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Abstract— In a collaborative scenario, robots working side by
side with humans might rely on vision sensors to monitor the
activity of the other agent. When occlusions of the human body
occur, both the safety of the cooperation and the performance
of the team can be penalized, since the robot could receive
incorrect information about the ongoing cooperation. In this
work, we propose a novel particle filter algorithm that, by
merging the data acquired through a RGB-D camera and a
MR headset, estimates online the human wrist position. This
algorithm allows to significantly reduce the uncertainty of the
human pose estimation, in case of both static and dynamic
occlusions. To this purpose, the proposed particle filter is
integrated with a detailed virtual model of the real workspace.
Moreover, additional constraints describing the boundaries
of the motion of the human upper body are included in a
virtualized framework. The results showed that the proposed
technique entails significant improvements, determining a rel-
evant reduction of the estimation error and of the uncertainty
of the estimate.

I. INTRODUCTION

In the last few years, the field of collaborative robotics
has gained an increasing interest, especially in industrial
frameworks. To guarantee an effective cooperation and a
safe coexistence, collaborative robots, also known as cobots,
must be endowed with the capability of monitoring human
motions, while being aware of the environment where they
jointly cooperate, [1]. To this purpose, collaborative robots
might be equipped with vision sensors, such as the popular
RGB-D cameras, which can retrieve both colour and depth
images encoding spatial information, [2]. Indeed, the data
acquired through these sensors can be used to estimate
the actual pose of the human operator within the working
environment. This information can be communicated to the
robot, so as to provide it with elements to understand the
actual position of its partner within the shared workspace.
There are however several related issues: bad lighting con-
ditions, unexpected movements, partial occlusions of the
human body, as well as the presence of complex geometries
inside the workspace, often make the data retrieved by these
sensors unreliable.
In this work, we propose a novel technique that allows to
manage effectively the occurrence of occlusions. Indeed, this
issue represents one of the main sources of uncertainty inside
a collaborative scenario. The robot might in fact receive
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incorrect information about the other agent and react in
an inappropriate way, thus reducing the performance of the
team, or the safety of the cooperation. In these situations, the
only available solution is to rely on human pose estimation
techniques, namely a filtering algorithm, designed to estimate
the human poses from the knowledge acquired in previous
time instants, when the user was properly tracked. To reduce
the uncertainty of the human pose estimate, we propose a
novel technique that allows to estimate the occluded human
pose by applying a constrained version of the well-know
particle filtering algorithm.
One of the main contributions of this work is that the
novel filtering technique provides an accurate estimate of
the occluded human pose, by merging the data retrieved by
means of an RGB-D camera with those of a wearable mixed-
reality (MR) device. The intuition behind this approach is
that the accuracy of human pose estimate can increase if
both the constraints related to the kinematics of the human
body, and the ones characterizing the working environment,
are included in the estimation process. In this regard, the MR
device perfectly suits this requirement, since, for instance, it
can be endowed with the capability of scanning the real envi-
ronment and generating a 3D virtual replica of it. By taking
into account both kinematic constraints and the model of
the environment, we are able to fully characterize the shape
of the occlusion, thus reducing significantly the uncertainty
related with the human pose. Moreover, by merging the data
coming from a fixed (RGB-D) and a mobile (wearable) MR
camera, a more complete model of the human and of his
workspace can be created.
The rest of the paper is organized as follows. Section II
provides an overview of the previous approaches used to
estimate the unknown or uncertain human pose. Section III
provides some background on a previous formulation of
the constrained particle filter, which can be considered the
benchmark against which we validate our algorithm. Section
IV describes the details of the novel constrained particle
filter proposed to enhance the estimate of the position of
the human wrist in case of occlusion. Section V describes
the experimental set-up used to validate our approach and
discusses the achieved results. Finally, in Section VI some
conclusions are offered.

II. HUMAN POSE ESTIMATION: BACKGROUND

Some of the traditional approaches applied to detect the
human pose and the surrounding environment still rely on
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one fixed sensing device. In this regard, the methods based
on Time of Flight (ToF) technology, such as the Microsoft
Kinect, are definitely the mostly adopted. Many features re-
lated to the human silhouette can be easily retrieved by these
sensors, such as the hands’ pose or the reconstruction of the
human face, [3]. In these situations, the complete pose of the
human skeleton is obtained by comparing the data retrieved
by the depth camera with a predefined human database, [4].
However, when the user is not completely visible to the
sensing device, the pose of some human joints cannot be
inferred correctly. To overcome the occlusion issues, several
approaches can be applied. In [5] multiple depth cameras
are used to compute in real-time the distance from dynamic
objects. In [6] multiple Kinect cameras are simultaneously
exploited to avoid the occurrence of occlusion, by merging
the overall data acquired. However, this methodology leads
to the accumulation of a huge amount of redundant data
that are difficult to manage. Moreover, the method requires
a sophisticated architecture to integrate the different devices.
[7] exploited a Kalman Filter to track the human posture.
However, despite being an efficient algorithm from a com-
putational perspective and quite simple to implement, it was
unsuitable for managing occlusions. An alternative technique
commonly used to address the human pose estimation is
the Particle Filter (PF), which works effectively in face of
any kind of nonlinearities and non-Gaussian distributions.
This algorithm recursively approximates, through a finite set
of discrete values, the marginal distribution of the process
state to be estimated, whenever a new measure is available,
[8], [9]. As shown in [10], this technique is used in a
variety of situations including the Simultaneous Localization
and Mapping (SLAM) problem. In [11] the PF is used to
improve the accuracy of the Kinect in case of occlusions
by merging the colour information with the depth data. In
[12] a method based on the combination of PF and KF is
proposed to track linear and non-linear motion of a target
object. In [13] a constrained version of the particle filter
is presented. The proposed method is effective in limiting
the uncertainty associated with the occluded human pose
by taking into account anatomic distances of the human
body and the information retrieved by the depth camera of
the Kinect sensor. However, the method does not take into
account the geometrical shape of the environment and the
boundaries of human joints motion to limit the propagation
of the uncertainty in the estimation process. Moreover, the
robustness of the method fails when the user is occluded by a
complex geometry, for instance, a concave object that cannot
be fully characterized by a single sensing device.
Motivated by these considerations, we decided to adopt
a constrained particle filter technique, and include novel
constraints to enhance that version, by merging the data
coming from the Kinect with an additional wearable MR
device, Microsoft HoloLens.

III. CONSTRAINED PARTICLE FILTER: BACKGROUND

In this Section, we briefly summarize the formulation of
the constrained particle filter, from now on referred to as

‘CPF’, presented in [13]. The expression ‘Particle Filter’
refers to a class of non-parametric algorithms used to infer
the posterior distribution of the state of a dynamic process.
Differently from the well-known KF, the PF does not need
a model of the system or of the noise. In fact, the posterior
distribution of the state is recursively approximated through a
set of discrete values, also known as ‘particles’, which evolve
independently from each other and are used to simulate all
the possible evolutions of the unknown state. Each particle is
associated with a specific weight. As the number of particles
(N ) tends to infinite, the result is exact. In [13], due to
the computational costs of the algorithm, the estimation
process was limited to the case of estimating the pose of
a single human joint, the wrist. Moreover, a hierarchical
model of the human silhouette was adopted. In this way,
when, for instance, the wrist position was occluded, the
estimation process was performed based on the knowledge of
the previous joint position of the hierarchy that was correctly
detected, i.e the elbow. Given the above, the state of the
system can be represented by vector s = (x, y, z, ẋ, ẏ, ż),
which are the position and the velocity, respectively, of the
human wrist (expressed in Cartesian space), with respect
to Kinect camera reference frame. Therefore, the following
discrete-time state-space system (see [13]) was adopted:{

sk+1 = Ask + νk

yk = Csk + ψk

(1)

A =

[
I3x3 I3x3∆t
03x3 I3x3

]
C =

[
I3x3 03x3

]
(2)

where νk ∼ N (0,Q) and ψk ∼ N (0,R) represent the
process noise and output noise, respectively.
The steps of the algorithm are reported in the following.
At time step k = 0:

• Initialization phase: select the desired probability dis-
tribution (see [13]), also called ‘proposal distribution’.
Draw N samples from that distribution and assign to
each of them a weight equal to 1/N . Acquire the
anatomic distance between each pair of consecutive
joints of the hierarchical human model described previ-
ously.

For future time instants k = 1, . . . ,K:
• State evolution: the state of each particle is propagated

a step further in time according to the distribution
p(sk|sk−1);

• Measurement update: check whether a new measure-
ment, yk, of the target human joint position has been
retrieved by the sensing device. If yes, update the
weights of the samples according to the ‘Closed loop’
(CL) procedure, otherwise, according to the ‘Open loop’
(OL) one, as will be clarified later one.

• Weight evolution: Check if the distance between each
particle (representing a candidate position of the wrist)
and the position of the elbow lays inside a spherical
crown, whose center is the position of the elbow and
whose ray is equal to the distance between the elbow
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and the wrist retrieved in the Initialization phase. This
operation will be referred to as ‘Skeletal distance’
check. Then, if a particle passes the test, its weight is
updated following the CL or OL procedure, based on
the outcome of the Measurement update phase.

– CL: assign a weight to the i-th particle, wi
k, propor-

tionally to the likelihood of the new measurement
given the sample:

w
(i)
k = p(yk|s(i)k )w

(i)
k−1 (3)

p(yk|s(i)k ) =
e−

1
2 (yk−Cs

(i)
k )R−1(yk−Cs

(i)
k )√

2π det(R)
(4)

where p(yk|sik) is the likelihood of the new mea-
surement, given the particle, and R is a diagonal
matrix whose elements are the standard deviations
of the noise acting on the measurements.

– OL: the particle is subject to the occlusion detection
test (see [13]). If it survives, since a new measure-
ment is not available, its weight is set equal to 1/N .

In both cases the cumulative weight vector, wk
cumul(i),

is computed according to (5).

wk
cumul(i) =

i∑
j=0

wj
k (5)

• State estimate: compute the estimated state:

ŝk =
1

wk
cumul(N)

N∑
i=0

wi
ks

i
k (6)

• Resampling: a new set of particles is generated from the
posterior belief, which is computed based on the values
assumed by their weights, [13]. This step is crucial to
avoid the so-called ‘degeneration phenomenon’.

The constrained particle filter just presented allowed to
estimate the human position in real-time. However, some
weaknesses in the formulation can be observed:

• the particles are allowed to propagate through objects:
this can be misleading and increase the uncertainty in
the estimation process.

• the joint motion limits of the human body are not
explicitly included in the PF constraints. This allows
the samples to propagate also outside the regions which
constitute the natural range of motion of the human
articulations. Therefore, particles are still allowed to
propagate to unrealistic positions.

IV. CONSTRAINED PARTICLE FILTER: NEW
FORMULATION

In the following, we propose the novel formulation of the
CPF. In order to solve the first issue of the previous version,
we include the model of the environment where the user
works. In this way, the region where the particles are allowed
to propagate is better shaped and further restricted, thus
obtaining a reduction of uncertainty in the estimate. For what
concerns the second issue, we propose to create a 3D virtual

Fig. 1: ChArUco board is obtained by merging chessboard
pattern and ArUco markers

model of the human silhouette, according to the practice
known as ‘avateering’, [14]. Indeed, in a MR application,
the operator’s avatar could be appropriately located inside
the model of the environment generated previously. Hence,
in this MR framework, we can avoid the propagation of
the particles through the surfaces of the real environment
mapped previously. Moreover, in this virtual framework,
we can associate each joint of the human avatar with a
virtual bounding volume that represents his joint limit. This
operation is possible if the samples are interpreted as virtual
objects that can collide with the surrounding surfaces present
in the virtual environment, as will be clarified later on.
The formulation of the constrained particle filter that we
propose in this paper exploits as input data sources the infor-
mation obtained by merging the data retrieved by HoloLens
to those of the Kinect, as will be clarified in the following.
Since our work is framed within a multi-sensor scenario, a
method to merge the data coming from different sources, i.e
Kinect and HoloLens is required. Section IV-A addresses this
problem. Section IV-B describes in detail the formulation of
the virtualization of the model of the human and the one of
the environment to manage occlusions.

A. System calibration

In this subsection, we describe the method adopted to
relate the data acquired through the Kinect sensor to the ones
retrieved by the MR headset (HoloLens). Clearly, the purpose
of this phase is to retrieve the homogeneous transformation
matrix that allows to relate the data coming from the two
sensors to one another. To do that, a quite popular technique
is to use a fiducial marker, such as a QR code, that can
be appropriately recognized by the sensing devices. In this
work, we decided to exploit a particular fiducial marker, also
known as ChArUco board, that consists in a chess of ArUco
markers, see Fig. 1. The motivation underlying the choice of
a ChArUco is that it composes the best features of ArUco
markers, [15], with the classical chessboard pattern. In fact,
the pose of a chessboard can be better estimated thanks to
the greater number of points available, corresponding to the
internal vertices between black and white squares. Hence,
we developed a MR application that enables HoloLens to
recognize the ChArUco marker.
Once the marker has been appropriately detected by each
sensing device, the homogeneous transformation matrix ex-
pressing the pose of the marker with respect to the camera
reference system is obtained. As illustrated in Fig. 2, these
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Fig. 2: Schematic representation of the calibration procedure

matrices are represented by A1−char and Akin−char, for
HoloLens and Kinect, respectively. The schematic represen-
tation of the complete set-up is reported in Fig. 2, where H0

is the initial holographic reference system which coincides
with pose of the holographic headset, worn by the user, at
the initial time instant, when the application is launched.
This is assumed by HoloLens as the fixed reference frame
with respect the successive motions of the user, which can
be tracked and extracted using built-in methods. The actual
pose of the device with respect to H0, is thus represented by
A0−1. Finally, we can relate the data coming from HoloLens
to those of the Kinect, by composing the homogeneous
transformation matrices, as described by (7):

A0−kin = A0−1A1−charA
−1
kin−char (7)

B. Constrained Particle Filter: virtualized framework

In this subsection, we describe in detail the methodology
used to virtualize the PF framework, which is a key point of
our novel formulation.

1) Environment virtualization: The aim of this phase is
to generate a set of data that provides a virtual volumetric
description (replica) of the real environment where the user
works. To do so, we created a MR app in Unity. This
is a game-engine that allows the user to generate custom
holograms, associate them with a specific behaviour, and
simulate it before the deployment of the generated model
of the environment on HoloLens. This MR app has three
key features: the capability of tracking the user’s head
pose, scanning the surrounding environment (through the
so-called ‘Spatial Mapping’ capability), and displaying as
hologram the 3D model of the room previously generated.
Thus, once the device is enabled, the operator wearing the
MR headset can perform the scanning process by moving
his/her head around him/her, so as to cover the desired
surrounding environment, see Fig. 3. While the operator is
scanning the environment, a 3D replica of the workspace is
instantaneously produced and continuously updated. These
volumetric data can be acquired by HoloLens thanks to
the built-in Time of Flight (ToF) sensor. The operation just

Fig. 3: Picture of the real environment scanned by HoloLens

Fig. 4: Example of the obtained meshed workspace (A) and
the corresponding real environment (B)

described produces a replica of the environment in the form
of meshes which are displayed to the user in real-time in
the form of holograms, see Fig. 4. Each mesh is basically a
polygon whose coordinates are expressed with respect to the
initial reference system of the HoloLens, H0.

2) Human model virtualization: In the CPF, the particles
represent the candidate positions where the unknown human
wrist could be located. To limit the volumes where the
particles are allowed to propagate, we need to discard not
only the samples that pass through an existing geometry
of the real environment, but also the ones that violate the
physical constraints of the human body. To do that, we
create inside the Unity simulation environment an avatar
(hologram) of the human, as illustrated in Fig. 5. The position
of the joints and the length of each link are estimated
based on the distance between two consecutive joint positions
retrieved by the Kinect. Moreover, a hologram representing
the joint boundaries, from now on referred to as ‘joint
bounding volume’ (JBV), is created. Since we want to avoid
the particles to model erroneous poses for the human body,
we are interested in determining if they violate the physical
range of motion of the joint they are associated with. To do
that we exploited the concept of kinematic chain, that allows
to proceed to the estimation of a specific joint, relying on the
knowledge of the position of the previous ones. In this way,
for instance, after computing the pose of the shoulder and
of the elbow, we know that the wrist should lie on a specific
plane, as illustrated in Fig. 6. Since, when the state of the
particles is updated, the JBV is already in place, the particles
will be restricted to propagate inside it. The shape of the JBV
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Fig. 5: Virtual model (avatar) of the human animated using
the RGB-D camera

Fig. 6: Sequential procedure to position the wrist JBV

for each joint can be defined, based on the knowledge of the
joints boundaries, [16]:

−9◦ ≤ α1 ≤ 160◦ (8)

−43◦ +
α1

3
≤ α2 ≤ 153◦ − α1

6
(9)

−90◦ +
7α1

9
− α2

9
+

2α1α2

810
≤ α3 (10)

α3 ≤ 160◦ +
4α1

9
− 5α2

9
+

5α1α2

810
(11)

20◦ ≤ α4 ≤ 180◦ (12)

where α1, α2, α3 and α4 are the joint variables of the
human upper-arm (see Fig. 7). Once α4 is retrieved, since
the pose of the wrist depends only on α4, we could fix a
volume according to (12). From a theoretical perspective,
the JBV obtained for the wrist should be a plane. However,
this hypothesis turned out to be too strict, since, when the
position of the wirst is orthogonal to that plane, the number
of particles that satisfy the constraint provided by the JBV
would decrease dramatically. Therefore, this hypothesis was
relaxed and the volume extended also to the third dimension.
Hence, by merging the constraints illustrated in Section III
with the new JBV, the remaining volume within which the
samples are allowed to propagate corresponds to a 3D sector
of an arc (see Fig. 8). To animate the virtual model of
the human, a technique known as ‘avateering’ is applied.
This allows to couple the virtual avatar of the human with
the skeletal poses acquired by the Kinect sensor. Therefore,
the joint positions acquired by the RGB-D camera are

Fig. 7: Joint variables of the human arm

Fig. 8: Example of JBV: frontal view (left) and lateral view
(right)

used within the PF framework, while the joint orientations
retrieved are exploited to determine the orientation of the
JBV.

3) Collision detection: In the following, we describe one
of the main improvements with respect to the CPF illustrated
in Section III. This is the collision detection capability, which
is a method introduced in the virtual framework to determine
whether the particles are interacting and, potentially, collid-
ing with other virtual objects (i.e environment and JBV).
In this way we can avoid propagating the particles in an
unrealistic way beyond the existing boundaries (see Fig. 9).
In fact, in this framework, each particle is reinterpreted inside
Unity as a full-fledged holographic object which can interact
with the other holograms. To associate a hologram with the
capability of recognizing the occurrence of a collision with
another hologram, we exploited a methodology based on the
use of the so-called ‘raycasting’ technique, [17]. The latter
enables the process of projecting a line, denoted as ‘ray’,
from a desired starting position along a specific direction of
the 3D space. Then, if the ray encounters an obstacle on its
way, it returns the position where the collision has occurred.

4) CPF algorithm: Starting from the system described by
(1), the proposed CPF algorithm, in closed loop, works as
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Fig. 9: Particle propagation through a volume without colli-
sion detection (A) and with collision detection (B)

follows.
Denote the vector of N particles at time step k as:

Sk = {s(1)k , . . . , s
(N)
k } (13)

and the vector of the particles weights at time step k as:

Wk = {w(1)
k , . . . , w

(N)
k } (14)

Clearly, the samples represent hypotheses on the true value
of the human wrist position.
At time step k=0:

• Initialization phase: when the human silhouette is
completely tracked, compute the Euclidean distance,
s
(0)
ew between the true position of the elbow and the

true position of the wrist. Draw N particles from the
desired proposal distribution q and assign each of them
with a weight equal to 1/N .

For future time instants k=1, . . . ,K:

• Propagation step: propagate the samples a step further
in time. A new set of particles S̄k is obtained starting
from Sk−1, where each particle is drawn from the
proposal distribution, as follows:

s̄k
(i) ∼ q(s(i)k |s

(i)
0:k−1, y0:k−1) (15)

where, as done in [13], q(s(i)k |s
(i)
0:k−1, y0:k−1) is set

equal to p(s(i)k |s
(i)
k−1).

• Collision detection check: project a raycast from the
true elbow position, Ek, towards the direction of the
i-th candidate wrist position s̄k

(i),∀i = 1, . . . , N .
Then, for each sample, if the raycast related to the
i-th particle is colliding in position χi

k with one of the
virtual constraints, i.e the JBV or the surfaces of the
virtualized environment, then s̄k(i) = χi

k.

• Measurement update: the new measurement yk is
retrieved by the sensor;

• Weights computation: update the weights of the parti-
cles as follows:{

w
(i)
k = p(yk|s(i)k )w

(i)
k−1, if s̄k(i) 6= χi

k

w
(i)
k = 0, if s̄k(i) = χi

k

(16)

Fig. 10: Result of the tests in case of occlusion of the
wrist pose: the spherical crown allowed by the ’skeletal
distance’ limitation is cropped to a section of an arc, due
to the boundaries of the joint variables. The particles (red)
which are visible to the Kinect camera, are discarded. Those
representing colliding positions (marked with red crosses)
are even eliminated

where p(yk|s(i)k ) is the likelihood function which
represents the probability that, given the sample s

(i)
k ,

the output is the measured one, i.e yk. As suggested in
[13], the likelihood function is shaped so as to include
the constraint related to the skeletal distance.

• Weights normalization: normalize the weight of each
particle with respect to the sum of the weights.

• Bootstrap resampling: draw a new set of N samples
from the distribution obtained at the previous step,
which is proportional to the values of the weights.
Assign each sample with a weight equal to 1/N .

The result of this procedure is that the volume where
the particles are allowed to propagate is strictly reduced, as
reported in Fig. 10. The collision detection check based on
the raycasting technique turned out to be fast enough, in fact
the projection of 500 rays increases the computational time
of less than 1 ms.

V. EXPERIMENTS

We evaluated the performance of the proposed CPF al-
gorithm in a realistic assembly task. The task consisted in
assembling the components of an industrial emergency stop
button. During the execution of the task the human operator
was required to perform a certain sequence of reaching
motions toward a predefined set of target positions, some
of which caused the occurrence of the occlusion of the
human wrist position from the perspective of the Kinect
camera. The experimental set-up was composed by a dual-
arm cobot (ABB YuMi), a Kinect camera, used to monitor
the operator’s silhouette and a MR headset, worn by the user.
All these devices communicate the acquired data to a CPU
which runs the CPF described in Section IV. A layout of the
workstation, from the user’s perspective, is displayed in Fig.
4B. We assume that in a real industrial scenario, two types
of occlusions can occur (see Fig. 11):

• static: when the object occluding the human wrist is
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Fig. 11: Representation of a static occluding object (1) and
of a dynamic occlusion (2) in a collaborative workstation
from the perspective of the Kinect camera

Fig. 12: Occlusions displayed in the Kinect depth map

due to the intrinsic geometry of the environment and
remains a fixed element of the workspace, which, in our
framework, can be mapped a priori during the spatial
mapping phase. This is the case of the shelf reported in
Fig. 11.

• dynamic: when the occlusion of the human wrist is due
to an object that moves dynamically during the various
phases of the assembly task; thus, it cannot be mapped
a priori. This occurrence can be generated, for instance,
by the motion of the robot arm which could interpose
between the camera and the user or by a self-occlusion
of the operator.

During the execution of the assembly task the operator’s
wrist is occluded when it inserts his/her hand into the
concave surfaces of the shelf where some components needed
to build the button are located. In addition, at certain time
instants, his/her wrist can be occluded by the robot if the
human is heading towards one of the boxes laying on the
table (see Fig. 11) and the robot is moving its arm in
the neighbourhood of those boxes. A picture describing the
occurrence of these occlusions is reported in Fig. 12. To test
the performance of our algorithm, we decided to adopt the
following evaluation metrics:

• propagation volume of the particles: this quantity is
described in terms of confidence ellipsoid. Indeed, the
volume of the ellipsoid containing the 95% of the
particles is computed and it is used to characterize the
volume of the particles dispersion, which represents an
indicator of the uncertainty in the estimation process.

• estimation error: it represents the distance between
the estimate returned by the proposed CPF algorithm
and a reliable measurement of the wrist position. To
perform this test and obtain the measurement’s ground
truth, we removed the occlusion and we stored the
wrist position returned by the Kinect. Then, we insert
again the occluding object, and we evaluate the estimate
returned by the algorithm.

To have a complete overview of the performance of our CPF
algorithm, we compared the following three formulations of
the CPF algorithm:

• ‘Original’: refers to the formulation of the CPF pre-
sented in Section III;

• ‘Joint’: refers to a formulation of the CPF which co-
incides with the aforementioned ‘Original’ algorithm to
which the JBV and the avateering constraints have been
added;

• ‘Complete’: refers to the novel formulation of the CPF
algorithm that includes also the virtual model of the
workspace. This formulation coincides with the CPF
technique presented throughout Section IV.

We performed 17 trials of the same assembly task per
each considered technique. The results obtained in terms of
propagation volume (see Fig. 13) and in terms of estimation
error (see Fig. 14) confirmed our expectations. In fact,
Fig. 13 shows a relevant reduction (about one order of
magnitude) of the volume dispersion of the particles when
the JBV constraint is included as additional constraint to
the ‘Original’ formulation. The uncertainty of the estimate
is further reduced by the constraint related to the geometries
characterizing the environment. In particular, this latter con-
straint reduces the variance of the volume, thus increasing
the robustness of the proposed algorithm. For what concerns
the estimation error, a similar conclusion can be drawn: when
the JBV constraint is included, the estimation error decreases
by 21.7% with respect to the ‘Original’ CPF. While, the
‘Complete’ CPF further enhances this result, by reaching a
reduction of 28.3% with respect to the ‘Original’ CPF.

VI. CONCLUSIONS

In this paper, we proposed a novel constrained particle
filtering technique that allows to manage effectively occlu-
sion issues occurring in collaborative industrial frameworks.
To limit the propagation of the particles and the uncertainty
of the estimate, we included in the PF formulation the con-
straints related to the geometry of the real environment where
the operator works, and those describing the boundaries of
the human joints motion. To do that, we merged the data
retrieved by the Kinect with the ones acquired by the MR
headset. This allowed to interpret the particles of the PF as
holograms that are propagated from a holographic model of
the human body into a virtual replica of the user workspace,
and to check if and where they are colliding with these virtual
constraints, so as to better shape the occlusion. The data
coming from the Kinect camera and from the HoloLens are
related to each other, based on a custom marker detection
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Fig. 13: Boxplot describing the distribution of the prop-
agation volumes of the particles according to the three
formulations of the CPF
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Fig. 14: Boxplot describing the distribution of the estimation
error according to the three formulations of the CPF

algorithm. Even though the architecture of the proposed
approach is more complex than that of the state-of-the-
art methods, since it involved the presence of a wearable
MR camera in addition to the traditional RGB-D camera, it
resulted more effective at managing occlusions. Indeed, the
performance of the proposed CPF technique turned out to be
quite satisfactory, in terms of reduction, with respect to the
state-of-the-art methods, of the volume of propagation of the
particle and of the estimation error.
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