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Abstract— High-definition (HD) maps are emerging as an
essential tool for autonomous driving since they provide high-
precision semantic information about the physical environment.
To function as a reliable source of map information, HD maps
must be constantly updated with changes that occur to the
state of the road. In this paper, we propose a novel framework
for HD map change detection that can be used to maintain
an up-to-date HD map. More specifically, we design our HD
map change detection algorithm based on deep metric learning,
providing a unified framework that directly maps an input
image to estimated probabilities of HD map changes. To reduce
the discrepancy between input domains, i.e., camera image and
HD map, we propose an effective learning scheme for metric
space based on adversarial learning. Finally, we augment our
framework with a pixel-level local change detector that specifies
the region of changes in the image. We verify the effectiveness
of our framework by evaluating it on a city-scale urban HD
map dataset. Experimental results show that our method can
robustly detect changes against noises due to dynamic objects
and error in vehicle poses.

I. INTRODUCTION

High-definition (HD) maps are machine-readable maps

containing high-precision semantic information about the

physical driving environment, such as lane geometry, road

connectivity, traffic signs and road markers. With information

from HD maps, more reliable decisions can be made in

various stages of autonomous driving. For instance, planning

and control relies on HD maps for identifying drivable

routes and road surface geometry. In perception tasks such

as object detection and tracking [1], [2], drivable area and

lane information is utilized to reduce false alarms. Vehicle

poses can be better localized by exploiting visual landmarks

such as traffic signs, road markers, and lanes [3].

Although there were previous efforts to build HD maps

from high-precision aerial images [4], most latest HD

maps [2], [5] are created by driving around specialized

mapping vehicles equipped with high-end sensors such as

LIDAR, RTK-GNSS and IMU to obtain centimeter-level

accuracy. However, such an expensive sensor suite inevitably

increases the cost of mapping, limiting the number of map-

ping vehicles that can be concurrently dispatched.

Our physical road environment constantly changes, e.g., a

new crosswalk may be installed, centerline may be moved

while expanding the road, or the type of arrow marker may

change due to changed route regulation. To function as a

reliable source of map information for autonomous vehicles,

HD maps must remain up-to-date with such changes. How-

ever, it is neither efficient nor feasible to operate specialized

∗ indicates corresponding author.
Authors are affiliated in Autonomous Driving Group, NAVER LABS.
{heo.minhyeok, g1.kim, sujung.susanna.kim}@naverlabs.com

Fig. 1. Overview of the proposed system: Our HD map change detection
framework estimates the pixel-level probability of changes by directly
measuring the similarity between an input image and the corresponding HD
map without elaborate intermediate steps typically needed by conventional
methods.

mapping vehicles on a daily basis just to identify possible

changes.

In this paper, we aim to solve the HD map change detec-

tion problem with a low-cost sensor, i.e. camera. Conven-

tional change detection methods typically take the following

steps. First, predefined landmarks such as traffic signs, road

markings and lanes are recognized from the input image.

The algorithm is carefully designed to avoid distraction by

various kinds of noise, e.g., occlusion by dynamic objects

or viewpoint changes due to vehicle pose errors. Finally,

classifiers are applied to determine whether or not a change

has occurred.

In contrast, our approach directly maps an input image to

the probability of HD map changes without such intermedi-

ate steps by exploiting deep metric learning. Deep metric

learning employs neural networks to learn an embedding

function that projects inputs into a feature space where the

metric distance between them is an accurate measure of

their semantic similarity. It has been successfully applied to

various image-based applications [6]–[8]. In this work, we

formulate the HD map change detection problem as a task

of learning a metric space for measuring similarity between

the camera image and HD map. To adjust for the domain

gap between the two inputs, we utilize adversarial learning

to transfer the inputs into a common feature space. We

further augment our framework with a pixelwise local change

detector that specifies the region of changes on the image,

thereby facilitating subsequent map update. We demonstrate

that our approach can successfully detect HD map changes

by evaluating it on a city-scale urban dataset, and also

show that the proposed method is robust against unwanted

distractions such as dynamic objects and vehicle pose errors.
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The main contributions of the paper can be summarized

as follows:

• We propose a novel framework for HD map change

detection based on deep metric learning which only

requires image-level supervision without entailing in-

termediate steps typically needed by conventional meth-

ods.

• We present an effective learning scheme for metric

space based on adversarial learning to deal with dis-

crepancy between the input domains, i.e., image and

HD map.

• We further augment our framework with a pixel-level

local change detector that specifies the region of changes

on the image.

The rest of the paper is organized as follows. After

reviewing related works in Section II, we describe in detail

the proposed framework based on cross-domain deep metric

learning in Section III. Experimental results are presented in

Section IV, and we conclude the paper with a discussion of

future work in Section V.

II. RELATED WORKS

A. HD map

HD maps provide high-precision semantic information

about the road environment in a machine-readable form, such

as lane geometry, road connectivity, traffic signs, and road

markers. This semantic information is typically represented

as vector maps. As HD maps are emerging as an effective

solution for autonomous driving, especially for vehicles with

low-cost, low-precision sensor configurations, there have

been increasing efforts in industries (e.g. HERE1, TomTom2,

and NAVER LABS3) to develop HD maps in recent years.

However, since most of these HD maps are still in early

stages of development, each map provides its data in a

form specific to its own sensor setup, and there exists no

standardized format across the industry. In addition, HD

maps perform extensive post-processing on the raw sensor

data to fuse it across multiple sensors and guarantee high-

precision. This results in domain discrepancy between the

HD map data and raw sensor data such as camera images,

making it difficult to detect map changes that may have

occurred.

B. Image based change detection

Image-based change detection was traditionally used in

limited areas such as change detection for aerial images or

visual inspection for manufacturing, where it is relatively

easy to obtain changed datasets under identical configu-

rations. Recently, with an increasing number of change

detection datasets becoming available, image-based change

detection algorithms have been developed for more diverse

applications.

1https://www.here.com/platform/automotive-services/hd-maps
2https://www.tomtom.com/products/hd-map/
3https://hdmap.naverlabs.com/

In [9], an algorithm based on superpixel segmentation is

proposed to detect changes before and after a tsunami on

a dataset of a city captured with a 360 camera. Park et al.

[10] used CLEVR dataset [11] to create a synthetic dataset

rendered with predefined objects and their positions, and

proposed an algorithm that detects changes and produces

the results as a caption. Most similar in spirit to our work,

Revaud et al. [12] proposed an algorithm based on deep

metric learning that detects visual changes of stores or

shops for updating maps, and also provided a large dataset

containing geo-localized indoor images of shopping centers.

C. Map change detection

In robotics, there exists an extensive amount of work on

SLAM systems that build and maintain a 3D indoor map

by continuously updating it, but maps for SLAM are funda-

mentally different from HD maps for autonomous driving.

Change detection for HD maps is a relatively new problem

that has been studied in only a few recent papers.

In [13], a SLAM framework is proposed that simultane-

ously performs localization and change detection by detect-

ing HD map features from the sensor input. However, their

system requires a sensor configuration similar to the one used

for mapping, and it can only detect changes to a predefined

set of map features. Pannen et al. [14] proposed a crowd-

based map change detection algorithm that combines particle

filter and boosted classifier to determine the probability of

HD map changes. While it is a general framework that can be

used with other types of classifiers, it also defines a known

set of map features in advance, which makes it hard to handle

unexpected types of changes to the road environment.

III. PROPOSED METHOD

We propose a novel HD map change detection framework

that consists of three components, as shown in Fig. 2. We

measure the similarity between RGB camera image and

HD map using deep metric learning. To adjust for domain

difference between the two inputs, we propose a learning

scheme based on adversarial learning. In addition to image-

level similarity, we also estimate a pixel-level probability of

changes with a local change detector. In this section, we first

present a formal definition of the HD map change detection

problem we aim to solve. Then we describe each component

of our proposed change detection framework in detail.

A. Problem formulation

Our framework takes 2 inputs, HD map and RGB image,

and produces 2 outputs, a similarity score between the inputs

and a pixel-level score map of changes. Let Oi = {Ii, pi}
denote the output from ego-vehicle’s sensors at location

index i, where Ii and pi are the RGB camera image and

ego-vehicle’s 6 DoF pose. We assume that the HD map is a

set of map objects on the road surface, i.e. lanes and road

markers, represented as φi = {(P,c) , · · ·} at location i, where

P is a set of 3D points for each object, and c is the object’s

class label. Then we can obtain the HD map mask Mi by
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Fig. 2. Illustration of the proposed system. Our framework consists of three components as follows: i) Adversarial learning that reduces the discrepancy
between input domains, i.e., image and HD map, ii) Metric learning that measures the similarity between domain-adjusted image and HD map, and iii)
Local change detection that estimates a pixel-level probability of changes.

projecting all HD map objects within the camera view at

current location pi onto the camera image plane.

Our goal is to learn the similarity function s : (Ii, Mi) 7→R

which measures the similarity between the image and the HD

map mask. The output of s is high when no map change has

occurred, and low otherwise. To facilitate map update by

localizing the map objects where change has occurred, we

also provide a pixel-level score map of change l(x,y) which

represents the probability of change at pixel location (x,y).

B. Deep Metric learning

Metric learning is an algorithm that learns an embedding

function that projects data points into a feature space where

the metric distance between them is an accurate measure of

their semantic similarity. In deep metric learning, the em-

bedding function is learned by a neural network architecture

which unifies feature learning and metric learning into a

joint learning framework. We design our HD map change

detection algorithm based on deep metric learning, providing

a unified framework that directly maps an input image to

estimated probabilities of HD map changes, including those

not defined in advance or unseen during training.

However, we cannot apply metric learning directly to our

inputs Ii and Mi, due to domain difference between them.

While Ii is an RGB image, Mi is a collection of HD map

object labels for each pixel. To overcome this issue, we first

apply deep neural encoders f I , f M to transfer Ii, Mi into

the same feature space. We borrow the encoder structure in

[15] which is widely used for domain adaptation. Each deep

neural encoder outputs intermediate tensors lying in the same

feature space, f I(Ii), and f M(Mi).
Now we can apply metric learning by extracting features

from the intermediate tensors. Shared feature extractor g is

a transfer function g(I) that maps its input to an output

tensor of channel dimension N. g consists of several con-

volution blocks, generalized mean pooling layer [16] and

ℓ2-normalized layer. We can define the similarity function s

Fig. 3. Examples of generated synthetic masks S. A mask was generated
by changing randomly selected objects according to Removal, Addition, or
Class change where an object was removed, added, or its class was changed,
respectively.

with f I , f M , and g as follows:

s(Ii,Mi) =
〈

g
(

f I(Ii)
)

, g
(

f M(Mi)
)

〉

, (1)

where 〈·, ·〉 denotes the inner product.

To train our similarity function s, we adopt triplet margin

loss as our loss function:

Ltri(Q,P,N) = max(0,m− s(Q,P)+ s(Q,N)), (2)

where Q,P,N denote the query, positive and negative image,

respectively. It enforces negative similarity s(Q,N) to be

smaller than positive similarity s(Q,P) by a margin m.

We compose the training triplet Ti for each location i as

follows:

Ti = (Q, P, N) = (Ii, Mi, Mn
i ), (3)

Mn
i indicates negative HD map mask:

Mn
i =

{

M j if distance(pi, p j)> 40m

Si

(4)
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Fig. 4. Domain gap α and adaptive margin m′ gradually converge as the
training proceeds.

where Si is a synthetic mask artificially generated from φi.

Since changed samples are hard to collect, we generate

changed data by adding, changing or removing HD map

objects, as shown in Fig. 3. Manipulation of objects in

HD map does not yield any image artifact that image

manipulation may contain. Training proceeds by repeatedly

sampling random triplets and computing the loss. If loss

is non-zero, then loss gradient is computed and network

weights are updated by back-propagation.

C. Adversarial learning for domain adaptation

To adjust for the domain gap between the two inputs f I

and f M for the feature extractor g, we adopt adversarial

learning [17]. We add a discriminator h(.) that distinguishes

between the two input domains by producing a scalar value

between 0 (HD map mask) and 1 (RGB image), right after

the neural encoder as shown in Fig. 2. Then we train

f I , f M, g and h in alternating periods, using the neural

encoders f I , f M as generators. Neural encoders are then

trained to produce outputs with similar distributions that

cannot be distinguished by the discriminator.

We also propose an adaptive margin for the triplet loss

that adaptively controls the amount of margin depending on

the current level of domain gap during training. During the

initial training stage where domain gap is still large, metric

training with triplet margin loss may not proceed well if the

margin is too big. Therefore, we first define the amount of

domain gap as follows:

α =
∥

∥

∥
E[h

(

f I(Ii)
)

]−E[h
(

f M(Mi)
)

]
∥

∥

∥

ℓ1

. (5)

As the discriminator h outputs a scalar value indicating

input’s closeness to a target domain, α represents the distance

between the two domains with respect to the target domain.

While domain gap is initially being adjusted, we allow the

algorithm to learn a relaxed metric space, and once domain

gap has been sufficiently reduced, we want to finetune the

metric space with a tighter margin. Therefore, we define the

adaptive margin m′ attenuated by the change in domain gap,

as follows:

m′ = m · exp
(

−|∇α|/βatt

)

, (6)

(a) Pangyo district

(b) RGB image I (c) HD map mask M (d) HD map objects φ

Fig. 5. Example of NAVER LABS dataset. (a) shows the district Pangyo.
Green and red lines denote the unchanged and changed regions. (b-d) show
the captured image, projected HD map mask, HD map objects, respectively.

where βatt denotes the level of attenuation. In early stages of

training, the domain gap will decrease quickly, resulting in a

small margin m′. As the training proceeds, α will converge

to a certain value and the margin will also converge to m, as

shown in Fig. 4.

D. Local change detection

We further augment our framework with a local change

detector k to learn a pixel-level score map of changes, l(x,y).
To provide output in the form of an image, we adopt an

encoder-decoder structure for k. Features extracted from the

second to the last layer of feature extractor g for an image

Ii and a negative mask Mn
i are each normalized across the

channel dimension, concatenated and used as input to k.

Output of k is the estimated change score map l with the

same spatial resolution as the input image, i.e., l ∈ R
W×H .

Normally, it is difficult to acquire ground truth data for

change detection because changes are scarce and hard to

annotate. However, since we synthetically generated changed

samples, we can easily obtain the binary ground truth change

map l
gt
i from the negative masks:

l
gt
i (x,y) = I(Mi(x,y) 6= Si(x,y)) , (7)

where I denotes the indicator function, I : X 7→ {True,False}.

The local change detector k is trained separately after we

finish training the networks for image-level similarity s and

freeze their weights. We use l
gt
i as ground truth to learn the

change score map l by optimizing a binary cross-entropy

loss.

IV. EXPERIMENTS

A. Datasets

To train and validate our change detection framework,

we use NAVER LABS HD map dataset which is publicly
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(a) Appearance (b) Disappearance (c) Class change (d) Undefined class (e) Undefined class (f) Undefined class

Fig. 6. The qualitative results of proposed algorithm. Top row shows HD map mask projected onto camera image, and bottom row shows results of local
change detector. (a-b) Our algorithm can detect multiple changes even though we generated each synthetic sample with a single change. (c) Change of
class label is correctly detected. (arrow type changed due to construction) Our algorithm can also detect changes that were not included in the training
data: (d) colored guide line in the middle of lane, (e) unfinished painting of crosswalk, and (f) curved arrow.

TABLE I

SUMMARY OF HD MAP OBJECTS

Category Marker type Class index

Others Others 0

Lane

White dotted line 1
White solid line 2

Yellow line 3
Blue line 4
Stop line 5

Arrow marker

Straight 6
Left turn 7

Right turn 8
U-turn 9

Prohibition 10

Information

No waiting zone 11
Crosswalk 12

Speed bump 13
Text 14

Speed limit 15
Yield 16

available for research purposes. It provides HD semantic

information about the road environment in cities of South

Korea, including lane geometry, road connectivity and road

markers. As it contains a large number of annotated map

objects such as lanes and road markers where changes occur

frequently, it is a reasonable choice for our experiments.

Each lane and road marker in this dataset is georeferenced

using high-precision RTK GPS, and annotated with polygon

coordinates and class labels. We organize these objects into

17 classes as shown in Table I.

B. Implementation details and metrics

Network architecture: We borrow the encoder model

and discriminator from [15] for the neural encoders f I , f M

and discriminator h. We use one-hot encoding for the HD

map mask M to represent the presence or absence of each

class. Therefore, the dimension of the input channel for f M

is the number of HD map object classes C = 17. The shared

feature extractor g consists of several residual blocks [18],

and generalized mean pooling layer [16]. We set the output

feature dimension of g as N = 512. The output feature of g is

then ℓ2-normalized for inner product calculation in Euclidean

space. For the local change detector k, we adopt U-Net

architecture [19] and perform bilinear upsampling to obtain

change score map with the same spatial resolution as the

input.

Training detail: We collected about 20K images with 6

DoF poses using a vehicle equipped with a low-cost camera

and an RTK GNSS sensor, to acquire a training dataset

with precise ground truth poses. We use images from the

unchanged regions in Pangyo district, as shown in Fig. 5 (a).

As described in Sec. III-B, negative samples are synthetically

generated for metric learning.

We train f I , f M, g,h for 30 epochs using Adam solver with

an initial learning rate of 0.001 and a batch size of 4. Then we

train the local change detector k for 150 epochs with an initial

learning rate of 0.0001. The rest of the hyperparameters are

the same. The triplet loss margin m and attenuation level

parameter βatt are set to 0.4 and 0.1, respectively. We apply

horizontal flipping and color jittering for data augmentation.

To simulate error in vehicle poses, we add a random noise

(< 1m, 5◦) during training.

Evaluation metrics: We evaluate our framework with

two metrics, mAPr and mAPs. mAPr is the mean AP score

computed for each mask Mi among all HD map masks by

querying Ii. This metric measures the effectiveness of our

similarity function s at estimating the similarity between the

input image and corresponding HD map mask. The second

metric mAPs is the mean AP score computed for each mask

Mi against all of its synthetic negative masks Si by querying

Ii. This metric measures the capability of our framework for

detecting changes.

C. Quantitative results

For quantitative evaluation, we sample approximately 4K

images of unchanged regions in Sangam district, and gener-

ate on average 40 synthetic changed masks for each image.

Ablation studies: As shown in Table II, adding adver-

sarial learning and attenuated margin improves both metrics

over the baseline, verifying their effectiveness. There is a
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TABLE II

ABLATION STUDIES

Methods mAPr mAPs

Baseline 0.37 0.60
+ Adversarial learning 0.43 0.59
+ Attenuated margin 000...555111 000...777111

TABLE III

mAPs SCORES BY EACH TYPE OF CHANGE

Category
Type of change

Addition Removal Class change

Lane - 0.86 0.63
Arrow marker 0.87 0.83 0.50
Information 0.91 0.90 0.57

clear advantage for using an adaptive margin for metric

learning attenuated during early training phase over using

a fixed margin. The benefit of adding adversarial learning is

mainly exhibited by one of the two metrics mAPr because it

is more closely related to domain adaptation, while mAPs is

designed to reflect our framework’s ability to detect changes.

In our experiments, the corresponding HD map masks are

retrieved at approximately 1.5–2 ranking on average. Note

that AP scores can be interpreted as the inverse of the

retrieval ranking among possible candidates.

Performances for each change type: Table III shows our

framework’s performance for each type of changes measured

by mAPs, the AP score for synthetic masks. Note that we

did not create Addition changes for lanes. The mAPs scores

show that our framework detects Addition and Removal with

high accuracy, while also handling Class change reasonably

well.

D. Qualitative results

Fig. 6 shows qualitative results of our change detection on

real-world changed samples. Although we augmented each

synthetically generated training sample with a single change,

our framework is able to simultaneously detect multiple

changes, as shown in Fig. 6 (a-b). More importantly, Fig. 6

(d)-(f) show that our algorithm can detect changes to HD map

objects that are not defined in the HD map or not observed in

the training data, demonstrating the generalization capability

of our proposed framework.

We also demonstrate how our framework performs on a

video sequence in Fig. 7 where (b) is a graph showing the

similarity scores along the driving route from (c) to (h) in

Fig. 7 (a). The similarity score drops in the region where

the change actually occurs, visualized in pink. Also note

that the similarity score changes continuously although our

framework does not enforce temporal smoothness.

E. Discussions

Robustness against localization error: We verify the

robustness of our proposed framework against the localiza-

tion error by adding random noise. Our framework maintains

(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 7. Results on a video sequence from frame t to t + x. (a) visualizes
the road layout along the driving route, (b) is a plot of the responses of
similarity function s over time, (c-h) are the local change detection results.

(a) (b)

Fig. 8. The robustness of proposed framework to localization error. (a) Plot
showing degradation of performance against increasing noise. (b) Regardless
of localization error, local change detector can correctly localize the changed
region.

approximately 80% of its accuracy when noise in the range of

(< 1m,5◦) is added, as shown in Fig. 8 (a). Furthermore, the

local change detector k correctly localizes the changed region

even when Mi is obtained from noisy pose, as shown in Fig. 8

(b). We believe that adding noise during training enabled our

local change detector to learn the high-level structure of the

HD map mask, thereby enhancing its robustness to error.

Moving objects: In real-world driving scenarios, lanes

and markers are frequently occluded by moving objects,

i.e., vehicles and pedestrians. However, such occlusions

should not be falsely detected as actual HD map changes.

During generation of synthetic changed samples for training

our framework, we discarded samples where the synthetic

mask overlaps with moving objects, assisted by a semantic

segmentation network trained on Cityscapes [20]. As shown

in Fig. 9, our framework successfully ignores changes due

to occlusion by moving objects, without directly handling

moving objects at inference time.

Failure cases: In Fig. 10 (a), only part of the lanes

are visible as the road is being repaved. Although this is a

temporary state that does not correspond to meaningful HD

map change, our algorithm still detects it as a change. Also,

Fig. 10 (b) shows an example where only part of the road

marker is visible within the image frame. Our algorithm fails

to recognize the marker and detects it as a change. We believe

this can be handled by extending our framework to use

10223



(a) (b) (c)

Fig. 9. Occlusion by moving objects. Changed region (top row, outlined
in red) in the left lane is (a-b) partially occluded by moving object and (c)
reappears. Our framework does not detect occlusion by moving object as a
valid HD map change.

(a) (b)

Fig. 10. Failure cases where partially visible objects are falsely detected
as changes. (a) Only part of the lanes are visible on a partially paved road.
(b) Arrow truncated at the edge of the image frame.

multiple input frames to incorporate temporal information.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel framework for detect-

ing HD map changes with a typically affordable low-cost

camera. By exploiting deep metric learning, our framework

directly maps an input image to the estimated probability of

HD map change, without elaborately designed intermediate

steps for defining individual map objects and examining for

possible changes. To adjust for the domain gap between the

input camera image and HD map, we propose an effective

learning scheme based on adversarial learning. Furthermore,

we augment our framework with a local change detector that

estimates a pixel-level probability of change on the image.

We verify the effectiveness of our framework by evaluating

it on a city-scale urban HD map dataset.

There are a few interesting directions for further research

to extend our work. First of all, as the ultimate goal of change

detection is to update the HD map with the recognized

changes, we need to devise a way to identify the type of

change and the map object where the change occurred. We

would like to include vertical objects such as traffic signs

and traffic lights as map objects. The scope of the objects

is easily extendable with our framework, which is another

advantage. Finally, we believe the performance of our map

change algorithm can be further enhanced by aggregating

information from multiple input frames over time as well as

multiple vehicles for crowd-sourced map updates.
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