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Abstract— Developing personal robots that can perform a di-
verse range of manipulation tasks in unstructured environments
necessitates solving several challenges for robotic grasping
systems. We take a step towards this broader goal by presenting
the first RL-based system, to our knowledge, for a mobile
manipulator that can (a) achieve targeted grasping generalizing
to unseen target objects, (b) learn complex grasping strategies
for cluttered scenes with occluded objects, and (c) perform
active vision through its movable wrist camera to better locate
objects. The system is informed of the desired target object
in the form of a single, arbitrary-pose RGB image of that
object, enabling the system to generalize to unseen objects
without retraining. To achieve such a system, we combine
several advances in deep reinforcement learning and present a
large-scale distributed training system using synchronous SGD
that seamlessly scales to multi-node, multi-GPU infrastructure
to make rapid prototyping easier. We train and evaluate our
system in a simulated environment, identify key components
for improving performance, analyze its behaviors, and transfer
to a real-world setup.

I. INTRODUCTION

In order to have robots bridge the gap from the laboratory
to our homes, and to realize personal robots that can perform
a diverse range of daily tasks and chores, such robots must be
able to generalize across the vast diversity of unstructured do-
mestic settings. In particular, such robots require the ability
to perform targeted grasping (also called instance grasping
or target-oriented grasping), that is, to find and grasp target
objects in cluttered scenes, across a diverse set of possibly
unseen target objects. Targeted grasping is in contrast to
the untargeted grasping (also called indiscriminate grasping)
setting where robots are expected to grasp any visible objects
from their workspace. Cluttered scenes in the real world
pose several challenges for such robots. As the number
of distractor objects increases, finding a target object from
visual cues alone becomes more challenging. When there
are touching or occluding objects around a target object,
a successful grasp requires the robot to execute complex
strategies such as pushing, repositioning, and regrasping. The
partial observability induced by occlusion often necessitates
a robot to actively move its vision sensor, known as active
vision.

Reinforcement Learning (RL) has been used for learning
vision-based grasping [1], [2], [3], [4], as it enables self-
supervised learning of complex grasping strategies including
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Fig. 1. top: our simulated Human Support Robot (HSR) setup. The mobile
manipulator must move its gripper and base to grasp a specific target object
from a tray. bottom-left: our setup for real-world evaluation. bottom-right:
example of the target image and an observation from the wrist camera given
to the agent. The agent aims to produce a sequence of actions that will
eventually grasp the given target object (the green table) from the tray. This
may include pregrasping behaviors that position the object or the gripper to
a more suitable orientation for a successful grasp.

pregrasping behaviors. In this paper, we take a step to-
wards realizing the grasping capability required for personal
robots by presenting the first RL-based system that can
simultaneously (a) achieve targeted grasping generalizing to
unseen target objects, (b) learn complex grasping strategies
to address cluttered scenarios, and (c) moves its vision sensor
to better locate target objects. In contrast to prior work, we
develop and evaluate our system on a mobile manipulator,
as it can perform complex, non-localized tasks, which we
expect for personal robots, and it permits active vision via
moving its base and wrist camera.

Accelerating computations through parallelism has been
crucial for many recent successes of deep RL in challenging
tasks [3], [5], [6], [7]. Due to our task’s large state and action
spaces, sparse rewards, and partial observability, our system
also requires an efficient distributed training architecture.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9712



Thus, we develop such a system that significantly accelerates
the training of our agent, which is characterized by large-
batch synchronous stochastic gradient descent (SGD) with
many asynchronous actors and distributed replay buffers.

The main contributions of our paper are as follows:
• We present an RL-based system that enables a mobile

manipulator to learn to successfully grasp unseen target
objects in clutter through active vision via trial and error.
Given an image of the target object, our system can
learn to find and grasp the target object in a cluttered
environment by moving the gripper and the camera
jointly. We successfully transfer our learned policy to
the real world and demonstrate targeted grasping on a
physical mobile manipulator.

• We extend the QT-Opt algorithm [3] to the goal-
conditioned setting, using hindsight experience replay
(HER) [8], frame stacking, data augmentation by mir-
roring, and a trick of lowerbounding target values to
enable efficient learning. The effectiveness of each
extension is measured in our ablation study.

• We present a distributed RL architecture that can scale
up to 128 GPUs and 1024 CPU cores, with an effective
batch size of 8192, accelerating the system to learn ef-
fective targeted grasping in 48 hours. We also introduce
a hyperparameter scaling trick for distributed adaptive
gradient methods.

II. BACKGROUND

A. Reinforcement Learning

In reinforcement learning (RL), a sequential decision-
making task is formulated as a Markov decision process
(MDP), which is a tuple (S,A, T, γ,R), where S is the
set of possible states, A is the set of possible actions,
and T is a transition function, which, given an action a,
transitions an agent from a state s to another, s′. At each
state transition, the agent receives a reward R(s, a, s′). The
agent’s objective is to learn a policy, a mapping S → A
maximizing its expected return (or cumulative discounted
reward) E[

∑T
t=1 γ

t−1R(st, a, st+1)], where T is the length
of the episode. When the agent cannot observe the full
information of the current state, the task is said to be partially
observable.

In goal-conditioned RL, there is an additional goal-
space G, and the reward function is conditioned on a
goal g ∈ G, denoted Rg(s, a, s

′). The objective is to
learn a goal-conditioned policy S × G → A maximizing
E[
∑T

t=1 γ
t−1Rg(st, a, st+1)].

B. QT-Opt

Learning a policy that maximizes its expected cumulative
discounted reward is often reduced to the problem of learning
an action-value function Q∗ : S×A → R, where Q∗(s, a) is
the expected cumulative discounted reward the agent receives
if it follows the optimal policy from a given state and action.

QT-Opt [3] is an RL algorithm that learns Q∗ via function
approximation. QT-Opt stores experienced transitions of the
form (s, a, r, s′), that is, the agent’s observed state s, the

action a taken in state s, the received reward r, as well
as the state transition s′, to a buffer called replay buffer.
These transitions are uniformly sampled from the replay
buffer to perform updates to approximate Q∗ by a neural
network, following the update rule of deep Q-learning [9].
QT-Opt employs the cross-entropy method to maximize
Q∗(s, a) with respect to action a to support a hybrid action
space consisting of both discrete and continuous actions.
This enables a flexible action space supporting continuous
pose changes and discrete gripper open/close movements,
allowing pregrasping manipulation for robotic grasping.

C. Distributed Training

A distributed stochastic gradient descent (SGD) step con-
sists of two inner steps: (1) distributed workers calculate
gradients from minibatches, and (2) the model parameters
are updated with those gradients. These gradients can be
aggregated either synchronously or asynchronously. In syn-
chronous SGD, model parameters are updated synchronously
with the average of the gradients of all workers. On the
other hand, in asynchronous SGD, gradients from each
worker are added to the model parameters on the fly without
synchronization.

Asynchronous SGD is fault-tolerant due to its nature of
asynchrony where slow or failed workers can be ignored.
However, it also has the issue of stale gradients that intro-
duces nondeterminism to distributed training [10]. On the
other hand, synchronous SGD runs deterministically, making
optimization more stable. Although a naive implementation
of synchronous calculation of the average of gradients among
workers can be slow due to tail latency [11], [12], it can be
calculated very efficiently by keeping the latency very low
with HPC technology such as RDMA over InfiniBand.

For synchronous SGD, computing with k processors (e.g.
GPUs) in parallel makes the effective batch size k times
larger. In large batch training, scaling the learning rate by
k is known to work for momentum SGD [13]. However, in
RL, adaptive learning rate methods such as Adam [14] have
been more widely used [10], [15], and the aforementioned
scaling rule does not apply. Lowering the hyperparameter ε
by several magnitudes, e.g., from 10−3 to 10−8, is known
to work in large batch training [10].

As the number of actors increases, the capacity of the
replay buffer has to be increased as well to preserve the
diversity of experiences. However, in general, scaling out a
single data structure to multiple computers is itself a non-
trivial task [16]. The main difficulty stems from distributed
consensus [17] for consistency and tail latency [11] for
performance.

III. PROBLEM DESCRIPTION AND FORMULATION

A. Problem Description

In this paper, we address the problem of targeted grasping
in clutter from RGB vision only, as depicted in Fig. 1.

We inform the robot of its target object via an independent
RGB image of the target object, which we call a goal
image. In contrast to approaches that rely on pretrained object
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detection or segmentation modules, our method does not
need to predefine the set of possible target objects and is
expected to generalize to unseen objects without retraining.
We do not assume the pose of the target object in the goal
image to reduce the burden for users of the robot in preparing
the goal image.

We consider a manipulator with a mobile base and a
camera attached to its wrist to allow the robot to move the
camera to better locate the target object. The field of view
of the wrist camera is limited (shown in the bottom-right
image of Fig. 1), especially when the gripper is close to
objects. Moreover, dense clutter can cause significant occlu-
sions, necessitating a grasping policy that leverages camera
movement to overcome the issue of partial observability.

B. Problem Formulation

We formulate our problem as a goal-conditioned partially
observable MDP as follows.

a) Observation space: At each timestep, the agent
observes the RGB image from the wrist camera of the robot,
a binary open/close state of the gripper, the z-position of
the gripper, and the number of timesteps remaining in the
episode (min-max normalized to the interval [−1, 1]).

b) Goal space: At the beginning of each episode, one
of the objects is randomly selected as the target. In addition
to the agent’s observations, the goal image is also fed to the
agent as input in the form of an additional RGB image.

c) Action space: As in [3], we allow two types of
actions: a gripper pose change (3D position displacement and
rotation along z-axis) and an open/close toggle command of
the gripper. The gripper pose changes are done with respect
to the camera’s reference frame (at that timestep) as opposed
to the global reference frame. At each timestep, the agent
must choose either type of action. While episodes terminate
after a predefined maximum number of timesteps, there is
an additional scripted termination condition [3] to terminate
an episode prematurely when the gripper is closed and lifted
above a predefined height threshold.

d) Reward function: A reward of 1 is given at the end
of an episode if the robot successfully grasps the target
object. A small negative reward −p is also given at each
timestep to encourage faster task completion. Formally, the
goal-conditioned reward function is:

Rg(s, a, s
′) =


1− p s′ = sterm, g grasped
−p s′ = sterm, g not grasped
−p s′ 6= sterm

(1)

where sterm denotes a terminal state, or the state at the end
of an episode.

IV. SYSTEM

A. Learning Algorithm

As our base learning algorithm, we selected QT-Opt [3],
a variant of deep Q-learning [9] that can learn in continuous
action spaces and has demonstrated empirical successes in
untargeted grasping. As we demonstrate in Section V, our

targeted grasping task is sufficiently challenging that we must
add multiple extensions to the algorithm in order to learn a
successful policy.

a) Goal-conditioned QT-Opt: To apply QT-Opt to the
goal-conditioned setting, we augment the goal g to the
input, allowing the agent to learn Q∗(s, a, g), the expected
discounted reward the agent receives if it performs the
optimal actions with respect to the desired goal. This follows
the formulation of universal value function approximators
(UVFAs) [18], which can learn to generalize to different
goals and can be trained with Q-learning, as we do.

b) Hindsight experience replay (+H): While UVFAs
in principle can learn values for different goals, UVFAs do
nothing to remedy the sample complexity challenges posed
by the sparse-reward nature of the targeted grasping task. To
alleviate the sample complexity issues posed by the targeted
grasping problem, we replace QT-Opt’s experience replay
procedure with that of hindsight experience replay (HER) [8]
to enable the agent to also learn from experiences where it
successfully grasps an object other than the desired target
object. Suppose the agent’s goal is to grasp the target object
gdesired. However, instead, the agent grasps some other
object gachieved, where gachieved 6= gdesired. Traditionally,
we would perform gradient updates to learn Q(s, a, gdesired).
However, with HER, we can replace the desired goal in hind-
sight, and reward the agent according to Rgachieved

(s, a, s′).
This allows us to update Q(s, a, gachieved) according to
reward Rgachieved

(s, a, s′), allowing the agent to receive
a positive reward. This feedback rewards the agent for
grasping a specific target object, albeit not the one initially
desired. By doing so, we can de-sparsify the reward and
allow the agent to receive positive rewards for successful
grasps of any object, as is the case in the untargeted grasping
setting.

c) Data augmentation via mirroring (+M): To further
improve the utilization of the acquired experiences, we
exploit the symmetry of the task for data augmentation [19].
This exploitation is enabled by the fact that the two-fingered
gripper on the HSR is nearly symmetric, the fact that images
from the wrist camera are also vertically symmetric (as seen
in the bottom-right image of Fig. 1), and that the action
space is aligned with the camera coordinates. In particular,
when a batch of transitions is replayed for gradient updates,
for each transition, with probability 0.5, we reflect both the
image observations and the actions.

d) Frame stacking (+F): To mitigate the partial observ-
ability of our task, we construct the input to the agent’s neural
network by stacking the last N camera images from the
wrist camera along the channel axis. This technique, known
as frame stacking, is commonly used in RL for Atari 2600
games [9].

e) Lowerbounding target values (+L): Lastly, since
every positive reward by a grasp success is delayed until
the episode ends, assigning credit to actions from the reward
is difficult, especially when learning values by bootstrapping
the estimated value of the next state. We introduce a simple
trick, which is to lowerbound the target value of QT-Opt
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for a state by the discounted cumulative reward observed
in the episode from that state1. When combined with HER,
the discounted cumulative reward is replaced in hindsight as
well.

B. Distributed Training

Our distributed training architecture is depicted in Fig. 2.
Following the nomenclature used by [20], we refer to
processes that run the optimization loop as learners, and
processes that collect experiences through environment in-
teractions as actors. To further increase the utilization of
experience collected, learners are distributed across multiple
computer nodes, performing synchronous SGD by calculat-
ing the sum of gradients through a form of collective com-
munication known as All-Reduce. Each learner has its own
replay buffer to sample experiences from. Each actor asyn-
chronously collects and sends experiences into its assigned
learner’s replay buffer (SetExperience) and retrieves the
latest model parameters from the learner (GetModel). To
cache the model parameters, we also implement processes
named controllers between actors and learners. They forward
requests from actors to balance the load of learners as well
as the number of experiences in replay buffers.

Fig. 2. An overview of our distributed training architecture with distributed
replay buffers and remote actors. A single node contains a single controller
and multiple GPUs. For each GPU in a node, there is a single learner with
its own replay buffer. Replay buffers are in the process (address) space
of learners to enable efficient sampling of minibatches. Learners sample
minibatches from their attached replay buffers, run distributed optimization
on GPUs, and external remote actors fetch the model from learners through
the controllers. In practice, a node includes eight learners. Actors append
experiences to replay buffers via SetExperience RPC calls (solid-
lined arrow) to learners. Actors fetch model parameters from learners via
GetModel RPC calls (dotted-lined arrow). A controller is present in every
node and balances RPC requests among learners.

Providing each learner process with its own replay buffer
is an essential design decision for our system. Analogous to
supervised learning, our method of distributing replay buffers
across processes can be interpreted as local shuffling on a
scattered training dataset, in contrast to global shuffling on
a non-scattered training dataset. Although global shuffling is
known to lead to a solution slightly better than local shuffling
in supervised learning [21], we consider the effect small

1While this trick can lead to overestimation of Q-values under stochas-
tic dynamics, we assume the dynamics of our task is sufficiently near-
deterministic.
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Fig. 3. The neural network architecture we use for our experiments.
Our network architecture is almost identical to the QT-Opt architecture [3],
with the major differences being in the inputs. All convolution and linear
layers are followed by batch normalization and a ReLU activation. The
input to the network is the previous four wrist camera observations and
the goal image, all concatenated to form a 118x118x15 image input. In
addition to the observation and goal, additional aspects of the state are fed
to the network, including the number of timesteps (normalized to [−1, 1])
remaining in the episode, the gripper height, and the gripper aperture. The
action is also passed into the network, which includes the gripper pose
change and the gripper toggle. The network outputs the predicted Q-value
for the given observation, action, and goal (target object). In the untargeted
grasping scenario, the network outputs Qθ(s, a) and the goal image is not
concatenated to the input.

enough to trade-off for the performance and simplicity of our
system by avoiding the difficulties of distributed systems.

V. EXPERIMENTS

A. Simulated Environment

We developed a simulated environment for a Human
Support Robot (HSR) [22], a mobile manipulator equipped
with a wrist camera. We use the Bullet physics [23] engine to
simulate the movement of an HSR robot and its interactions
with objects. The HSR’s movement along the x and y axes
correspond to the movement of the HSR’s base.

For candidate grasp objects, we use 3D object models
from the ShapeNet dataset [24], a large-scale dataset of
objects from a diverse set of semantic categories. We also
augment this data with a smaller set of randomly generated
rigid objects [25]. For the ShapeNet objects, we follow the
preprocessing steps laid out in [26], of adjusting the objects’
extents and masses, and randomly sample colors for the
objects. To avoid generating very thin objects that are nearly
impossible for the HSR’s gripper to grasp, we exclude 1051
objects (from 52467 ShapeNet objects) whose shortest axes
are smaller than 5mm after adjusting their extents. We split
the objects into a training set (90%) and a test set (10%).
The test set is used exclusively to evaluate the agent.

At the beginning of an episode, we sample uniformly
between 4 and 10 random objects and drop them in the tray
to create a cluttered scene. We randomly select one of these
objects to be the agent’s desired target object to grasp during
the episode.
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TABLE I
HYPERPARAMETERS VALUES USED FOR OUR EXPERIMENTS.

Hyperparameters Value
# stacked frames 4

Adam alpha 5e-5
Adam epsilon 1e-2 / (effective batch size)

# evaluation episodes during training 100
replay start size 10,000
input image size 118 x 118

replay buffer capacity 1M
effective batch size 64 × # learners

min objects per episode 4
max objects per episode 10

discount factor 0.9
maximum episode length 20

per-timestep penalty p 0.05

B. Implementation Details
We re-implemented the QT-Opt algorithm [3] using Chain-

erRL [27], and extended it to the goal-conditioned setting
as described in section IV-A. In HER, when replaying an
experience, with 50% probability, we use the original desired
goal, unchanged. The other 50% of the time, we attempt to
replace the desired goal with the grasped object. If no object
was grasped, the transition remains unchanged.

The agent uses ε-greedy exploration starting from ε = 1.0,
linearly decaying over 800K timesteps (cumulative timesteps
across all learners) to an exploration of ε = 0.2, which
remains constant for the remainder of the training.

Our network architecture is shown in Fig. 3. Table I
summarizes the hyperparameter settings we use.

C. Distributed Training
To assess the scalability of our training system, we trained

models on the untargeted grasping task across several scales
from 8 (1 node) to 128 GPU learners (16 nodes). At all
scales, 64 remote CPU actors are run remotely for each
learner, as depicted in Fig. 2. The local minibatch size for
each learner is 64, making the effective batch size 64k,
where k denotes the total number of GPUs. Additionally,
the hyperparameter ε of Adam was scaled down to ε/64k
by the effective batch size from ε = 10−2. For example,
with the local batch size 64 per GPU and with 128 learners,
the effective batch size is 8192, and ε = 10−2/8192. One
inspiration for our technique is the result by [10], that
reducing ε by orders of magnitude can accelerate large
minibatch training.

We ran distributed training in the untargeted grasping
setting across different scales from 8 GPUs to 128 GPUs,
as depicted in Fig. 4 (left). The success rate of 128 GPU
training with 1024 external CPU cores that run actors reaches
81% in 3 hours 57 minutes and 96% in 20 hours. On the
other hand, at a smaller scale, it takes more than 23 hours
for an 8 GPU job to reach 80%, and 45 hours to reach 89%.
Table II summarizes our cluster hardware specifications.

D. Performance Evaluation
We evaluate our system on both the untargeted and tar-

geted settings. In the targeted setting, we evaluate the pro-
posed extensions to QT-Opt: HER, mirroring, frame stacking,

TABLE II
HARDWARE SPEC OF A COMPUTE NODE WE USE.

CPU Intel(R) Xeon(R) Gold 6254 (18C) 2-way
GPU NVIDIA V100 (32GB) x8

Memory 384GB DDR4-2933
Network Mellanox CX4 100Gbps Ethernet x4
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Fig. 4. Grasping success rates during training for different configurations.
left: Untargeted grasping with a varying number of GPUs. As the number of
GPUs increase, the success rate of evaluation episodes grows faster. right:
Four extensions to QT-Opt are evaluated with 64 GPUs: HER (H), mirroring
(M), frame stacking (F), and target lowerbounding (L). The targeted grasping
setting is used unless specified otherwise.

and value lowerbounding. Fig. 4 (right) shows the training
curves, where each data point corresponds to the evaluation
of a model for 100 test episodes. Among the proposed
extensions to QT-Opt, HER and value lowerbounding are
the key extensions that sufficiently accelerate training to
make training within two days possible. Data augmentation
with mirroring and frame stacking do not make a noticeable
difference in success rates in this setting. We also see that
the targeted setting is significantly more challenging than the
untargeted setting, not only in terms of the training speed but
also in terms of asymptotic grasping success rate.

Table III shows the grasping success rates of the best
model found during training, re-evaluated for 1000 test
episodes. The “ShapeNet and random” column shows the
success rates with both the ShapeNet and randomly generated
objects, while the “random only” column shows results when
the test objects are only randomly generated objects. Our
system can learn to grasp a target object successfully in
66.3% of the test episodes in two days of training. In the
untargeted setting, our system can achieve a success rate of
94.4%, which is consistent with the reported results in similar
untargeted settings [3]. If we restrict the test objects to
the randomly generated objects, the success rate of targeted
grasping significantly increases, suggesting that the ShapeNet

TABLE III
GRASPING SUCCESS RATES WITH 1000 TEST EPISODES.

ShapeNet and random random only
QT-Opt +M+F Untargeted 94.4% 93.9%

QT-Opt +H+M+F+L Targeted 66.3% 79.0%
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objects are significantly more difficult for the system.

E. Qualitative Analysis

In order to better understand the learned grasping behav-
iors, we perform additional investigations using the trained
QT-Opt +H+M+F+L model described in the previous sec-
tions.

Sensitivity Analysis: Fig. 5 depicts two grasp attempts
from the same initial configuration (shown left-most), under
two different desired target objects to grasp. The first row
that follows depicts a sequence of observations as the agent
attempts to grasp the green chair. Each timestep has a
corresponding sensitivity map below it that measures areas of
the observation, which, when perturbed, affects the predicted
Q-values [28]. This analysis enables the visualization of
regions of the observation deemed as most important for the
success/failure of the grasp by the agent’s neural network.
In the sensitivity maps early in the episode (around t = 1),
the regions with the highest sensitivity (orange) appear to
correspond to the location of the target object in the scene,
if present in the scene, despite being heavily occluded. This
suggests that the agent has implicitly learned multi-scale
localization of the target object in the scene without any
explicit formulation or use of a separate module for semantic
segmentation or localization. As the agent’s gripper moves
closer to the object and begins a grasp attempt, the maps tend
to show two or more regions of activity around the perimeter
of the target object (around t = 15). These regions typically
correspond to areas where the agent’s gripper will proceed to
make contact with the object, thereby suggesting an implicit
form of grasp prediction. This analysis also lends insight into
more emergent pregrasping behaviors, such as seen at t = 3
for grasping the green chair. The target object is completely
occluded in the observation as the agent moves away nearby
objects to make space for the grasp. The sensitivity map
suggests that the agent keeps track of the target’s expected
position despite being completely occluded, thereby directing
its pregrasping behavior. Further evidence of this is seen
at t = 6 where the region around the brown table’s leg
is highlighted before the agent proceeds to push it out of
the way to clear a path to the object. These goal-oriented
pregrasp behaviors displayed by the agent are not explicitly
encouraged in training and emerge solely as a consequence
of trial-and-error using the success/failure reward signal.

Grasp target analysis: Fig. 6 shows how our agent per-
forms under varying degrees of clutter and with different
types of objects. Despite being trained with between 4
and 10 objects sampled from the random and ShapeNet
datasets, we see that the agent (QT-Opt +H+M+F+L) is
able to achieve a grasp success rate of 44.6% in the highly
challenging setting of 15 objects under significant clutter
and occlusion with random+shapenet objects. Investigation
revealed that grasping of some objects in the highly diverse
ShapeNet dataset is infeasible due to physical limitations of
the gripper, despite steps taken to eliminate objects that are
nearly impossible to grasp. In order to discount its effect, we
evaluate the agent with objects from only random, yielding

an impressive 15-object success rate of 55.1%. Due to the
visual similarity of models in the random dataset, especially
in the cluttered setting, we also evaluate the agents by re-
introducing ShapeNet objects, while disallowing them from
being the grasp targets. The QT-Opt +H+M+F+L evaluated
using random+no_target_shapenet achieves a remarkable
success rate of 63.5% in the difficult cluttered setting of 15
objects, thereby substantiating the efficacy of our method.

F. Real-World Evaluation

Lastly, we conduct an experiment to assess the real-world
transferability of a model trained using our system to the
setup depicted in the bottom-left of Fig. 1. We finetune the
image processing component of the model (corresponding to
the top portion of Fig. 3) using a dataset of simulated scenes
with and without randomization of texture, color, lighting,
and camera parameters [29], as shown in Fig. 7. We do
this by matching the activations of the component’s final
layer for non-domain-randomized inputs to those of domain-
randomized inputs by minimizing their mean squared errors.
Using a tray and eight different objects depicted in Fig. 7,
we evaluate five targeted grasp attempts for each object. Out
of the 40 trials, our system succeeds in targeted grasping 25
times. Fig. 8, depicting one of the trials, shows a successful
grasp of a tennis ball. The most common failure scenario is
a grasp of a distractor object instead of the desired target
object, which constitutes 11 of the 15 failures. A video of
the experiment is available at https://www.youtube.
com/watch?v=7RdLxAgwOAY.

VI. RELATED WORK

The task of targeted grasping in clutter has been the subject
of investigation of multiple works [30], [31], [25], [4], [32].
Danielczuk et al. [30] address a similar problem to ours, but
they rely on a separate perception module and a heuristic
policy for pushing. Zeng et al. [31] develop a pick-and-place
system that can grasp objects in clutter, but without pregrasp-
ing behaviors. Both works are similar to ours in that they
represent goals through images of the target object. Quillen
et al. [25] benchmark several vision-based RL algorithms
for targeted grasping, where the goal is to grasp objects of
a specific shape as opposed to arbitrary unknown objects.
Yang et al. [4] also employ RL to tackle a related problem of
“grasping the invisible”, where the target object is completely
occluded. Unlike our system, which takes in the target object
as an image, they rely on a segmentation module that must
be able to detect the target object, restricting their system
to objects detectable by the module. Grasp2Vec [32] uses
object grasps to learn representations for objects, to provide
self-supervision for goal-conditional grasping. However, one
drawback of their method is its dependence upon an over-
the-shoulder camera to learn object-centric representations.
Ebert et al. [33] develop a system that can learn complex ma-
nipulation behaviors but do not study the problem of targeted
grasping, but rather targeted configuration, with goals being
target configurations instead of target objects. None of the
aforementioned RL-based systems perform targeted grasping
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Fig. 5. Sensitivity analysis of two challenging grasp attempts using a trained QT-Opt +H+M+F+L in clutter (15 objects). The leftmost frame depicts the
first observation from which both trajectories begin, as well as a corresponding view from an external camera (visualization only). The first row shows
the progression of the grasp attempt for the green chair. From the top-view, it is clear that the target is obscured by a green table, requiring the agent
to perform a series of emergent pregrasp manipulation behaviors including moving away for better visibility (t = 1), moving objects around the target’s
neighborhood away (t = 2 to t = 8), nudging the obstructing table aside (t = 9), and finally grasping the object. The second row shows, overlaid on the
observation, its sensitivity map. This highlights regions of the observation that, when perturbed, affect the predicted Q-values. This allows for more insight
into these emergent behaviors, such as target localization (t = 1 onwards), grasp region prediction (t = 9), grasp success (t = 15), etc. The third row
shows the grasp attempt for the beige-colored chair with the fourth showing its corresponding sensitivity map. As seen in the initial observation (t = 0),
the chair is not present in the agent’s limited view and must first be found (t = 1), despite potentially being fully occluded in cases of dense clutter or
large objects. Once located, the agent attempts to grasp it and fails (t = 7). It then attempts re-grasping from a different angle and eventually succeeds.

Fig. 6. Grasp success rate of QT-Opt +H+M+F+L evaluated with
increasing numbers of objects at evaluation time. random was evaluated
on the randomly generated rigid objects [25]. random+shapenet includes
objects from the ShapeNet dataset [24] and is the combination of datasets
trained on. random+no_target_shapenet is similar to random+shapenet, but
does not use ShapeNet objects as a grasp target.

in the active vision context, as they use either overhead, over-
the-shoulder, or fixed mounted cameras and cannot alter the
camera position.

Active vision systems have been developed for target or
goal-driven tasks, especially in navigation, where the agent
must reach a target [34], [35]. Active vision has also been
used extensively to address the problem of object percep-
tion [36], [37], [38], a key subtask of targeted grasping, but

Fig. 7. top left: The tray and the eight objects used for the real-
world experiment. top right: A goal image (photographed on a white
desk) provided to the real HSR. bottom-left: Simulator images with and
without domain randomization. bottom-right: A real HSR’s wrist camera
observation.

Fig. 8. A sequence of wrist camera observations from a successful attempt
to grasp the tennis ball.
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it is less commonly applied to grasping and manipulation
problems in clutter [39], [31]. Perhaps the most closely
related work to ours is Cheng et al.’s work [39], which
uses RL for active vision on a goal-directed pushing task,
where an object must be pushed to a target location in the
presence of distractor objects.

Several frameworks have been proposed to leverage dis-
tributed computing in RL. Gorila [40] is a distributed training
architecture for DQN [9] that updates parameters asyn-
chronously, while IMPALA [20] relies on synchronous up-
dates. Both consider the case where there is a single, global
replay buffer, and actors are run remotely. Stooke et al. [41]
have developed a codebase of a wide range of RL algorithms
with distributed training support with synchronous SGD and
asynchronous (but local) actors. Adamski et al. [10] have
investigated the use of large minibatches in deep RL with
synchronous SGD, but their work is limited to on-policy
methods without experience replay.

VII. CONCLUSION

We have presented a distributed deep reinforcement learn-
ing system for targeted grasping with active vision that
can grasp unseen objects in dense clutter. We have shown
that some of our proposed extensions and the large-scale
distributed training are key to learning efficiently on this
challenging task.

While we also have shown a proof-of-concept demon-
stration of real-world transfer, simulation-to-real (sim2real)
transfer of a vision-based manipulation system is a difficult
challenge in itself. We expect our system can benefit from
recent advances in sim2real transfer to improve its perfor-
mance in the real-world setup.
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