can be also be observed in the results on KITTI RAW
(cf. Table II).

F. Vehicle Layout Estimation

From Table I, we can see that PseudoLidar-based meth-
ods have inferior performance in comparision to monocular

8189

Vehicle Layout Static Layout Estimation
Road Lane

Dataset Method Ego-Lane Overall
mIoU mAP mIoU mAP mIoU mAP APiou>0.7 Recalliou>0.7

KITTI

PseudoLidar-UNet 20.10 52.47 57.62 70.90 51.98 68.94 8.53 19.09
PseudoLidar-ENet 15.26 40.05 55.70 67.62 54.42 68.15 13.01 24.50

MonoOccupancy-ext 27.03 42.92 63.10 77.56 58.39 69.16 26.11 35.36
MonoLayout[3] 30.88 53.63 63.83 77.53 58.27 72.08 16.09 34.91

VideoLayout 34.60 52.87 68.73 84.89 62.68 76.80 38.56 44.33

Argoverse
MonoOccupancy-ext 16.22 38.66 72.41 79.62 75.26 85.51 39.76 51.65

MonoLayout[3] 28.31 46.07 73.25 84.56 71.73 82.00 26.18 42.61
VideoLayout 32.77 50.48 76.42 88.01 77.62 87.77 46.03 54.86

TABLE I: Quantitative results: We benchmark VideoLayout, MonoLayout [3], MonoOccupancy-ext and PseudoLidar based approaches
on KITTI and Argoverse datasets.

Road
Road Sidewalk + Lane

Method Sidewalk
mIOU mIOU occ mIOU APiou>0.7

MonoOccupancy[4] 56.16 18.18 28.24 26.64
Schulter et al. [5] 68.89 30.35 61.06 -
MonoLayout[3] 73.86 32.86 67.42 16.20

VideoLayout 75.92 37.74 71.01 36.64

TABLE II: State-of-the-art comparision for static layout(Road,
Sidewalk and Lane) with weak supervision(cf. Sec. V-D) on KITTI
RAW split used in [5]

methods[3], [4] on vehicle layout estimation. This can again
be attributed to the fact that monocular depths are inprecise
and sparse at large distances, which makes the PseudoLidar
input unreliable for this task.

Similar to road layout estimation, VideoLayout performs
better than MonoLayout due to the temporal consistency loss
and the adversarial regularization via the refinement network
(cf. Fig. 5). Also, MonoOccupany [4] performs poorly on
vehicle layout estimation, presumably due to blurriness in
the variational autoencoder used therein leading to low mAP
scores.

G. Lane Layout Estimation

We split the lane layout estimation into two tasks: ego-
lane estimation and overall lane detection. This exclusive
treatment of ego-lane estimation is due to its prominence in
semi and fully autonomous driving. Unlike objects, which
can be “detected" as bounding boxes, lanes are objects
whose extents span potentially the entire width/height of
the bird’s eye view image, and this calls for an appropriate
evaluation protocol. We thus treat lane estimation akin to a
“segmentation" problem, and compare performance in terms
of average precision and recall at varying IoU thresholds
(0.5, 0.7). From Table I, we see that that MonoOccupancy [4]
performs significantly better than PseudoLidar methods on
ego-lane estimation.

VideoLayout significantly outperforms other methods, ow-
ing to its ability to encode temporal information and the use
of a separate refinement network. The refinement network
corrects blobby lane estimates that do not match the true
data distribution, resulting in performance boosts at higher
IoU thresholds. A few qualitative results are presented in
Fig. 4.

Ego-Lane OverAll
Method mIOU mAP APiou>0.7 Riou>0.7

VideoLayout (no samp., no reg.) 59.81 73.13 20.95 36.55
VideoLayout (no reg.) 61.15 75.72 35.89 41.92

VideoLayout (full) 62.68 76.80 38.56 44.33

TABLE III: Analyzing effect of various subparts of the VideoLayout
architecture on Lane Layout estimation performance. The sampling
layer and adversarial regularization improve performance.

Method APiou>0.5 Riou>0.5 APiou>0.7 Riou>0.7

PseudoLidar-UNet 19.32 43.24 8.53 19.09
PseudoLidar-ENet 25.10 47.39 13.01 24.50

MonoLayout[3] 25.38 55.06 16.09 34.91
VideoLayout 57.02 65.49 38.56 44.33

TABLE IV: Analyzing Lane layout scores at IoU thresholds of
0.5 and 0.7. AP denotes average precision. R denotes Recall.
VideoLayout consistently performs better across IoU thresholds.

H. Ablation Studies

We conduct ablation studies to analyze the performance of
various components in the pipeline. These lead to a number
of interesting observations that we enlist below.

1) Sensitivity of lane estimates to IoU thresholds: In
Table IV, we analyze the sensitivity of lane estimates to IoU
thresholds. At lower thresholds (APIoU>0.5 and RIoU>0.5),
PseudoLidar-based techniques have similar performance to
that of MonoLayout [3]. But as the threshold increases
(APIoU>0.7 and RIoU>0.7), PseudoLidar methods exhibit a
dramatic performance drop, particularly in terms of recall.
We attribute this to the fact that PseudoLidar relies on
monocular depth estimates which are sparse and inaccurate
for vehicles farther from the camera. On the other hand,
VideoLayout performs consistently across both IoU thresh-
olds. Particularly at APIoU>0.5, we observe a significant
performance increase compared to MonoLayout.

2) Effect of Sampling and Adversarial Refinement: Ta-
ble III shows the performance of different variants of Video-
Layout for lane layout estimation. VideoLayout (no samp.,
no reg.) refers to a variant without a sampling layer in
the static decoder and without adversarial regularization.
VideoLayout (no reg.) uses sampling layer in the static
decoder. VideoLayout (full) uses both sampling layer and an
adversarial regularizer. It can be seen that each component
meaningfully contributes to performance boosts. The sam-
pling layer enhances the capability of the model to capture

8190

Fig. 6: Failure Cases of VideoLayout. (Top row) Failure to predict ego-
lane. (Middle row) Failure in heavy traffic scenarios. (Bottom row) Failure
in predicting lane width.

the distribution of plausible layouts, improving precision
(APIoU>0.7). The adversarial regularizer improves the sharp-
ness of the predicted samples, improving the recall RIoU>0.7.

I. Failure cases

Despite its impressive performance, VideoLayout fails in
multiple scenarios. A few representative failure cases are
shown in Fig. 6. Often, such failures are due to high-dynamic
range conditions, where shadows are mistaken for lanes, or
in heavy traffic scenarios.

J. Runtime

On an NVIDIA RTX 1080Ti, the inference rate of Vide-
oLayout is slightly over 40 frames per second, which is
suitable for real-time performance.

VII. CONCLUSION

Amodal layout estimation is an emerging perception task
for autonomous driving. Solving this task necessitates an un-
derstanding of not just entities present in an image, but also
a reasoning of occluded portions. Benchmarks have driven
progress in allied perception tasks such as object detection,
segmentation, tracking, depth estimation, and more. In that
spirit, we introduce a new benchmark (AutoLay) for amodal
layout estimation. We implement several baselines and prior
art, and make all our code and data available. We further
propose VideoLayout, a simple yet effective technique, and
demonstrate that reasoning about image sequences leads to
coherent and robust layout estimates. We hope the dataset
and benchmark serve as a breeding ground for a new class
of approaches that will take us a step closer to understanding
the 3D world from a sequence of its projections.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012.

[2] M.-F. Chang, J. Lambert, et al., “Argoverse: 3d tracking and forecast-
ing with rich maps,” in CVPR, 2019.

[3] K. Mani, S. Daga, et al., “Monolayout: Amodal layout estimation from
a single image,” IEEE Winter Conference on Applications of Computer
Vision (WACV), 2020.

[4] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman, “Monocu-
lar semantic occupancy grid mapping with convolutional variational
encoder-decoder networks,” IEEE Robotics and Automation Letters,
2019.

[5] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker, “Learning to
look around objects for top-view representations of outdoor scenes,”
in ECCV, 2018.

[6] Y. You, Y. Wang, et al., “Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving,” arXiv preprint, 2019.

[7] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A survey of
structure from motion*.” Acta Numerica, vol. 26, pp. 305–364, 2017.

[8] A. Kar, S. Tulsiani, J. Carreira, and J. Malik, “Amodal completion
and size constancy in natural scenes,” in International Conference on
Computer Vision (ICCV), 2015.

[9] S. Tulsiani, S. Gupta, et al., “Factoring shape, pose, and layout
from the 2d image of a 3d scene,” in Computer Vision and Pattern
Regognition (CVPR), 2018.

[10] Z. Wang, B. Liu, S. Schulter, and M. Chandraker, “A parametric top-
view representation of complex road scenes,” in CVPR, 2019.

[11] C. Lu and G. Dubbelman, “Hallucinating beyond observation: Learn-
ing to complete with partial observation and unpaired prior knowl-
edge,” arXiv preprint, 2019.

[12] N. Garnett, R. Cohen, et al., “3d-lanenet: end-to-end 3d multiple lane
detection,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 2921–2930.

[13] J. Ku, M. Mozifian, et al., “Joint 3d proposal generation and object
detection from view aggregation,” in IROS, 2018.

[14] X. Chen, H. Ma, et al., “Multi-view 3d object detection network for
autonomous driving,” in CVPR, 2017.

[15] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in ECCV, 2018.

[16] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object
detection from point clouds,” in CVPR, 2018.

[17] T. Roddick, A. Kendall, and R. Cipolla, “Orthographic feature trans-
form for monocular 3d object detection,” arXiv preprint, 2018.

[18] Y. Wang, W.-L. Chao, et al., “Pseudo-lidar from visual depth estima-
tion: Bridging the gap in 3d object detection for autonomous driving,”
in CVPR, 2019.

[19] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017.

[20] H. Caesar, V. Bankiti, et al., “nuscenes: A multimodal dataset for
autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[21] X. Huang, P. Wang, et al., “The apolloscape open dataset
for autonomous driving and its application,” arXiv preprint
arXiv:1803.06184, 2018.

[22] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[23] J. Behley, M. Garbade, et al., “Semantickitti: A dataset for semantic
scene understanding of lidar sequences,” in ICCV, 2019.

[24] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow, “Digging into
self-supervised monocular depth estimation,” arXiv preprint, 2018.

[25] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention,
2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

8191

