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Abstract— As the number of robots in our daily surroundings
like home, office, restaurants, factory floors, etc. are increasing
rapidly, the development of natural human-robot interaction
mechanism becomes more vital as it dictates the usability and
acceptability of the robots. One of the valued features of such a
cohabitant robot is that it performs tasks that are instructed in
natural language. However, it is not trivial to execute the human
intended tasks as natural language expressions can have large
linguistic variations. Existing works assume either single task
instruction is given to the robot at a time or there are multiple
independent tasks in an instruction. However, complex task
instructions composed of multiple inter-dependent tasks are
not handled efficiently in the literature. There can be ordering
dependency among the tasks, i.e., the tasks have to be executed
in a certain order or there can be execution dependency, i.e.,
input parameter or execution of a task depends on the outcome
of another task. Understanding such dependencies in a complex
instruction is not trivial if an unconstrained natural language is
allowed. In this work, we propose a method to find the intended
order of execution of multiple inter-dependent tasks given in
natural language instruction. Based on our experiment, we show
that our system is very accurate in generating a viable execution
plan from a complex instruction.

I. INTRODUCTION

Recent developments in robotics have enabled robots
to move from the secluded industrial setup to our daily
surroundings. These cohabitant robots are used in homes
or hospitals as caregiver, helper, companion, in the factory
floors or offices as coworkers [1], assistant [2], etc. These
applications not only broaden the scope but also necessitate
more frequent interaction between a human and a robot.
Instructing a robot in natural language adds to its usability
in such dynamic environments. While the primary focus of
these robotic systems should be improving the accuracy of
the model(s) that predict(s) the meaning of the instruction,
the predominant trend of doing so is to impose various
constraints on the space of linguistic variations, ambiguity,
and complexity of the language.

Motivation. Natural human-robot interaction requires that
a non-expert user should be allowed to instruct the robot in
a flexible way that suits his/her need. One such flexibility is
conveying many tasks at once while instructing the robot [3],
[4]. This is particularly convenient for the human if the
area where the robot is operating is large and therefore
not fully observable to the user and/or the robot works in
shared autonomy where it has to work autonomously after
instructed, possibly in a different room/area. This is also the
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Fig. 1: A high-level pipeline to generate a viable execution
plan from complex natural language instruction.

case when the robot is being teleoperated by a remote user. In
such situations, the instruction can be given to check the facts
that the user is unsure of and also provide alternative tasks
in case of failure and/or undesired outcomes. Such complex
instructions can have many inter-dependencies between the
tasks, which the robot needs to understand to perform them
as intended.

Problem description. Existing works that translate natural
language instruction to a sequence of actions, either constrain
the instruction to a single task [5], [6] or assume multiple
tasks are performed sequentially [7], [8], [9]. In the later case,
the sequence is assumed to be the order in which the tasks
appear in the instruction. However, this assumption may not
hold if natural language input is to be assumed. For example,
in the instruction “bring me a pen if you can find it on the
table, if you cannot find one then search in the drawer”,
the robot has to find the pen first, before attempting to
bring it, although the bringing task appears in the instruction
earlier. Moreover, the execution of a task may depend upon
a condition or the outcome of another task. In the previous
example, both the tasks of bringing the pen and the task of
searching the drawer is dependent upon whether the pen is
on the table or not.

Approach. In this work, we present a system, called De-
Complex to understand complex natural language instruction
(Fig. 1) and generate a viable execution plan. We consider
complex instructions that are composed of multiple tasks
given as both commands and statements and the task execu-
tion is constrained by ordering and/or execution dependency.
We define ordering dependency as the case when the tasks
present in an instruction must be ordered in a certain way
to reach the human desired goal. By execution dependency,
we refer to the scenario when the execution of some tasks
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is dependent upon the outcome of other tasks. Please note
we do not assume a complex instruction all the time. So,
at first, our classifier inspects if a given instruction is a
complex instruction composed of multiple tasks and whether
there is any dependency at all. After identifying the tasks
conveyed by the instruction and the dependencies involved
between the tasks, our system identifies the corresponding
parameters for each of these tasks given in the instruction and
finally generates a viable plan for the instruction that a robot
can execute. In case the tasks have execution dependency,
i.e., the output of one task feds into another, we generate
a conditional (viable) plan, which can follow a particular
execution path based on the situation.

Although there is an inherent ordering dependency of
selecting the appropriate sequence of actions to execute a
certain task and we solve that using a planner. In this work,
we are more interested in understanding the dependencies
among the tasks themselves that are explicitly or implicitly
provided by the human through natural language instruction.
Specifically, our major contributions are two-fold.

• From complex instruction in natural language, we find
the set of tasks, inter-dependency among them if any,
and extract input parameters for each task.

• We merge the duplicate tasks and create a control flow
graph of the unique tasks considering causality and
inter-dependency among them so that a viable (high-
level) execution plan can be generated.

II. RELATED WORK

A robot’s capability to understand natural language in-
structions is limited by many factors. One of them being
the inability to understand the flow of actions and their
effects in a complex set of instructions (such as having
conditional statements/sentences in instructions). Our work
primarily aims at proposing a strategy to handle such com-
plex instructions with efficacy and allowing the robot to act
accordingly. This section puts forward some of the related
works in this respect.

A. Task planning from instruction

Task planning for robots from natural language instruc-
tions has been receiving a lot of attention in recent years. The
predominant approach includes understanding the task and its
arguments from a parsed semantic representation, followed
by mapping actions to world state [8], [10], planning using
post-conditions [11], [12], [5], [9] or using rich knowledge-
bases that includes task to action decomposition informa-
tion [13], [14]. To tackle the ambiguity and incompleteness
of natural language, dialogue agents have been proposed
[15], [16], [17]. Alternatively, techniques of directly learning
of task plans from natural language instruction have been
explored in [11], [8]. In this work we follow the approach
of task understanding described in our previous work [9].
However, one of the major limitations we solve in this work
is that the existing techniques for task understanding cannot
handle complex instruction, specifically if the tasks are inter-
dependent.

B. Understanding complex instruction

Many existing approaches consider a single task per
instruction or assume the tasks are independent and can
be planned together by satisfying a conjunction of post-
conditions or goals [10], [5], [13]. Others assume that
multiple tasks are serialized and they generate the plan by
independently solving the planning problems for each task
while considering the changes in world state for the preced-
ing tasks [9], [8], [18]. Whereas, some early approaches to
understand the ordering of multiple tasks focuses on finding
out tasks that are to be performed multiple times until some
condition is satisfied [19], [7]. However, they do not consider
execution dependency, out of order appearance of tasks
and they overlook many challenges by restricting to only
navigational instructions. Other approaches to understand
execution dependency imposes constraints on the language,
i.e., they only allow structured English [20], [21], [22].

Although understanding complex instructions given to a
robot has not been studied in depth, there are some existing
works that includes this feature. For interactive task learn-
ing, usage of complex instructions has been explored, but
assuming structured or constrained language specifications.
Finucane et al. [23] and Chai et al. [24] proposed rule-
based methods for parsing complex action specifications
to control logic. Cantell et al. explored parsing complex
instructions into pre-conditions, post-conditions and actions
for specifying planning operators [25]. In [26], natural lan-
guage commands contains a single task, whereas complex
instruction is only allowed for providing action specifications
that also in a structured language.

The existing approaches that understand and generate
task plan from complex instructions while allowing natural
language [4], [11], [27] use semantic parsers augmented with
rules, which can’t handle unseen linguistic variations. Other
approaches embed planning for multiple tasks in end-to-
end training [28], [29]. However, such techniques of direct
training with environment-specific plans do not generalize
to novel situations, and a significant annotation effort is
required to introduce a new task. In contrast, we propose
a probabilistic graphical model for understanding complex
instructions that need a resolution of interdependencies,
which can generalize better. We use a data-driven approach
to predict task dependency and deterministically re-order the
tasks using the prediction, which is followed by task planning
using post-conditions. This aids our system to understand the
dependency of a task even if its appearance in the instruction
is unusual or it is given in a separate sentence.

III. DECOMPLEX IN DETAILS
Fig. 2 shows an overview of DeComplex that consists of –

(i) a task understanding component and (ii) a dynamic task
planning component. The first component parses a natural
language instruction and extracts various linguistic features,
identifies the set of tasks present in the complex instruction,
identifies the dependencies among the tasks, and extracts the
arguments for each type of task. On the other hand, dynamic
task planning first determines the action sequence of the tasks
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Fig. 2: System overview of DeComplex for task plan generation from complex natural instructions.

by matching their post-conditions and inter-dependencies and
generate a viable plan for the robot to execute. DeComplex
consults a knowledge-base that contains question templates
for dialogue, pre- and post-condition templates for plan
generation, and a world model represented by logical atoms.
The system model is adapted from our previous work called
“task conversational agent for robots (TCAR)” [9]. However,
as mentioned previously that TCAR cannot handle complex
instructions and task dependency, it would fail to generate
a plan for such instruction. In the following, we discuss the
major building blocks of DeComplex in details.

A. Task set identification

To execute the instruction, first, the robot has to identify
the set of tasks contained in the instruction. We tokenize the
instruction first and then mark a token as a task if it has an
unambiguous goal that the robot knows to achieve by task
planning. Given an instruction I as a sequence of tokens,
I = {w1, w2, . . . , wn}, we model the identification of tasks
as a sequence labeling problem and predict the task labels
ti:n. We solve this using probabilistic graphical model, called
a Conditional Random Field (CRF). This includes marking
tokens in commands such as “go to the kitchen” as well as
in statements “if the coffee is hot”, as tasks. We identify the
tasks conveyed in instruction by jointly marking the tokens
that denote a task and by determining the type of the task. We
label the tasks from the set of task types known to the robot.
All the non-task tokens are labeled as O. As an example,
for given instruction “if the coffee is hot, bring it to me” the
CRF model labels the tokens as:
{ if - O, the - O, coffee - O, is - check state, hot - O, bring -

bringing, it - O, to - O, me - O } .
We also use the same CRF to add new task types and

new feature functions to appropriately predict the tasks from
statements, which is not considered in the existing work.

B. Argument identification

Each task is associated with one or more arguments and
the argument values are grounded entities and states in the
environment using a knowledge base. We also model the
argument prediction from an instruction as sequence labeling
using a CRF, by predicting the argument labels appended

by the BIO notation, i.e., we mark each token ai as inside
(I), outside (O) or as beginning (B) of the argument label.
For this, we extend the model described in [17]. Let T
be the set of predicted task types after removing non-task
tokens, then given the task prediction labels ti:n, the CRF
for argument prediction estimates the following conditional
probability distribution,

P (a1:n|w1:n) = α exp

{ n∑
i=0

( l−1∑
j=0

λjfj(I, i, ai−1, ai)

+λl g(I, i, t1:n)
)}
,

where there are l − 1 arbitrary feature functions and λj is
the learned weight of the jth feature function, and g with the
weight λl is used to associate a task type label with each
word. The function g is defined as the following,

g(I, i, t1:n) =

{
φ, if ti ∈ T
tj , else if tj /∈ T and j > i.

This means the task association feature function (g) asso-
ciates every token followed by a task to be its target until it
finds a new task. Although, the arguments can be predicted
without this feature, using this feature helps classification
because the model can learn to predict the argument type
only considering the arguments that are possible for the task
type. This simple assumption works well for instructions
containing a single task, or instructions consisting of only
imperative sentences or commands. However, in a complex
instruction, the target tokens for predicting argument can
both precede and succeed the task. For example in the
following instruction: “Bring me some coffee if it is hot”, the
bringing task should be associated with the succeeding token
‘coffee’ and the check state task should be associated with
both the preceding token ‘it’, and the succeeding token, ‘hot’.
Thus, during inference, using this feature function naively
can give inaccurate associations.

We solve this feature association problem by introducing
a new feature function that maximizes the likelihood of
predicted arguments. To do this, the function generates a set
of different task association features for a single inference
for the tokens in-between two tasks. Then it makes multiple
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TABLE I: Task dependency labels predicted by CRF.

Label Definition
conditional The task has one or more dependent tasks.
dependent-
positive

The task should be executed if the preceding
conditional task yields the desired outcome.

dependent-
negative

The task should be executed if the preceding con-
ditional task fails or yields a undesired outcome.

sequential The task is not explicitly dependent upon another
task and the order of execution is assumed to be
corresponding to its position in the instruction.

predictions and calculates the joint probabilities of each
predicted label sequence. Finally, it chooses the prediction
with the maximum joint probability, i.e.,

argmax

( k∏
j=1

P (a1:j |w1:j , t1), P (aj+1:k|wj+1:k, t2)

)
,

where there are k tokens in between the tasks t1 and t2.
For the previous example of complex instruction, our CRF

model for argument prediction labels the token sequence as:
{ if - O, the - B-Object, coffee - I-Object, is - O, hot - B-State,

bring - O, it - B-Object, to - B-Goal, me - I-Goal } .
After extracting the arguments, we use a co-reference

resolver to replace anaphoric references using pronouns such
as it, them etc. with the corresponding arguments (nouns) of
the preceding tasks.

C. Task dependency resolution

If there are multiple tasks present in the instruction as
reported by the task identification stage, we resolve their
dependencies by predicting if the execution of a task is
dependent on the execution of another task and if so, we also
predict the nature of the dependency. We jointly model these
two predictions as a sequence labeling problem by predicting
task dependency labels for a sequence of predicted tasks.
Given the instruction, I and the corresponding sequence
of task type labels, Tp = {t1, t2, . . . , tn}, we predict the
sequence of task dependency labels, D = {d1, d2, . . . , dm},
only for the known task type labels, i.e for ti 6= O. Table I
shows the task dependency labels and their definitions.

We perform this sequence labeling using a CRF. As we
are only interested in predicting the dependency label of a
token that has been marked as a task by the task identification
model, we consider only such tokens for the prediction. As
an example of the labeling, the task sequence in the previous
instruction is labeled as:
{ check state - conditional, bringing - dependent positive }
In the following, we discuss the challenges in under-

standing these dependencies between tasks from a complex
instruction and our strategies to solve them.

1) Challenges: The difficulty in understanding the de-
pendencies between tasks arises from several intricacies of
natural language. We noted three major challenges in this
regard:

• Unmarked dependency: We say a task has a marked
dependency when there is token preceding the verb that
can determine the task’s dependency type. For example,

consider the instruction: “If you can’t find it on the
table, look in the cupboard”, although the first search-
ing task in the sub-ordinate clause has a dependency
marked by the token ‘If’, the second (searching) task
in the independent clause has no lexical element that
can determine its dependency. In other words, if the
independent clause “look in the cupboard” is inspected
separately, the task seems to have no dependency at all,
which makes its prediction non-trivial.

• Out of order appearance: A prerequisite1 is usually
followed by one or more dependent tasks and this co-
relation is useful for building rules for understanding
task dependencies [11]. However, it is also natural
to convey a dependent task, followed by conditional
prerequisite. As an example, consider the instruction
“Bring me a pen, if you find one on the table.” where
the bringing task is dependent on finding it first, but
the prerequisite is stated later. Furthermore, such out of
order, dependent tasks usually have unmarked depen-
dencies that are already difficult to predict.

• Implicit dependency: We say a task has an explicit
dependency if all of its dependent tasks appear in the
same sentence. If the prerequisite of a task appears in
a different sentence, we call it an implicit dependency.
For example, in the instruction: “Turn on the tv. If you
cannot, bring me the remote.”, the task of bringing in
the 2nd sentence is dependent upon a task in the first.
Implicit dependencies are difficult to predict because
the prerequisites usually have unmarked dependencies
and as the tasks appear in different sentences, syntactic
relations between the two tasks can’t be found, which
is otherwise useful for the prediction.

2) Model: We use a linear-chain CRF model for predict-
ing the task dependency labels in an instruction marked with
task types. The CRF is a factor graph, that predicts a label
sequence, given an observation sequence. The CRF model
for predicting the task dependencies estimates the following
conditional probability of a label sequence d1:m, given the
sequence of tasks t1:m and the token sequence, w1:n,

P (d1:m|t1:m, w1:n) =

α exp

{ m∑
i=0

k∑
j=0

λjfj(w1:n, ti, di−1, di)

}
,

where α is a normalization factor, fj is the jth arbitrary
feature function, λj is the weight of the jth feature function,
and k is the number of such feature functions. Each feature
function fj is defined over the token sequence, the task type,
and two consecutive labels. We use several grammatical fea-
tures that include parts of speech (POS) tag and dependency
parse tree2. We extract the features using a general-purpose
NLP library, Spacy3. Table II shows the set of features we
use for the CRF.

1If task T1 is dependent on task T2, then T2 is prerequisite of T1.
2Dependency parse tree is a grammatical structure of a sentence, different

from our terminology of task dependency.
3https://spacy.io
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TABLE II: Observation features used for predicting task
dependency. The task type* feature is optional and we show
its efficacy in the evaluation section.

Feature Description
pos Parts of speech tag of the token
dep Dependency relation from its parent in the tree
has mark True if the token has a child marking a subor-

dinate clause
advmod child adverbial modifier of the token
has advcl child True if it has a adverbial clause modifier as a

child
length conj No. of other tokens that are conjunctions of the

token
task type* Task type of the token

The feature functions also include transition features that
estimate the probability of a label, given the estimated
probability of the preceding label. The transition features
help the prediction of an implicit dependency, as the parse
trees corresponding to the subsequent labels are disjoint,
giving no evidence of the grammatical relation.

D. Task planning

To execute a task, a robot needs to perform a sequence of
low-level actions. A task plan is a sequence of such actions
that satisfies the intended goal of the task. We consider
a task specified in an instruction to change a hypothetical
state of the world (initial state) to an expected state (goal
state). We encode the initial and goal conditions of a task
as a conjunction of fluents expressed in first-order logic.
The templates are grounded using the predictions of the task
interpreter to generate a planning problem in the PDDL for-
mal language [30]. During this grounding, if some necessary
argument for the template is missing from the instruction, or
it could not be predicted by the argument prediction model,
our system asks the human for the same. For this dialogue,
we resort to the dialogue strategy described in [17].

During the grounding of the templates, the assumed initial
conditions for a task are updated by the post-conditions of
the actions of the previous sequential task. In the case of con-
ditionals, we generate a plan for each conditional-dependent
pair, and in run-time, the correct action sequence is chosen
from the actual observed outcome of the conditional task.
Therefore, we reduce the problem of generating a task plan
for the complex instruction, to the generation of a correct
ordering of the tasks catering to the execution dependencies,
followed by planning individually for the goals of the tasks
in order while updating the assumed initial states using the
post-conditions of the PDDL operators.

We deterministically order the predicted tasks to a control
flow graph, organized as a tree, where each node in the tree
denotes a task. An example of such a graph is illustrated in
Fig. 1. In this process, we make sure a conditional task is
planned before any of its dependent tasks to resolve ordering
dependency. To resolve execution dependency, we make a
new branch when adding a new node, if it is dependent on
the parent node. We add a dependent node to the left sub-
tree if the dependency label is positive, and if the dependency

label is negative, we add it to the right sub-tree. For tasks
having a sequential dependency label, we order them as per
their corresponding appearances in the instruction.

In the case of multiple conditional tasks in the same
instruction, we assume two such conditionals are indicating
the same condition if the two tasks have the same type
and have no dissimilar argument values. If so, we merge
the two nodes and add the subsequent dependent tasks in
the appropriate branches of the original conditional node.
Otherwise, we consider the subsequent task to be a new
conditional task and therefore make a new branch.

IV. EVALUATION

We evaluate DeComplex from multiple aspects – (i) com-
pare our proposed approach for argument extraction against
existing approaches, (ii) report the performance of the CRF
model for task dependency prediction, and (iii) compare
the end-to-end system performance of finding the required
control flow graph of the given task against a baseline.

A. Dataset

As we do not assume a complex instruction all the time,
we have considered a mixture of both simple and complex
instructions. We have taken instructions containing a single
task from the HuRIc dataset [31]. We have also created
182 additional samples of complex instruction with varying
number of tasks per instruction (on average 3.73 tasks
per instruction with s.d=1.93). This results in a dataset of
537 instructions in total. We trained the task and argument
prediction models with this dataset using 80% as training
data and tested on the remaining 20%. As we invoke the
task dependency model only if there are multiple tasks, we
trained the model for dependency prediction using 80% of
the complex instructions and tested its accuracy and end-to-
end performance on the remaining 20% complex instructions.

B. Performance of task and argument prediction

The CRF models for sequence labeling of task and ar-
gument types in DeComplex, are trained with 8 different
task type labels and 21 argument type labels. The task type
prediction model has an F1-score of 0.94 on the test data.
For the prediction of the argument type, we have compared
our method with two other baseline methods. In the first
baseline method, arguments are predicted solely with the
linguistic feature without using the task type information.
In the second baseline method, the task type information is
naively associated with the argument predictor. In this case,
it is assumed that the tokens followed by the task are part
of its argument set. On the other hand, DeComplex does
have the strong assumption that tokens that follow the task
are the only target for argument prediction. We find that
the first baseline argument prediction model generates the
same argument labeling only 67% of the time, and generates
F1 score of 0.82 (weighted average score of all argument
labels) and the second baseline method achieves an exact
match accuracy of 73% with an F1 score of 0.91 (Table III).
This reveals the importance of associating the task type
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TABLE III: Comparison of accuracy in predicting arguments.

Method Exact match F1 score
Without task type association 67% 0.82
Naive task type association 72.7% 0.91
DeComplex 78.4% 0.93

information for argument prediction, even if done naively.
Our proposed model generates an exact match of 78% and
an F1 score of 0.93 on the test data. This improvement
is due to correctly predicting arguments for statements in
the instructions. Please note the model is not limited to the
number of task and argument types (classes). The CRF can
be trained and used with an additional or completely new set
of task and argument types.

C. Performance of task dependency resolver

To evaluate the CRF model for task dependency labeling,
we have compared our model with the “lexicon induction”
rule based method (lex induct) as described in [11] to predict
the conditional and the dependent tasks. If none of the rules
apply, the lex induct model predicts the label as sequential.
We consider two of our CRF models for the sequence
labeling, one that uses all the features shown in Table II
and another that uses all the features except the optional
task type feature.

We trained the models using the training data and report
the accuracy metrics of our models and the lex induct on
test data in Table IV. The lex induct model achieves a
F1-score of 0.76. The poor performance is attributed to
inability to predict the dependency labels for out-of-order
tasks and implicit dependencies. In comparison, our CRF
model that doesn’t use the task type feature (DeComplex -TF),
outperforms the lex induct by a large margin, δF1 = +0.17.
This is because our model uses both the syntactical relations
and the transition features to predict the unmarked, implicit,
and out-of order dependencies. For example, the transition
features estimate higher likelihoods of the subsequent task
of a conditional to have a positive or negative dependent
label, while estimating low likelihoods for a subsequent task
to have the sequential label. This is revealed by the learnt
weights of the transition features that are shown in Table V.

Using the task type feature further improves the perfor-
mance of the CRF, showing an overall improvement of
δF1 = +0.02 over the CRF that doesn’t use the feature. This
is because this model associates high probabilities of the
conditional label with certain types of tasks that are often
used to express a conditional task, such as searching for an
object or checking the state of an object. Although, if this
co-relation of a task and its dependency type is not present in
an application domain, still our model that does not use the
task type feature can be used that has an acceptable accuracy.

D. End-to-end performance

We have evaluated the end-to-end performance of DeCom-
plex to find the intended control flow graph of tasks, from a
natural language instruction, using two metrics. Firstly, we
have calculated the number of exact matches between a graph

TABLE IV: Comparison of two of our proposed CRF mod-
els for task dependency prediction with a state-of-the-art
(lex induct) method [11].

Label Model Precision Recall F1
conditional lex induct 0.74 0.81 0.77

DeComplex -TF 0.95 0.86 0.90
DeComplex 0.91 0.95 0.93

dependent positive lex induct 0.10 0.07 0.08
DeComplex -TF 0.85 0.79 0.81
DeComplex 0.87 0.93 0.90

dependent negative lex induct 1.00 0.45 0.62
DeComplex -TF 0.91 0.91 0.91
DeComplex 0.91 0.91 0.91

sequential lex induct 0.83 0.89 0.86
DeComplex -TF 0.94 0.97 0.96
DeComplex 0.98 0.96 0.97

Weighted average lex induct 0.76 0.77 0.76
DeComplex -TF 0.93 0.93 0.93
DeComplex 0.95 0.95 0.95

generated by our system and the corresponding annotated
graph. We annotated the correct control flow graphs for all
the complex instructions in test data considering their task
and dependency types and merged redundant nodes (tasks)
if any. For task identification part, we used our own CRF
model in all the three system variants, as the lex induct
model doesn’t predict task types. We show the result of the
comparisons in Fig. 3a.

We find that lex induct system performs poorly, as it can
find the exactly same graph only 35% of the time. Even
after using our technique of merging it gives the same
percentage of exact match. This is because can’t predict
the execution and ordering dependency for many examples,
therefore does not benefit from the merging strategy. We see
a 19% improvement in performance by using our CRF model
for dependency resolution, even without using the task type
information and merging strategy. When we merge redundant
tasks along with this model, we generate the correct graph
60% of the time. Subsequently, when we use our full CRF
model for dependency resolving, but do not use merging,
we get an exact match accuracy of 57%. Interestingly, even
though the dependency resolving CRF is better trained, its
accuracy is lesser than the model that that uses a relatively
weaker dependency resolver, but merges the redundant tasks.
This shows that the technique of merging redundant tasks is
certainly useful when handling long sequences of tasks in a
complex instruction. Our full model finds an exact match
62% of the time, outperforming the baseline by a large
margin.

As the task identifier is probabilistic, its error propagates to
the dependency resolver, i.e the predicted graph of tasks can
deviate from the ground truth even if one single task is mis-
predicted and even when the mis-predicted task is sequential.
For this, we also use a less pessimistic metric, named as the
Ordering Error Rate (OER). We use this metric by following
by a similar metric used in [11], [29]. We define OER as the
number of Substitutions (S), Deletion (D) and Insertion (I)
of nodes performed on the predicted control flow graph to
produce the ground truth graph, divided by the number of
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TABLE V: Weights of the transition features learnt by CRF. The weight values are used to calculate transition probabilities.
The blue, yellow and pink cells denote a high, medium and low transition likelihood, respectively.

Previous prediction condition dependent negative dependent positive sequential
condition 0.001 6.464 5.346 -1.339

dependent positive 0.196 4.280 1.500 -2.593
dependent negative -3.105 0.001 0.001 -0.692

sequential 3.018 4.020 -3.801 2.535
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Fig. 3: Comparison of our approaches against a baseline in terms of exact match and ordering error rate. A method marked
with a ‘(m)’ denotes that it uses our strategy to merge redundant tasks.

nodes in ground truth, i.e., for a ground truth graph of N
tasks,

OER =
S +D + I

N
.

We show the results of the OER metric for the baseline
system and DeComplex along with their corresponding re-
dundant task merging variants, in Fig. 3b. By analyzing the
results, we find that the control flow graphs generated by our
full model is very similar to the ground truth (OER=0.15)
and the error slightly increases (OER=0.18) when redundant
tasks are not merged. These error rates are closely followed
by DeComplex -TF, which receives an error rate of 0.19
before and 0.17 after merging. Whereas for the lex induct
system, the predicted graphs largely differ from ground truth
(OER=0.31), even though it uses the same task identification
model. The error is slightly reduced (OER=0.27) by using
our merging strategy.

E. Discussion

By analyzing the failure cases, we see that the decline in
end-to-end performance from the individual accuracy of the
task dependency resolver is mainly attributed to the errors
made by the task identification model, whose mis-prediction
of a single task leads to an in-exact match. This particularly
the case when the instructions are very long, containing
more than 5 tasks. There are also a few cases where the
task is predicted correctly, but the dependency label is
incorrect, leading to a node insertion in an incorrect branch.
However, the limitations of DeComplex can be overcome by
a suitable dialogue agent that can ask appropriate questions
to correct the individual mis-predictions. In future, we plan

to extend DeComplex by integrating a dialogue engine with
it. In this work we take textual input instead of verbal
instruction, assuming an accurate speech to text conversion
system. Mitigating the propagation of error by a noisy speech
transcription, specially in the case of a mobile robot and far-
field speech, can be a valuable addition to the system.

V. CONCLUSIONS

Providing instructions to a robot through natural language
conversation adds to the usability of the robot and con-
venience for the user. The instructions are often provided
as a complex phrase, especially when neither the user nor
the robot has a full view of the environment. Existing
work often assumes simple task instructions with a single
task or multiple independent tasks. However, when multiple
tasks are present in such a complex instruction, it includes
situations where the execution of certain tasks are dependent
on the outcome of another. Most of the time, such an inter-
dependency between tasks is not stated explicitly, which
makes its prediction a challenging task. In this work, we
have presented a method to understand such dependencies
between tasks and re-order the tasks catering to their depen-
dency types. We have presented a probabilistic model and
pointed out the useful features to predict the dependencies
with high accuracy. After finding the required order of task
execution, we plan for each task in the order after merging
redundant tasks (if any) and generate conditional plans for
the dependent tasks. We have compared our system by
designing a baseline based on existing work and found that
our system significantly outperforms the existing system.
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