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Abstract— With the advent of service robots in public places
(e.g., in airports and shopping malls), understanding socio-
psychological interactions between humans and robots is of
paramount importance. On the one hand, traditional robotic
navigation systems consider humans and robots as moving
obstacles and focus on the problem of real-time collision avoid-
ance in Human-Robot Interaction (HRI) using mathematical
models. On the other hand, the behavior of a robot has
been determined with respect to a human. Parameters for
human-human interaction have been assumed and applied to
interactions involving robots. One major limitation is the lack
of sufficient data for calibration and validation procedures.
This paper models, calibrates and validates the socio-
psychological interaction of the human in HRIs among crowds.
The mathematical model is an extension of the Social Force
Model for crowd modelling. The proposed model is calibrated
and validated using open source datasets (including unin-
structed human trajectories) from the Asia and Pacific Trade
Center shopping mall in Osaka (Japan).
In summary, the results of the calibration and validation on the
multiple HRIs encountered in the datasets show that humans
react to a service robot to a higher extend within a larger
distance compared to the interaction range towards another
human. This microscopic model, calibration and validation
framework can be used to simulate HRI between service robots
and humans, predict humans’ behavior, conduct comparative
studies, and gain insights into safe and comfortable human-
robot relationships from the human’s perspective.

I. INTRODUCTION

The deployment of autonomous service robots assisting
human beings has gained huge popularity in recent years.
The areas of application initially included transportation of
goods, e.g., linen, laboratory samples, medicine in hospi-
tals [1]–[3], delivering items such as documents, drinks and
meals in multi-floor offices [4], as well as collecting waste,
and delivering food in cities [5]. Over the years, this list
was extended to tasks involving other types of interactions
with humans including assisting disabled people, performing
security patrols, guiding visitors in museums, and entertain-
ing people [6]–[10]. Robots have proven themselves to be
effective at providing service to Frequently-Asked Questions
(FAQs) such as giving direction, distributing information
leaflets and helping customers to find their way in shopping
malls (i.e., repetitive, monotonous service tasks) [11], [12].
Human-Robot Interaction (HRI) has been experimentally
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Fig. 1. Modeling Human-Robot Interaction based on the Social Force
Model: Parameter A is the interaction strength which represents the amount
of influence that a force has and depends on the interaction range B.

studied within various environments (e.g., an office, a do-
mestic environment, a seminar room) and for different
tasks [13]–[19]. During social interactions, humans tend to
keep a measurable distance from their counterpart: In 60%
of the observed cases, this distance does not differ between
a robotic or human counterpart; in 40% of the observed
cases, the distance is less, if the counterpart is a robot [13],
[14]. Further studies have shown that the most comfortable
direction for a robot to approach a human is from either the
left or right hand side [17]–[19]. It is also found that humans
prefer a robot in the shared environment to move at a speed
lower than human walking speed (lower than 1 m

s ) [20]. The
correlated relationship between speed, direction of approach
and distance in HRI is of paramount importance ensuring
human’s safety and comfort [21].
Safety in HRI, where humans share space with service
robots, is commonly assured by avoiding collisions with
humans. Collision-free navigation of robots among humans
is modelled in various studies where humans are considered
as dynamic obstacles [22]–[25]. A method is proposed
in [21] to determine an optimal trajectory for robot’s motion
among humans. They define distance-dependent velocities
for HRI to assure human’s safety and comfort. However,
human motion is self-driven and self-adapted, and it is
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subject to both physical laws and psychological principles.
In [26], this has been realised by developing a social force
based model for motion control of mobile robots in shared
environments with humans. The model was tested in two
scenarios: collision-avoidance of a robot with a static human
and human-following behavior of a robot without entering
the human’s intimate zone. Validation was performed using
experimental tests defined with the Virtual Robot Experimen-
tation Platform only. In [27], the social behavior of a robot
is modelled based on the Social Force Model (SFM) to walk
side-by-side a human in a crowd and make the human feel
safe and comfortable. The authors extended the SFM for
this purpose since it has the capability of replicating human
behaviors in crowds accurately. In [28], the role of haptic
feedback for human-robot communication is tested for an
orthogonal human-robot encounter. Trajectories of human
movements are predicted using the SFM as well. Accord-
ingly, the robots’s intention of movement is communicated
to the human prior to their interaction using a wearable
haptic device. It is reported that haptic feedback supports
humans to feel safe around robots and improve the human-
robot relationship. However, the authors mention that the
social force based model is not accurate and their interaction
scenarios are very limited (i.e., only orthogonal encounters
are considered).
The limitations of the above mentioned studies are manifold:
(i) HRI and collision avoidance behavior of a service or mo-
bile robot have been explored with respect to a human only;
(ii) Some studies have applied the SFM and its parameters for
human-human interaction to interactions involving robots;
(iii) An extended SFM has been calibrated for orthogonal
encounters between humans and robots only; and (iv) The
proposed models are not calibrated and validated using
uninstructed pedestrian trajectories in real-life scenarios.
This paper focuses on modelling, calibrating and validating
the socio-psychological interaction of the human in HRIs
(the human-robot interaction rather than the robot-human
interaction) among crowds in a shopping mall. As illustrated
in Figure 1, the social interaction is modelled based on
an extended version of the Social Force Model (SFM) in
this study. The SFM is a mathematical model which was
initially proposed for crowd simulation [29]. The social
HRI is modelled based on our previous work describing
the interaction between pedestrians and vehicles [30]–[34].
In this paper, real-world datasets obtained from the Asia
and Pacific Trade Center (ATC) shopping mall in Osaka
(Japan) [35], [36] are used to calibrate and validate the
extended version of the SFM.
Section II gives an overview of the case study in the ATC
shopping mall in Osaka (Japan) and describes the recorded
scenarios and available data sets. The SFM is modified and
applied to capture the social interaction between humans and
service robots in Section III. The calibration and validation
procedures including the interpretation of the results are
described in Section IV-B. Section V summaries the achieve-
ments of this paper and outlines future work and practical
applications.

II. BACKGROUND ON OPEN SOURCE DATA OF
THE ATC SHOPPING MALL CASE STUDY, OSAKA,

JAPAN

A. Deploying service robots in a large public space

As part of a Japan Science and Technology Agency
(JST/CREST) funded project on enabling mobile social
robots to work in public spaces [35]–[37], a service robot
was placed within the ATC shopping mall in Osaka (Japan);
time-dependent positions of humans were tracked using 3-
D range sensors and HRIs were monitored within a certain
area.
As shown in Figure 2, part of the shopping mall’s area in-
cludes a large hall on the west side which leads to a corridor
on the east side with a number of shops alongside [35]. The
east side corridor leads to a train station and the remaining
area of the ATC shopping mall. On the north side of the
ATC shopping mall, there are slopes, escalators and elevators
which lead to a number of shops, offices and parking lots.
On the west side of the large hall, a ticket office is located
followed by an exit towards a ferry terminal. On the south
side, there are stairs to exit the building. The stair cases in the
centre of the map in Figure 2 allow people to reach the third
floor of this building. The main entry and exit areas (yellow)
and the location of the service robot (blue) are shown in
Figure 2. The solid colorful lines in the middle represent
the tracked trajectories of humans in the ATC shopping mall
over a duration of 1.5hr (6:00pm-7:30pm, Japan Standard
Time (JST)).
The service robot Robovie-II (see Figure 1) was placed
in this shopping mall which is a 120cm tall robot with a
circular footprint of 0.3m radius. The robot’s head has 3
Degrees of Freedom (DoFs); the arms have 4 DoFs. Robovie-
II was dressed in a staff uniform/arm band with a front
signboard stating ”Information Staff”. The service robot was
programmed to move back and forth on a predefined path,
and to react to peoples responses. Two laser range sensors
used to avoid physical collision, a microphone and speakers
allowing verbal interaction with people were mounted on
the robot. The linear and angular speed of the robots were

Fig. 2. Tracking area within the ATC shopping mall in Osaka (Japan).
The yellow areas indicate its entry and exit points. The solid colourful
lines in the middle indicate human trajectories over a duration of 1.5hr
(6 : 00−7 : 30pm (JST)).
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set to 0.6 m
s and 42◦/s, respectively. The linear and angular

acceleration of the robot were set to 0.6 m
s2 and 30◦/s2. A

tracking system consisting of forty-nine 3-D range sensors
was set up on the ceiling of the ATC shopping mall in order
to track human locations and monitor HRIs every 33ms.
More information about Robovie-II and the tracking system
can be found in [35].

B. Description of scenarios and available open source data

Using the tracking system installed in the ATC shopping
centre, data including velocities, Cartesian coordinates, angle
of motions, and facing angles of humans and the robot were
collected over time. This information is available in two open
source datasets:

1) One dataset includes the above information of the
ATC shopping mall’s visitors between 24/10/2012 and
29/11/2013 [35]. The tracking system covered 900m2

of the shopping mall and was collected over 92 days’
worth of data with up to 40 million entries.

2) Another dataset captured the information of humans
when in interaction with the robot allocated in the the
shopping mall’s large hall (see the location in Fig-
ure 2) [36]. This dataset includes 63 scenarios where
a human intended to initiate an interaction (e.g., seek
help) with Robovie-II, and 67 scenarios where a human
was not interested in any interaction with the service
robot at first, but started interacting when Robovie-II
proactively moved towards him/her. All scenarios are
10s long, ending either when the human reached the
closest point to Robovie-II or when the human started
a request. This dataset contains information about the
service robot and humans who are interacting with it
and also data on all other humans who were close-by
at the considered moment in time.

C. Ethics

Since the ATC shopping mall datasets were collected
by a third party who made anonymised data available to
the public to use for research purposes, a permission to
perform secondary data analysis was obtained from the
Ethics Department of the University of Southampton (Ref.
40418) which took into account the datasets used, the type
of analysis carried out and the risks involved.

III. APPLIED SOCIAL FORCE MODEL TO
HUMAN-ROBOVIE-II INTERACTIONS

A. Recalling the Social Force Model

The Social Force Model (SFM) is one of the most ac-
credited models for pedestrian simulation [38]. The concept
is based on Lewin’s field theory in social science that
behavioral changes are driven and self-possessed by social
fields [39]. Helbing formulated this concept in a mathe-
matical format in 1991 and defined pedestrian movements
based on the influence of external psychological forces
exerted by other humans and repulsive forces imposed from
obstacles [29]. The main forces in the SFM are as follows
(see Figure 3) [40]:

• The driving force ~f 0
α persuades human α to move

towards the desired direction ~e0
α with the desired speed

v0
α that is adapted to the actual velocity ~vα within a

relaxation time τα . The difference between the desired
velocity and actual velocity takes into account the
human’s subjective desire as explained in Equation 1.

~f 0
α =

v0
α~e

0
α(t)

τα

−~v0
α

τα

(1)

• The interaction force ~fαβ keeps a desired distance
from another human in their social relationship. This
force is the sum of two forces exerted from close-
by human β to human α as expressed in Equation 2.
The social interaction force ~f soc

αβ
reflects the socio-

psychological behavior of a human to keep a desired
distance from human β . This is explained using an
exponential function in Equation 3. Here, Aαβ and
Bαβ describe the interaction strength and the interaction
range respectively. ~nαβ is the normalised vector pointing
from β to α . Fαβ is the form factor, which reflects
the fact that movements within the field of view of a
human can persuade him/her to react more compared to
movements behind him/her.
The physical interaction force ~f ph

αβ
represents the pres-

sure exerted from other humans in case of physical con-
tact, and the sliding friction force imposed to a human in
high density conditions. The physical interaction force
is valid only when there is a physical contact.

~fαβ (t) = ~f soc
αβ

(t)+~f ph
αβ

(t) (2)

~f soc
αβ

= Aαβ e
r
αβ
−d

αβ

B
αβ ~nαβ Fαβ (3)

• The interaction force ~fαb maintains a distance from ob-
stacle b and models any social and physical interaction
presented in Equation 4. These forces are imposed from
a nearby obstacle b to human α as shown in Figure 3.

~fαb(t) = ~f soc
αb (t)+~f ph

αb(t) (4)

• The fluctuation force ~ξ replicates the variation of hu-
man beings behavior. The diverse behaviors of humans
cannot be measured and are presented with a force that
is Gaussian distributed and perpendicular to the desired
direction of movement (see Figure 3).

The sum of all forces above persuades humans’ movement
and direction. In this model, psychological factors are pre-
sented in parameters such as desired velocity and social
forces which are not physical entities since they describe
people’s preferences or certain characteristics of human
mind. In addition, contrary to Newtons third law of motion, a
pair of forces acting on two interacting agents (e.g., a human
and another human) are not equal here and they depend on a
number of parameters such as interaction range, interaction
strength, field of view. The detailed mathematical format of
these forces can be found in [39]–[41].
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B. Overview of the new Social Force Model

In this study, humans are modelled based on the original
SFM [39]–[41]. The existence of the service robot Robovie-II
in the shopping mall is expressed by a new interaction force
~fαr exerted to human α from robot r in addition to the forces
from nearby humans β and obstacles b (see Figure 3). The
sum of all the forces is used to describe human’s behavior
in the ATC shopping mall as shown in Equation 5:

d~vα(t)
dt

= ~f 0
α +∑

β

~fαβ +∑
r

~fαr +∑
b

~fαb +~ξ (5)

The detailed mathematical format of the new interaction
force is explained in Section III-C.

C. Interaction between humans and service robots

The new interaction force ~fαr is defined in Equation 6 and
consist of two forces ~f soc

αr and ~f ph
αr . The socio-psychological

force ~f soc
αr keeps a certain distance from the nearby robot r.

The physical interaction force ~f ph
αr replicates any physical

contact between human α and robot r.

~fαr(t) = ~f soc
αr (t)+~f ph

αr (t) (6)

f ph
αr is only valid for physical contact between robot r and

human α . Since no physical contact was reported in the
second dataset, the physical force is set to zero in this study.
The mathematical format of the social interaction force
between human α and robot r can be seen in Equation 7:

~f soc
αr = Aαre

rαr−dαr
Bαr ~nαrFαr (7)

where,
rαr = rα + rr

Fαr = λα +(1−λα)
1+ cos(φαr)

2
Similar to the interaction force between two humans in the
SFM, an exponential function is applied to human α to

Fig. 3. Force terms exerted to human α from a close-by human β , robot r,
and obstacle b. The forces in green are new terms introduced in this study
for taking into account the socio-psychological behavior between humans
and service robots.

capture the influence of distance between human α and the
nearby robot r. A circle with radius ra is defined for a human
and a circle with radius rr is defined for a robot. dαr is
the distance between the centre of mass of human α and
robot r. ~nαr is the normalized vector pointing from robot r
to human α .
Aαr, Bαr are positive constant parameters that will be deter-
mined during the calibration process. Aαr is called interaction
strength which represents the amount of influence that the
interaction force has on human α and describes the amplitude
of the force exerted from robot r. Aαr depends on the
interaction range Bαr which can be interpreted as the distance
that human beings react (decelerate) when moving towards
a robot. As a result, a close distance will contribute to a
considerable high deceleration to avoid collision. Bαr effects
how quickly the exerted force decreases with distance. Fαr is
a form factor to replicate the anisotropic character of human
interactions. Fαr has a dimpled limacon shape depending on
the value of 0 6 λα 6 1 and φαr. The value of λα implies
that impact of a human in front is larger than behind. φαr
is the angle between the desired direction of movement of
human α and the direction of the repulsive force exerted by
robot r. As a result of Fαr, humans are more influenced by
robot r’s behavior when approaching from the front.

IV. CALIBRATION, VALIDATION AND RESULTS

As mentioned in Section III-B, three type of interaction
forces are represented in the proposed force-based model: the
human-human interaction force, the human-obstacle interac-
tion force and the human-robot interaction force. The first
two interaction forces have been studied in [33], [41]. Hence,
we will calibrate and validate the human-robot interaction
parameters (Aαr and Bαr) in this section.

A. Data analysis of the two available datasets

Statistical analysis is performed on the two datasets (see
Section II-B) to understand the humans’ speed, acceleration
and their direction when in interaction with the service robot
Robovie-II inside the ATC shopping mall. Figure 4 shows
the results with regards to the speed and acceleration of
shopping mall visitors. The mean speed and acceleration
of humans in the ATC shopping centre is observed to be

(a) (b)

Fig. 4. (a) Speed histogram (mean value of 1.01 m
s and variance of 0.38),

(b) Acceleration histogram (mean value of −0.02 m
s2 and variance of 0.38)

for visitors of the ATC shopping mall over 1.5hours.

11192



1.01(σ = 0.38) m
s and −0.02(σ = 0.38) m

s2 . The mean speed
of humans in human-robot interaction scenarios were within
a similar range of 1.25(σ = 0.1) m

s . The latter mean value
is used in the calibration (Section IV-B) and validation
(Section IV-C) procedures as the desired speed of the human
when interacting with the robot.

B. Calibration process of the extended SFM

A calibration process is applied to determine the optimal
values for interaction parameters (Aαr and Bαr) in order to
be able to replicate real world trajectories. About 70% of
the dataset is allocated for calibration and the remaining
for validation. As shown in Figure 5, a hybrid method
using empirical and simulated trajectories is used for the
calibration of these parameters. From the available track-
ing information, a number of scenarios with human-robot
interactions are selected. For each human, a virtual agent
is assigned in the simulation domain developed in [32].
A simulation is initiated according to real data in which
one agent (human) is moving with the new mathematical
model while the other agents (other humans or the robot) are
moving according to the extracted trajectories. For instance,
the dark grey agent/human and the robot in the synthetic
example in Figure 5(a) follow extracted trajectories. The
light grey agent/human moves according to the force directed
model. Once these are set, the simulated trajectory (dashed
line) is compared to the empirical trajectory (solid line) for

(a)

(b)

Fig. 5. (a) Synthetic illustration of the hybrid calibration method. The
light grey human moves based on the extended SFM whereas other agents
follow the extracted trajectories obtained from the two available datasets. (b)
One of the simulation results using this method. The real world trajectory
is shown with a (+++) line and the simulated trajectory using the extended
SFM is presented using a dotted line.

different combination values of parameters (Aαr and Bαr)
until the best fitness value is determined. An example of this
calibration process is demonstrated in Figure 5(b).

There are three common approaches to assess how match-
ing the simulation results are with respect to the observed
data. The first one is the acceptable window which compares
the results of a model to observed ranges for each endpoint
and does not include the degree of closeness. The second
approach is the likelihood function where a distribution is
produced by minimising the square distance between real
and simulated data. The third method is minimising devia-
tion between real and simulated data by applying different
parameter sets and measuring the magnitude of goodness
of fit. The third method is applied in this paper to allow
differentiating all the data points continuously and within a
short time frame.

The hybrid calibration method proposed in [42] is applied
to minimise the deviations between the real and simulated
trajectory of a human when interacting with the robot and
other humans. The best combination of parameters for the
interaction strength Aαr and interaction range Bαr is the one
that results in the minimum average relative distance error
E in Equation 8.

E =
‖rsimulated

α (t +T )− rtracked
α (t +T )‖

‖rsimulated
α (t +T )− rtracked

α (t)‖
(8)

Here, t is the starting time of a tracked trajectory, T is the
simulation time interval, rsimulated

α is the simulated position
of human α , and rtracked

α is its real/tracked position. The
simulation time interval is kept constant (T = 1.5s) which
is small enough to accurately represent the movement of the
corresponding user. The two data points of the simulated tra-
jectories that are taken from the tracked data are the starting
point and the desired destination point. The simulation time
step, mean speed and variance have been selected based on
the real trajectories for each calibration scenario. A summary
of the parameters used in the calibration process can be seen
in Table I.
E is calculated for all possible combinations for a defined
interval of the parameters Aαr and Bαr. An average is deter-
mined over the full path to obtain the final value allowing to
calculate the fitness level of a particular parameter pair. E is
recorded for each combination in Figure 6. The combinations
of Aαr and Bαr with the smallest E are reported as the
optimal values and result in local minima in Figure 6. The

TABLE I
A SUMMARY OF THE PARAMETERS USED IN THE PROPOSED MODEL FOR

CALIBRATION.

Parameter Unit Assigned value Reference
v0

α
m
s 1.25 (σ = 0.1) Data analysis

τα s 0.20−0.50 [42]
λαβ − 0.20 [45]
λαr − 0.20 Data analysis
rα m 0.40 Statistics
rr m 0.30 Data analysis
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travel times and total distances traveled by each agent for
all local minima are compared between the simulated and
empirical data to find the best combination. The final result
of this calibration process shows values of 1.2 m

s2 and 2.6 m
for Aαr and Bαr respectively with a fitness level of 0.64.

C. Validation process

To validate the calibrated model, human-robot interactions
are simulated using Aαr and Bαr values suggested by the cal-
ibration process. The obtained information from simulations
(i.e., the position, speed and acceleration at each time step)
are then compared to the real data. This is a quantitative
assessment which determines the validity of the new model
after calibration. A number of scenarios from the human-
robot interaction datasets are selected which are different
to the ones chosen for calibration. It is worth noting that
the gender and age of the people were not included in the
dataset. The results obtained from the validation process
(humans speed, acceleration and relative distance error E)
are reported in Table II. The average mean speed of the
simulated humans is 1.34(σ = 0.01) m

s which compares to
1.25(σ = 0.02) m

s for the real ones, a difference of 8%.
Acceleration values show a higher difference of 21.78%
comparing the simulated humans (0.23(σ = 0.07) m

s2 ) and
the recorded human accelerations (0.01(σ = 0.01) m

s2 ). The
relative distance error E calculated using Equation 8 returns
a value of 0.6 which is similar to the relative distance error
of the calibration process.

D. Discussion

As reported in Figure 4, humans’ mean speed in the entire
ATC shopping centre is 1.01(σ = 0.38) m

s . The mean speed
of humans in human-robot interaction scenarios is also within
a similar range of 1.25(σ = 0.1) m

s . These values are lower
than the average human walking speed (1.35 m

s [45]) which
is expected. The dataset for this case study was recorded
in a closed space within a shopping mall. People inside a
shopping mall wander from one shop to another rather than
walk single-minded to their destination.
The obtained human-robot interaction strength Aαr is 1.2 m

s2

which is in line with the value reported for orthogo-
nal human-robot approaches [28] (1.2± 0.2 m

s2 ). The value

Fig. 6. Fitness surface for parameters Aαr and Bαr .

of the interaction range Bαr results in 2.6m which is
within the human-human social zone ranging between 1.2
and 3.6m [43]. However, this value is larger than the
human-robot interaction range for teaching tasks (0.608±
0.094m) [28] and the interaction range for collision avoid-
ance in a small room (0.46-1.22m) [44]. The difference
in the values for the interaction range can be twofold: It
seems that experimental tests in [28], [44] were performed
by subjects who are generally familiar with service robots.
Humans in the shopping mall might be not familiar with
robots which explains the larger interaction range. On the
other hand, the preferred personal distance of humans from
a robot might vary depending on the type of human-robot
interaction (i.e., approaching, teaching, avoiding the robot).
The difference between human-robot interaction parameters
(Aαr = 1.2 m

s2 and Bαr = 2.6m) and human-human interaction
values (Aαr = 0.8±0.1 m

s2 and Bαr = 1±0.25m [32]) high-
lights the importance of understanding interactions between
humans and robots from both sides. The human and robot
parameters need to independently calibrated and validated
for various types of interactions and scenarios. The relative
distance error of 0.6 returned by the calibration process is
expected as this model does not only consider orthogonal
interaction but human-robot interaction from any angle. In
other words, the presented and calibrated model provides a
60% confidence level of correctly predicting human trajec-
tories when in interaction with a service robot. It should be
noted that a higher number of case studies for calibration will
result in lower relative distance error and hence an increase
in confidence level.

TABLE II
VALUES OF SPEED AND ACCELERATION MEAN AND VARIANCE FOR

SIMULATED AND TRACKED PEOPLE

Simulated people Tracked people
Speed mean [m/s] 1.34(σ = 0.01) 1.25(σ = 0.02)

Acceleration mean [m/s2] 0.23(σ = 0.07) 0.01(σ = 0.01)
Relative distance error 0.60 −

V. CONCLUSIONS
In this study, HRIs have been modelled based on an

extension of the SFM. The proposed model is calibrated
and validated using empirical open source data collected
from the ATC shopping mall in Osaka (Japan) to understand
the socio-psychological interaction of the human in HRIs
among crowds. After analysing two datasets and calibrating
the key parameters of the new model (interaction range
and interaction strength), it becomes evident that human-
human interactions differ from interactions between humans
and service robots. We have shown that humans react to a
service robot to a higher extend and within a larger distance
compared to the interaction range towards another human.
As part of our future work, various methodologies explained
in [47] will be used to calibrate and validate the proposed
modified SFM for HRIs using different data-sets. Further-
more, the SFM has its limitations as stated in [48], [50],
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[51] and it would be valuable to model HRIs using a velocity
dependent SFM and conduct a comparative study.
As discussed in the research domain of Socially-Aware
Navigation [12], [49], simple real-time collision avoidance
models are not sufficient to assure safe and comfortable
HRIs. There is a need for robots to be able to predict
humans’ future paths and behaviors considering the socio-
psychological interaction of the human. Implementing the
results of this study could be beneficial to avoid collisions
between humans and service robots and, at the same time, to
aid the harmonization of robots in public spaces. Further, this
model could be used to guide the manoeuvre of driverless
cars or pods depending on the location and/or behaviour of
the human. Taking into account the human’s perspective, this
might accelerate the acceptance of autonomous systems to
be integrated into the society. It should be noted that the
interaction parameters might change over time depending
on (i) how familiar the public will become with these
autonomous systems, (ii) the type of human-robot interaction
(i.e., approaching, teaching, avoiding the robot), and (iii)
the type, speed, height and anthropomorphic abilities of the
robot.
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